#include #include #include #include #include #include #include #define PT_SIZE ((uint64_t)0x1000) typedef uint64_t pt_entry_t; static pt_entry_t *get_next_level(pagemap_t pagemap, pt_entry_t *current_level, uint64_t virt, enum page_size desired_sz, size_t level_idx, size_t entry); #if defined (__x86_64__) || defined (__i386__) #define PT_FLAG_VALID ((uint64_t)1 << 0) #define PT_FLAG_WRITE ((uint64_t)1 << 1) #define PT_FLAG_USER ((uint64_t)1 << 2) #define PT_FLAG_LARGE ((uint64_t)1 << 7) #define PT_FLAG_NX ((uint64_t)1 << 63) #define PT_PADDR_MASK ((uint64_t)0x0000FFFFFFFFF000) #define PT_TABLE_FLAGS (PT_FLAG_VALID | PT_FLAG_WRITE | PT_FLAG_USER) #define PT_IS_TABLE(x) (((x) & (PT_FLAG_VALID | PT_FLAG_LARGE)) == PT_FLAG_VALID) #define PT_IS_LARGE(x) (((x) & (PT_FLAG_VALID | PT_FLAG_LARGE)) == (PT_FLAG_VALID | PT_FLAG_LARGE)) #define PT_TO_VMM_FLAGS(x) ((x) & (PT_FLAG_WRITE | PT_FLAG_NX)) pagemap_t new_pagemap(int lv) { pagemap_t pagemap; pagemap.levels = lv; pagemap.top_level = ext_mem_alloc(PT_SIZE); return pagemap; } static bool is_1gib_page_supported(void) { // Cache the cpuid result :^) static bool CACHE_INIT = false; static bool CACHE = false; if (!CACHE_INIT) { // Check if 1GiB pages are supported: uint32_t eax, ebx, ecx, edx; CACHE = cpuid(0x80000001, 0, &eax, &ebx, &ecx, &edx) && ((edx & 1 << 26) == 1 << 26); CACHE_INIT = true; printv("paging: 1GiB pages are %s!\n", CACHE ? "supported" : "not supported"); } return CACHE; } void map_page(pagemap_t pagemap, uint64_t virt_addr, uint64_t phys_addr, uint64_t flags, enum page_size pg_size) { // Calculate the indices in the various tables using the virtual address size_t pml5_entry = (virt_addr & ((uint64_t)0x1ff << 48)) >> 48; size_t pml4_entry = (virt_addr & ((uint64_t)0x1ff << 39)) >> 39; size_t pml3_entry = (virt_addr & ((uint64_t)0x1ff << 30)) >> 30; size_t pml2_entry = (virt_addr & ((uint64_t)0x1ff << 21)) >> 21; size_t pml1_entry = (virt_addr & ((uint64_t)0x1ff << 12)) >> 12; pt_entry_t *pml5, *pml4, *pml3, *pml2, *pml1; flags |= PT_FLAG_VALID; // Always present // Paging levels switch (pagemap.levels) { case 5: pml5 = pagemap.top_level; goto level5; case 4: pml4 = pagemap.top_level; goto level4; default: __builtin_unreachable(); } level5: pml4 = get_next_level(pagemap, pml5, virt_addr, pg_size, 4, pml5_entry); level4: pml3 = get_next_level(pagemap, pml4, virt_addr, pg_size, 3, pml4_entry); if (pg_size == Size1GiB) { // Check if 1GiB pages are avaliable. if (is_1gib_page_supported()) { pml3[pml3_entry] = (pt_entry_t)(phys_addr | flags | PT_FLAG_LARGE); } else { // If 1GiB pages are not supported then emulate it by splitting them into // 2MiB pages. for (uint64_t i = 0; i < 0x40000000; i += 0x200000) { map_page(pagemap, virt_addr + i, phys_addr + i, flags, Size2MiB); } } return; } pml2 = get_next_level(pagemap, pml3, virt_addr, pg_size, 2, pml3_entry); if (pg_size == Size2MiB) { pml2[pml2_entry] = (pt_entry_t)(phys_addr | flags | PT_FLAG_LARGE); return; } pml1 = get_next_level(pagemap, pml2, virt_addr, pg_size, 1, pml2_entry); pml1[pml1_entry] = (pt_entry_t)(phys_addr | flags); } #elif defined (__aarch64__) // Here we operate under the assumption that 4K pages are supported by the CPU. // This appears to be guaranteed by UEFI, as section 2.3.6 "AArch64 Platforms" // states that the primary processor core configuration includes 4K translation // granules (TCR_EL1.TG0 = 0). // Support for 4K pages also implies 2M, 1G and 512G blocks. // Sanity check that 4K pages are supported. void vmm_assert_4k_pages(void) { uint64_t aa64mmfr0; asm volatile ("mrs %0, id_aa64mmfr0_el1" : "=r"(aa64mmfr0)); if (((aa64mmfr0 >> 28) & 0b1111) == 0b1111) { panic(false, "vmm: CPU does not support 4K pages, please make a bug report about this."); } } #define PT_FLAG_VALID ((uint64_t)1 << 0) #define PT_FLAG_TABLE ((uint64_t)1 << 1) #define PT_FLAG_4K_PAGE ((uint64_t)1 << 1) #define PT_FLAG_BLOCK ((uint64_t)0 << 1) #define PT_FLAG_USER ((uint64_t)1 << 6) #define PT_FLAG_READONLY ((uint64_t)1 << 7) #define PT_FLAG_INNER_SH ((uint64_t)3 << 8) #define PT_FLAG_ACCESS ((uint64_t)1 << 10) #define PT_FLAG_XN ((uint64_t)1 << 54) #define PT_FLAG_WB ((uint64_t)0 << 2) #define PT_FLAG_FB ((uint64_t)1 << 2) #define PT_PADDR_MASK ((uint64_t)0x0000FFFFFFFFF000) #define PT_TABLE_FLAGS (PT_FLAG_VALID | PT_FLAG_TABLE) #define PT_IS_TABLE(x) (((x) & (PT_FLAG_VALID | PT_FLAG_TABLE)) == (PT_FLAG_VALID | PT_FLAG_TABLE)) #define PT_IS_LARGE(x) (((x) & (PT_FLAG_VALID | PT_FLAG_TABLE)) == PT_FLAG_VALID) #define PT_TO_VMM_FLAGS(x) (pt_to_vmm_flags_internal(x)) static uint64_t pt_to_vmm_flags_internal(pt_entry_t entry) { uint64_t flags = 0; if (!(entry & PT_FLAG_READONLY)) flags |= VMM_FLAG_WRITE; if (entry & PT_FLAG_XN) flags |= VMM_FLAG_NOEXEC; if (entry & PT_FLAG_FB) flags |= VMM_FLAG_FB; return flags; } pagemap_t new_pagemap(int lv) { pagemap_t pagemap; pagemap.levels = lv; pagemap.top_level[0] = ext_mem_alloc(PT_SIZE); pagemap.top_level[1] = ext_mem_alloc(PT_SIZE); return pagemap; } void map_page(pagemap_t pagemap, uint64_t virt_addr, uint64_t phys_addr, uint64_t flags, enum page_size pg_size) { // Calculate the indices in the various tables using the virtual address size_t pml5_entry = (virt_addr & ((uint64_t)0xf << 48)) >> 48; size_t pml4_entry = (virt_addr & ((uint64_t)0x1ff << 39)) >> 39; size_t pml3_entry = (virt_addr & ((uint64_t)0x1ff << 30)) >> 30; size_t pml2_entry = (virt_addr & ((uint64_t)0x1ff << 21)) >> 21; size_t pml1_entry = (virt_addr & ((uint64_t)0x1ff << 12)) >> 12; pt_entry_t *pml5, *pml4, *pml3, *pml2, *pml1; bool is_higher_half = virt_addr & ((uint64_t)1 << 63); uint64_t real_flags = PT_FLAG_VALID | PT_FLAG_INNER_SH | PT_FLAG_ACCESS | PT_FLAG_WB; if (!(flags & VMM_FLAG_WRITE)) real_flags |= PT_FLAG_READONLY; if (flags & VMM_FLAG_NOEXEC) real_flags |= PT_FLAG_XN; if (flags & VMM_FLAG_FB) real_flags |= PT_FLAG_FB; // Paging levels switch (pagemap.levels) { case 5: pml5 = pagemap.top_level[is_higher_half]; goto level5; case 4: pml4 = pagemap.top_level[is_higher_half]; goto level4; default: __builtin_unreachable(); } level5: pml4 = get_next_level(pagemap, pml5, virt_addr, pg_size, 4, pml5_entry); level4: pml3 = get_next_level(pagemap, pml4, virt_addr, pg_size, 3, pml4_entry); if (pg_size == Size1GiB) { pml3[pml3_entry] = (pt_entry_t)(phys_addr | real_flags | PT_FLAG_BLOCK); return; } pml2 = get_next_level(pagemap, pml3, virt_addr, pg_size, 2, pml3_entry); if (pg_size == Size2MiB) { pml2[pml2_entry] = (pt_entry_t)(phys_addr | real_flags | PT_FLAG_BLOCK); return; } pml1 = get_next_level(pagemap, pml2, virt_addr, pg_size, 1, pml2_entry); pml1[pml1_entry] = (pt_entry_t)(phys_addr | real_flags | PT_FLAG_4K_PAGE); } #else #error Unknown architecture #endif static pt_entry_t *get_next_level(pagemap_t pagemap, pt_entry_t *current_level, uint64_t virt, enum page_size desired_sz, size_t level_idx, size_t entry) { pt_entry_t *ret; if (PT_IS_TABLE(current_level[entry])) { ret = (pt_entry_t *)(size_t)(current_level[entry] & PT_PADDR_MASK); } else { if (PT_IS_LARGE(current_level[entry])) { // We are replacing an existing large page with a smaller page. // Split the previous mapping into mappings of the newly requested size // before performing the requested map operation. uint64_t old_page_size, new_page_size; switch (level_idx) { case 2: old_page_size = 0x40000000; break; case 1: old_page_size = 0x200000; break; default: panic(false, "Unexpected level in get_next_level"); } switch (desired_sz) { case Size1GiB: new_page_size = 0x40000000; break; case Size2MiB: new_page_size = 0x200000; break; case Size4KiB: new_page_size = 0x1000; break; default: panic(false, "Unexpected page size in get_next_level"); } // Save all the information from the old entry at this level uint64_t old_flags = PT_TO_VMM_FLAGS(current_level[entry]); uint64_t old_phys = current_level[entry] & PT_PADDR_MASK; uint64_t old_virt = virt & ~(old_page_size - 1); if (old_phys & (old_page_size - 1)) panic(false, "Unexpected page table entry address in get_next_level"); // Allocate a table for the next level ret = ext_mem_alloc(PT_SIZE); current_level[entry] = (pt_entry_t)(size_t)ret | PT_TABLE_FLAGS; // Recreate the old mapping with smaller pages for (uint64_t i = 0; i < old_page_size; i += new_page_size) { map_page(pagemap, old_virt + i, old_phys + i, old_flags, desired_sz); } } else { // Allocate a table for the next level ret = ext_mem_alloc(PT_SIZE); current_level[entry] = (pt_entry_t)(size_t)ret | PT_TABLE_FLAGS; } } return ret; }