#include #include #include #include #include #define PT_SIZE ((uint64_t)0x1000) typedef uint64_t pt_entry_t; static pt_entry_t *get_next_level(pt_entry_t *current_level, size_t entry) { pt_entry_t *ret; if (current_level[entry] & 0x1) { // Present flag set ret = (pt_entry_t *)(current_level[entry] & ~((pt_entry_t)0xfff)); } else { // Allocate a table for the next level ret = ext_mem_alloc_aligned(PT_SIZE, PT_SIZE); // Present + writable + user (0b111) current_level[entry] = (pt_entry_t)ret | 0b111; } return ret; } pagemap_t new_pagemap(int lv) { pagemap_t pagemap; pagemap.levels = lv; pagemap.top_level = ext_mem_alloc_aligned(PT_SIZE, PT_SIZE); return pagemap; } void map_page(pagemap_t pagemap, uint64_t virt_addr, uint64_t phys_addr, uint64_t flags) { // Calculate the indices in the various tables using the virtual address size_t pml5_entry = (virt_addr & ((uint64_t)0x1ff << 48)) >> 48; size_t pml4_entry = (virt_addr & ((uint64_t)0x1ff << 39)) >> 39; size_t pml3_entry = (virt_addr & ((uint64_t)0x1ff << 30)) >> 30; size_t pml2_entry = (virt_addr & ((uint64_t)0x1ff << 21)) >> 21; pt_entry_t *pml5, *pml4, *pml3, *pml2; // Paging levels switch (pagemap.levels) { case 5: pml5 = pagemap.top_level; pml4 = get_next_level(pml5, pml5_entry); break; case 4: pml4 = pagemap.top_level; break; } pml3 = get_next_level(pml4, pml4_entry); pml2 = get_next_level(pml3, pml3_entry); // Set the entry as present and point it to the passed physical address // Also set the specified flags // We only use 2MiB pages else we would not have enough space pml2[pml2_entry] = (pt_entry_t)(phys_addr | flags | (1 << 7)); }