#if defined (__x86_64__) || defined (__i386__) #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define LIMINE_BRAND "Limine " LIMINE_VERSION // Returns the size required to store the multiboot info. static size_t get_multiboot1_info_size( char *cmdline, size_t modules_count, size_t modules_cmdlines_size, uint32_t section_entry_size, uint32_t section_num ) { return ALIGN_UP(sizeof(struct multiboot1_info), 16) + // base structure ALIGN_UP(strlen(cmdline) + 1, 16) + // cmdline ALIGN_UP(sizeof(LIMINE_BRAND), 16) + // bootloader brand ALIGN_UP(sizeof(section_entry_size * section_num), 16) + // ELF info ALIGN_UP(sizeof(struct multiboot1_module) * modules_count, 16) + // modules count ALIGN_UP(modules_cmdlines_size, 16) + // modules command lines ALIGN_UP(sizeof(struct multiboot1_mmap_entry) * 256, 16); // memory map } static void *mb1_info_alloc(void **mb1_info_raw, size_t size) { void *ret = *mb1_info_raw; *mb1_info_raw += ALIGN_UP(size, 16); return ret; } noreturn void multiboot1_load(char *config, char *cmdline) { struct file_handle *kernel_file; char *kernel_path = config_get_value(config, 0, "KERNEL_PATH"); if (kernel_path == NULL) panic(true, "multiboot1: KERNEL_PATH not specified"); print("multiboot1: Loading kernel `%#`...\n", kernel_path); if ((kernel_file = uri_open(kernel_path)) == NULL) panic(true, "multiboot1: Failed to open kernel with path `%#`. Is the path correct?", kernel_path); uint8_t *kernel = freadall(kernel_file, MEMMAP_KERNEL_AND_MODULES); size_t kernel_file_size = kernel_file->size; fclose(kernel_file); struct multiboot1_header header = {0}; size_t header_offset = 0; for (header_offset = 0; header_offset < 8192; header_offset += 4) { uint32_t v = *(uint32_t *)(kernel+header_offset); if (v == MULTIBOOT1_HEADER_MAGIC) { memcpy(&header, kernel + header_offset, sizeof(header)); break; } } if (header.magic != MULTIBOOT1_HEADER_MAGIC) { panic(true, "multiboot1: Invalid magic"); } if (header.magic + header.flags + header.checksum) panic(true, "multiboot1: Header checksum is invalid"); bool section_hdr_info_valid = false; struct elf_section_hdr_info section_hdr_info = {0}; uint64_t entry_point; struct elsewhere_range *ranges; uint64_t ranges_count; if (header.flags & (1 << 16)) { if (header.load_addr > header.header_addr) panic(true, "multiboot1: Illegal load address"); size_t load_size; if (header.load_end_addr) load_size = header.load_end_addr - header.load_addr; else load_size = kernel_file_size; uint32_t bss_size = 0; if (header.bss_end_addr) { uintptr_t bss_addr = header.load_addr + load_size; if (header.bss_end_addr < bss_addr) panic(true, "multiboot1: Illegal bss end address"); bss_size = header.bss_end_addr - bss_addr; } size_t full_size = load_size + bss_size; void *elsewhere = ext_mem_alloc(full_size); memcpy(elsewhere, kernel + (header_offset - (header.header_addr - header.load_addr)), load_size); entry_point = header.entry_addr; ranges_count = 1; ranges = ext_mem_alloc(sizeof(struct elsewhere_range)); ranges->elsewhere = (uintptr_t)elsewhere; ranges->target = header.load_addr; ranges->length = full_size; } else { int bits = elf_bits(kernel); switch (bits) { case 32: if (!elf32_load_elsewhere(kernel, &entry_point, &ranges, &ranges_count)) panic(true, "multiboot1: ELF32 load failure"); section_hdr_info = elf32_section_hdr_info(kernel); section_hdr_info_valid = true; break; case 64: { if (!elf64_load_elsewhere(kernel, &entry_point, &ranges, &ranges_count)) panic(true, "multiboot1: ELF64 load failure"); section_hdr_info = elf64_section_hdr_info(kernel); section_hdr_info_valid = true; break; } default: panic(true, "multiboot1: Invalid ELF file bitness"); } } size_t n_modules; size_t modules_cmdlines_size = 0; for (n_modules = 0;; n_modules++) { struct conf_tuple conf_tuple = config_get_tuple(config, n_modules, "MODULE_PATH", "MODULE_STRING"); if (!conf_tuple.value1) break; char *module_cmdline = conf_tuple.value2; if (!module_cmdline) module_cmdline = ""; modules_cmdlines_size += ALIGN_UP(strlen(module_cmdline) + 1, 16); } size_t mb1_info_size = get_multiboot1_info_size( cmdline, n_modules, modules_cmdlines_size, section_hdr_info_valid ? section_hdr_info.section_entry_size : 0, section_hdr_info_valid ? section_hdr_info.num : 0 ); // Realloc elsewhere ranges to include mb1 info, modules, and elf sections struct elsewhere_range *new_ranges = ext_mem_alloc(sizeof(struct elsewhere_range) * (ranges_count + 1 /* mb1 info range */ + n_modules + (section_hdr_info_valid ? section_hdr_info.num : 0))); memcpy(new_ranges, ranges, sizeof(struct elsewhere_range) * ranges_count); pmm_free(ranges, sizeof(struct elsewhere_range) * ranges_count); ranges = new_ranges; // GRUB allocates boot info at 0x10000, *except* if the kernel happens // to overlap this region, then it gets moved to right after the // kernel, or whichever PHDR happens to sit at 0x10000. // Allocate it wherever, then move it to where GRUB puts it // afterwards. // Elsewhere append mb1 info *after* kernel but *before* modules. void *mb1_info_raw = ext_mem_alloc(mb1_info_size); uint64_t mb1_info_final_loc = 0x10000; if (!elsewhere_append(true /* flexible target */, ranges, &ranges_count, mb1_info_raw, &mb1_info_final_loc, mb1_info_size)) { panic(true, "multiboot1: Cannot allocate mb1 info"); } size_t mb1_info_slide = (size_t)mb1_info_raw - mb1_info_final_loc; struct multiboot1_info *multiboot1_info = mb1_info_alloc(&mb1_info_raw, sizeof(struct multiboot1_info)); if (section_hdr_info_valid == true) { multiboot1_info->elf_sect.num = section_hdr_info.num; multiboot1_info->elf_sect.size = section_hdr_info.section_entry_size; multiboot1_info->elf_sect.shndx = section_hdr_info.str_section_idx; void *sections = mb1_info_alloc(&mb1_info_raw, section_hdr_info.section_entry_size * section_hdr_info.num); multiboot1_info->elf_sect.addr = (uintptr_t)sections - mb1_info_slide; memcpy(sections, kernel + section_hdr_info.section_offset, section_hdr_info.section_entry_size * section_hdr_info.num); int bits = elf_bits(kernel); for (size_t i = 0; i < section_hdr_info.num; i++) { if (bits == 64) { struct elf64_shdr *shdr = (void *)sections + i * section_hdr_info.section_entry_size; if (shdr->sh_addr != 0 || shdr->sh_size == 0) { continue; } uint64_t section = (uint64_t)-1; /* no target preference, use top */ if (!elsewhere_append(true /* flexible target */, ranges, &ranges_count, kernel + shdr->sh_offset, §ion, shdr->sh_size)) { panic(true, "multiboot1: Cannot allocate elf sections"); } shdr->sh_addr = section; } else { struct elf32_shdr *shdr = (void *)sections + i * section_hdr_info.section_entry_size; if (shdr->sh_addr != 0 || shdr->sh_size == 0) { continue; } uint64_t section = (uint64_t)-1; /* no target preference, use top */ if (!elsewhere_append(true /* flexible target */, ranges, &ranges_count, kernel + shdr->sh_offset, §ion, shdr->sh_size)) { panic(true, "multiboot1: Cannot allocate elf sections"); } shdr->sh_addr = section; } } multiboot1_info->flags |= (1 << 5); } if (n_modules) { struct multiboot1_module *mods = mb1_info_alloc(&mb1_info_raw, sizeof(struct multiboot1_module) * n_modules); multiboot1_info->mods_count = n_modules; multiboot1_info->mods_addr = (size_t)mods - mb1_info_slide; for (size_t i = 0; i < n_modules; i++) { struct multiboot1_module *m = mods + i; struct conf_tuple conf_tuple = config_get_tuple(config, i, "MODULE_PATH", "MODULE_STRING"); char *module_path = conf_tuple.value1; if (module_path == NULL) panic(true, "multiboot1: Module disappeared unexpectedly"); print("multiboot1: Loading module `%#`...\n", module_path); struct file_handle *f; if ((f = uri_open(module_path)) == NULL) panic(true, "multiboot1: Failed to open module with path `%#`. Is the path correct?", module_path); char *module_cmdline = conf_tuple.value2; if (module_cmdline == NULL) { module_cmdline = ""; } char *lowmem_modstr = mb1_info_alloc(&mb1_info_raw, strlen(module_cmdline) + 1); strcpy(lowmem_modstr, module_cmdline); void *module_addr = freadall(f, MEMMAP_BOOTLOADER_RECLAIMABLE); uint64_t module_target = (uint64_t)-1; /* no target preference, use top */ if (!elsewhere_append(true /* flexible target */, ranges, &ranges_count, module_addr, &module_target, f->size)) { panic(true, "multiboot1: Cannot allocate module"); } m->begin = module_target; m->end = m->begin + f->size; m->cmdline = (uint32_t)(size_t)lowmem_modstr - mb1_info_slide; m->pad = 0; fclose(f); if (verbose) { print("multiboot1: Requested module %u:\n", i); print(" Path: %s\n", module_path); print(" String: \"%s\"\n", module_cmdline ?: ""); print(" Begin: %x\n", m->begin); print(" End: %x\n", m->end); } } multiboot1_info->flags |= (1 << 3); } char *lowmem_cmdline = mb1_info_alloc(&mb1_info_raw, strlen(cmdline) + 1); strcpy(lowmem_cmdline, cmdline); multiboot1_info->cmdline = (uint32_t)(size_t)lowmem_cmdline - mb1_info_slide; if (cmdline) multiboot1_info->flags |= (1 << 2); char *bootload_name = LIMINE_BRAND; char *lowmem_bootname = mb1_info_alloc(&mb1_info_raw, strlen(bootload_name) + 1); strcpy(lowmem_bootname, bootload_name); multiboot1_info->bootloader_name = (uint32_t)(size_t)lowmem_bootname - mb1_info_slide; multiboot1_info->flags |= (1 << 9); term_notready(); size_t req_width = 0; size_t req_height = 0; size_t req_bpp = 0; #if defined (BIOS) { char *textmode_str = config_get_value(config, 0, "TEXTMODE"); bool textmode = textmode_str != NULL && strcmp(textmode_str, "yes") == 0; if (textmode) { goto textmode; } } #endif if (header.flags & (1 << 2)) { req_width = header.fb_width; req_height = header.fb_height; req_bpp = header.fb_bpp; if (header.fb_mode == 0) { #if defined (UEFI) modeset:; #endif char *resolution = config_get_value(config, 0, "RESOLUTION"); if (resolution != NULL) parse_resolution(&req_width, &req_height, &req_bpp, resolution); struct fb_info *fbs; size_t fbs_count; fb_init(&fbs, &fbs_count, req_width, req_height, req_bpp); if (fbs_count == 0) { #if defined (UEFI) goto skip_modeset; #elif defined (BIOS) textmode: vga_textmode_init(false); multiboot1_info->fb_addr = 0xb8000; multiboot1_info->fb_width = 80; multiboot1_info->fb_height = 25; multiboot1_info->fb_bpp = 16; multiboot1_info->fb_pitch = 2 * 80; multiboot1_info->fb_type = 2; #endif } else { multiboot1_info->fb_addr = (uint64_t)fbs[0].framebuffer_addr; multiboot1_info->fb_width = fbs[0].framebuffer_width; multiboot1_info->fb_height = fbs[0].framebuffer_height; multiboot1_info->fb_bpp = fbs[0].framebuffer_bpp; multiboot1_info->fb_pitch = fbs[0].framebuffer_pitch; multiboot1_info->fb_type = 1; multiboot1_info->fb_red_mask_size = fbs[0].red_mask_size; multiboot1_info->fb_red_mask_shift = fbs[0].red_mask_shift; multiboot1_info->fb_green_mask_size = fbs[0].green_mask_size; multiboot1_info->fb_green_mask_shift = fbs[0].green_mask_shift; multiboot1_info->fb_blue_mask_size = fbs[0].blue_mask_size; multiboot1_info->fb_blue_mask_shift = fbs[0].blue_mask_shift; } } else { #if defined (UEFI) print("multiboot1: Warning: Cannot use text mode with UEFI\n"); goto modeset; #elif defined (BIOS) goto textmode; #endif } multiboot1_info->flags |= (1 << 12); #if defined (UEFI) skip_modeset:; #endif } else { #if defined (UEFI) panic(true, "multiboot1: Cannot use text mode with UEFI."); #elif defined (BIOS) vga_textmode_init(false); #endif } // Load relocation stub where it won't get overwritten (hopefully) size_t reloc_stub_size = (size_t)multiboot_reloc_stub_end - (size_t)multiboot_reloc_stub; void *reloc_stub = ext_mem_alloc(reloc_stub_size); memcpy(reloc_stub, multiboot_reloc_stub, reloc_stub_size); #if defined (UEFI) efi_exit_boot_services(); #endif size_t mb_mmap_count; struct memmap_entry *raw_memmap = get_raw_memmap(&mb_mmap_count); size_t mb_mmap_len = mb_mmap_count * sizeof(struct multiboot1_mmap_entry); struct multiboot1_mmap_entry *mmap = mb1_info_alloc(&mb1_info_raw, mb_mmap_len); // Multiboot is bad and passes raw memmap. We do the same to support it. for (size_t i = 0; i < mb_mmap_count; i++) { mmap[i].size = sizeof(struct multiboot1_mmap_entry) - 4; mmap[i].addr = raw_memmap[i].base; mmap[i].len = raw_memmap[i].length; mmap[i].type = raw_memmap[i].type; } struct meminfo memory_info = mmap_get_info(mb_mmap_count, raw_memmap); // Convert the uppermem and lowermem fields from bytes to // KiB. multiboot1_info->mem_lower = memory_info.lowermem / 1024; multiboot1_info->mem_upper = memory_info.uppermem / 1024; multiboot1_info->mmap_length = mb_mmap_len; multiboot1_info->mmap_addr = (uint32_t)(size_t)mmap - mb1_info_slide; multiboot1_info->flags |= (1 << 0) | (1 << 6); irq_flush_type = IRQ_PIC_ONLY_FLUSH; common_spinup(multiboot_spinup_32, 6, (uint32_t)(uintptr_t)reloc_stub, (uint32_t)0x2badb002, (uint32_t)mb1_info_final_loc, (uint32_t)entry_point, (uint32_t)(uintptr_t)ranges, (uint32_t)ranges_count); } #endif