#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static struct multiboot_header* load_multiboot2_header(uint8_t* kernel) { struct multiboot_header* ptr = {0}; struct multiboot_header header; size_t header_offset = 0; for (header_offset = 0; header_offset < MULTIBOOT_SEARCH; header_offset += MULTIBOOT_HEADER_ALIGN) { uint32_t v; memcpy(&v, kernel + header_offset, 4); if (v == MULTIBOOT2_HEADER_MAGIC) { memcpy(&header, kernel + header_offset, sizeof(header)); ptr = ext_mem_alloc(header.header_length); memcpy(ptr, kernel + header_offset, header.header_length); break; } } if (ptr->magic != MULTIBOOT2_HEADER_MAGIC) { panic("multiboot2: could not find header"); } else if (ptr->magic + ptr->architecture + ptr->checksum + ptr->header_length) { panic("mutliboot2: header checksum is invalid"); } return ptr; } /// Returns the size required to store the multiboot2 info. static size_t get_multiboot2_info_size( char* cmdline, struct elf_section_hdr_info* section_hdr_info ) { return ALIGN_UP(sizeof(struct multiboot2_start_tag), MULTIBOOT_TAG_ALIGN) + // start ALIGN_UP(strlen(cmdline) + 1 + offsetof(struct multiboot_tag_string, string), MULTIBOOT_TAG_ALIGN) + // cmdline ALIGN_UP(8 + offsetof(struct multiboot_tag_string, string), MULTIBOOT_TAG_ALIGN) + // bootloader brand ALIGN_UP(sizeof(struct multiboot_tag_framebuffer), MULTIBOOT_TAG_ALIGN) + // framebuffer ALIGN_UP(sizeof(struct multiboot_tag_new_acpi), MULTIBOOT_TAG_ALIGN) + 36 + // new ACPI info ALIGN_UP(sizeof(struct multiboot_tag_elf_sections), MULTIBOOT_TAG_ALIGN) + section_hdr_info->section_hdr_size + // ELF info ALIGN_UP(sizeof(struct multiboot_tag_mmap), MULTIBOOT_TAG_ALIGN + sizeof(struct multiboot_mmap_entry) * 256) + // MMAP #if uefi == 1 ALIGN_UP(sizeof(struct multiboot_tag_efi_mmap), MULTIBOOT_TAG_ALIGN) * 256 + // EFI MMAP #endif ALIGN_UP(sizeof(struct multiboot_tag), MULTIBOOT_TAG_ALIGN); // end } #define append_tag(P, TAG) ({ (P) += ALIGN_UP((TAG)->size, MULTIBOOT_TAG_ALIGN); }) void multiboot2_load(char *config, char* cmdline) { struct file_handle *kernel_file = ext_mem_alloc(sizeof(struct file_handle)); char *kernel_path = config_get_value(config, 0, "KERNEL_PATH"); if (kernel_path == NULL) panic("multiboot2: KERNEL_PATH not specified"); print("multiboot2: loading kernel `%s`...\n", kernel_path); if (!uri_open(kernel_file, kernel_path)) panic("multiboot2: failed to open kernel with path `%s`. Is the path correct?", kernel_path); uint8_t *kernel = freadall(kernel_file, MEMMAP_BOOTLOADER_RECLAIMABLE); struct multiboot_header* header = load_multiboot2_header(kernel); uint32_t entry_point; uint32_t kernel_top; int bits = elf_bits(kernel); struct elf_section_hdr_info* section_hdr_info; switch (bits) { case 32: section_hdr_info = elf32_section_hdr_info(kernel); if (elf32_load(kernel, &entry_point, &kernel_top, MEMMAP_KERNEL_AND_MODULES)) panic("multiboot2: ELF32 load failure"); break; case 64: { section_hdr_info = elf64_section_hdr_info(kernel); uint64_t e, t; if (elf64_load(kernel, &e, &t, NULL, MEMMAP_KERNEL_AND_MODULES, false, true, NULL, NULL)) panic("multiboot2: ELF64 load failure"); entry_point = e; kernel_top = t; break; } default: panic("multiboot2: invalid ELF file bitness"); } print("multiboot2: found kernel entry point at: %x\n", entry_point); struct multiboot_header_tag_framebuffer *fbtag = NULL; bool is_new_acpi_required = false; // Iterate through the entries... for (struct multiboot_header_tag* tag = (struct multiboot_header_tag*)(header + 1); tag < (struct multiboot_header_tag*)((uintptr_t)header + header->header_length) && tag->type != MULTIBOOT_HEADER_TAG_END; tag = (struct multiboot_header_tag*)((uintptr_t)tag + ALIGN_UP(tag->size, MULTIBOOT_TAG_ALIGN))) { switch (tag->type) { case MULTIBOOT_HEADER_TAG_INFORMATION_REQUEST: { // Iterate the requests and check if they are supported by or not. struct multiboot_header_tag_information_request* request = (void*)tag; uint32_t size = (request->size - sizeof(struct multiboot_header_tag_information_request)) / sizeof(uint32_t); for (uint32_t i = 0; i < size; i++) { uint32_t r = request->requests[i]; bool is_required = !(tag->flags & MULTIBOOT_HEADER_TAG_OPTIONAL); switch(r) { // We already support the following requests: case MULTIBOOT_TAG_TYPE_CMDLINE: case MULTIBOOT_TAG_TYPE_BOOT_LOADER_NAME: case MULTIBOOT_TAG_TYPE_MODULE: case MULTIBOOT_TAG_TYPE_MMAP: case MULTIBOOT_TAG_TYPE_EFI_MMAP: case MULTIBOOT_TAG_TYPE_FRAMEBUFFER: case MULTIBOOT_TAG_TYPE_ELF_SECTIONS: break; case MULTIBOOT_TAG_TYPE_ACPI_NEW: is_new_acpi_required = is_required; break; default: { if (!(request->flags & MULTIBOOT_HEADER_TAG_OPTIONAL)) panic("multiboot2: requested tag `%d` which is not supported", r); } break; } } } break; case MULTIBOOT_HEADER_TAG_FRAMEBUFFER: { fbtag = (struct multiboot_header_tag_framebuffer*)tag; } break; default: panic("multiboot2: unknown tag type"); } } size_t mb2_info_size = get_multiboot2_info_size(cmdline, section_hdr_info); size_t info_idx = 0; uint8_t* mb2_info = ext_mem_alloc(mb2_info_size); struct multiboot2_start_tag* mbi_start = (struct multiboot2_start_tag*)mb2_info; info_idx += sizeof(struct multiboot2_start_tag); ////////////////////////////////////////////// // Create command line tag ////////////////////////////////////////////// { uint32_t size = strlen(cmdline) + 1 + offsetof(struct multiboot_tag_string, string); struct multiboot_tag_string* tag = (struct multiboot_tag_string*)(mb2_info + info_idx); tag->type = MULTIBOOT_TAG_TYPE_CMDLINE; tag->size = size; strcpy(tag->string, cmdline); append_tag(info_idx, tag); } ////////////////////////////////////////////// // Create bootloader name tag ////////////////////////////////////////////// { char* brand = "Limine"; uint32_t size = sizeof(brand) + offsetof(struct multiboot_tag_string, string); struct multiboot_tag_string* tag = (struct multiboot_tag_string*)(mb2_info + info_idx); tag->type = MULTIBOOT_TAG_TYPE_BOOT_LOADER_NAME; tag->size = size; strcpy(tag->string, brand); append_tag(info_idx, tag); } ////////////////////////////////////////////// // Create framebuffer tag ////////////////////////////////////////////// { if (fbtag) { size_t req_width = fbtag->width; size_t req_height = fbtag->height; size_t req_bpp = 0x00; char *resolution = config_get_value(config, 0, "RESOLUTION"); if (resolution != NULL) parse_resolution(&req_width, &req_height, &req_bpp, resolution); struct fb_info fbinfo; if (!fb_init(&fbinfo, req_width, req_height, req_bpp)) panic("mutltiboot2: Unable to set video mode"); memmap_alloc_range(fbinfo.framebuffer_addr, (uint64_t)fbinfo.framebuffer_pitch * fbinfo.framebuffer_height, MEMMAP_FRAMEBUFFER, false, false, false, true); struct multiboot_tag_framebuffer* tag = (struct multiboot_tag_framebuffer*)(mb2_info + info_idx); tag->common.type = MULTIBOOT_TAG_TYPE_FRAMEBUFFER; tag->common.size = sizeof(struct multiboot_tag_framebuffer); tag->common.framebuffer_addr = fbinfo.framebuffer_addr; tag->common.framebuffer_pitch = fbinfo.framebuffer_pitch; tag->common.framebuffer_width = fbinfo.framebuffer_width; tag->common.framebuffer_height = fbinfo.framebuffer_height; tag->common.framebuffer_bpp = fbinfo.framebuffer_bpp; tag->common.framebuffer_type = MULTIBOOT_FRAMEBUFFER_TYPE_RGB; // We only support RGB for VBE tag->framebuffer_red_field_position = fbinfo.red_mask_shift; tag->framebuffer_red_mask_size = fbinfo.red_mask_size; tag->framebuffer_green_field_position = fbinfo.green_mask_shift; tag->framebuffer_green_mask_size = fbinfo.green_mask_size; tag->framebuffer_blue_field_position = fbinfo.blue_mask_shift; tag->framebuffer_blue_mask_size = fbinfo.blue_mask_size; info_idx += tag->common.size; } else { #if uefi == 1 panic("multiboot2: cannot use text mode with UEFI"); #elif bios == 1 size_t rows, cols; init_vga_textmode(&rows, &cols, false); #endif } } ////////////////////////////////////////////// // Create new ACPI info tag ////////////////////////////////////////////// { void* new_rsdp = acpi_get_rsdp(); if (new_rsdp != NULL) { uint32_t size = sizeof(struct multiboot_tag_new_acpi) + 36; // XSDP is 36 bytes wide struct multiboot_tag_new_acpi* tag = (struct multiboot_tag_new_acpi*)(mb2_info + info_idx); tag->type = MULTIBOOT_TAG_TYPE_ACPI_NEW; tag->size = size; memcpy(tag->rsdp, new_rsdp, 36); append_tag(info_idx, tag); } else if (is_new_acpi_required) { panic("multiboot2: new ACPI table not present"); } } ////////////////////////////////////////////// // Create ELF info tag ////////////////////////////////////////////// { uint32_t size = sizeof(struct multiboot_tag_elf_sections) + section_hdr_info->section_hdr_size; struct multiboot_tag_elf_sections* tag = (struct multiboot_tag_elf_sections*)(mb2_info + info_idx); tag->type = MULTIBOOT_TAG_TYPE_ELF_SECTIONS; tag->size = size; tag->num = section_hdr_info->num; tag->entsize = section_hdr_info->section_entry_size; tag->shndx = section_hdr_info->str_section_idx; memcpy(tag->sections, section_hdr_info->section_hdrs, section_hdr_info->section_hdr_size); append_tag(info_idx, tag); } #if uefi == 1 efi_exit_boot_services(); #endif size_t mb_mmap_count; struct e820_entry_t *raw_memmap = get_raw_memmap(&mb_mmap_count); ////////////////////////////////////////////// // Create memory map tag ////////////////////////////////////////////// { // Create the normal memory map tag. uint32_t mmap_size = sizeof(struct multiboot_tag_mmap) + sizeof(struct multiboot_mmap_entry) * mb_mmap_count; struct multiboot_tag_mmap* mmap_tag = (struct multiboot_tag_mmap*)(mb2_info + info_idx); mmap_tag->type = MULTIBOOT_TAG_TYPE_MMAP; mmap_tag->entry_size = sizeof(struct multiboot_mmap_entry); mmap_tag->entry_version = 0; mmap_tag->size = mmap_size; for (size_t i = 0; i < mb_mmap_count; i++) { struct multiboot_mmap_entry* entry = &mmap_tag->entries[i]; entry->addr = raw_memmap[i].base; entry->len = raw_memmap[i].length; entry->type = raw_memmap[i].type; entry->zero = 0; } append_tag(info_idx, mmap_tag); } ////////////////////////////////////////////// // Create EFI memory map tag ////////////////////////////////////////////// #if uefi == 1 { // Create the EFI memory map tag. uint32_t size = sizeof(struct multiboot_tag_efi_mmap) * efi_mmap_size; struct multiboot_tag_efi_mmap* mmap_tag = (struct multiboot_tag_efi_mmap*)(mb2_info + info_idx); mmap_tag->type = MULTIBOOT_TAG_TYPE_EFI_MMAP; mmap_tag->descr_vers = efi_desc_ver; mmap_tag->descr_size = efi_desc_size; mmap_tag->size = size; // Copy over the EFI memory map. memcpy(mmap_tag->efi_mmap, efi_mmap, efi_mmap_size); append_tag(info_idx, mmap_tag); } #endif ////////////////////////////////////////////// // Create end tag ////////////////////////////////////////////// { struct multiboot_tag* end_tag = (struct multiboot_tag*)(mb2_info + info_idx); end_tag->type = MULTIBOOT_TAG_TYPE_END; end_tag->size = sizeof(struct multiboot_tag); append_tag(info_idx, end_tag); } mbi_start->size = mb2_info_size; mbi_start->reserved = 0x00; // This assertion is mostly unreachable and will only be reached if the // memory map has more then then 256 entries (which is unusual). if (mbi_start->size < info_idx) panic("multiboot2: failed to allocate large enough multiboot2 info buffer"); common_spinup(multiboot2_spinup_32, 2, entry_point, (uint32_t)(uintptr_t)mbi_start); }