#include #include #include #include #include #include #include #include #include #include #include #include #include struct madt { struct sdt header; uint32_t local_controller_addr; uint32_t flags; char madt_entries_begin[]; } __attribute__((packed)); struct madt_header { uint8_t type; uint8_t length; } __attribute__((packed)); struct madt_lapic { struct madt_header header; uint8_t acpi_processor_uid; uint8_t lapic_id; uint32_t flags; } __attribute__((packed)); struct madt_x2apic { struct madt_header header; uint8_t reserved[2]; uint32_t x2apic_id; uint32_t flags; uint32_t acpi_processor_uid; } __attribute__((packed)); extern symbol _binary_smp_trampoline_bin_start; extern symbol _binary_smp_trampoline_bin_end; struct trampoline_passed_info { uint8_t smp_tpl_booted_flag; uint8_t smp_tpl_target_mode; uint32_t smp_tpl_pagemap; uint32_t smp_tpl_info_struct; struct gdtr smp_tpl_gdt; } __attribute__((packed)); static bool smp_start_ap(uint32_t lapic_id, struct gdtr *gdtr, struct smp_information *info_struct, bool longmode, bool lv5, uint32_t pagemap, bool x2apic, bool nx) { size_t trampoline_size = (size_t)_binary_smp_trampoline_bin_end - (size_t)_binary_smp_trampoline_bin_start; // Prepare the trampoline static void *trampoline = NULL; if (trampoline == NULL) { trampoline = conv_mem_alloc(trampoline_size); memcpy(trampoline, _binary_smp_trampoline_bin_start, trampoline_size); } static struct trampoline_passed_info *passed_info = NULL; if (passed_info == NULL) { passed_info = (void *)(((uintptr_t)trampoline + trampoline_size) - sizeof(struct trampoline_passed_info)); } passed_info->smp_tpl_info_struct = (uint32_t)(uintptr_t)info_struct; passed_info->smp_tpl_booted_flag = 0; passed_info->smp_tpl_pagemap = pagemap; passed_info->smp_tpl_target_mode = ((uint32_t)x2apic << 2) | ((uint32_t)lv5 << 1) | ((uint32_t)nx << 3) | (uint32_t)longmode; passed_info->smp_tpl_gdt = *gdtr; passed_info->smp_tpl_booted_flag = 0; asm volatile ("" ::: "memory"); // Send the INIT IPI if (x2apic) { x2apic_write(LAPIC_REG_ICR0, ((uint64_t)lapic_id << 32) | 0x4500); } else { lapic_write(LAPIC_REG_ICR1, lapic_id << 24); lapic_write(LAPIC_REG_ICR0, 0x4500); } delay(10000000); // Send the Startup IPI if (x2apic) { x2apic_write(LAPIC_REG_ICR0, ((uint64_t)lapic_id << 32) | ((size_t)trampoline / 4096) | 0x4600); } else { lapic_write(LAPIC_REG_ICR1, lapic_id << 24); lapic_write(LAPIC_REG_ICR0, ((size_t)trampoline / 4096) | 0x4600); } for (int i = 0; i < 100; i++) { if (locked_read(&passed_info->smp_tpl_booted_flag) == 1) { return true; } delay(10000000); } return false; } struct smp_information *init_smp(size_t header_hack_size, void **header_ptr, size_t *cpu_count, uint32_t *_bsp_lapic_id, bool longmode, bool lv5, pagemap_t pagemap, bool x2apic, bool nx) { if (!lapic_check()) return NULL; // Search for MADT table struct madt *madt = acpi_get_table("APIC", 0); if (madt == NULL) return NULL; struct gdtr gdtr = gdt; uint32_t eax, ebx, ecx, edx; if (!cpuid(1, 0, &eax, &ebx, &ecx, &edx)) return NULL; uint8_t bsp_lapic_id = ebx >> 24; x2apic = x2apic && x2apic_enable(); uint32_t bsp_x2apic_id = 0; if (x2apic) { // The Intel manual recommends checking if leaf 0x1f exists first, and // using that in place of 0xb if that's the case if (!cpuid(0x1f, 0, &eax, &ebx, &ecx, &edx)) if (!cpuid(0xb, 0, &eax, &ebx, &ecx, &edx)) return NULL; bsp_x2apic_id = edx; *_bsp_lapic_id = bsp_x2apic_id; } else { *_bsp_lapic_id = bsp_lapic_id; } *cpu_count = 0; // Count the MAX of startable APs and allocate accordingly size_t max_cpus = 0; for (uint8_t *madt_ptr = (uint8_t *)madt->madt_entries_begin; (uintptr_t)madt_ptr < (uintptr_t)madt + madt->header.length; madt_ptr += *(madt_ptr + 1)) { switch (*madt_ptr) { case 0: { // Processor local xAPIC struct madt_lapic *lapic = (void *)madt_ptr; // Check if we can actually try to start the AP if ((lapic->flags & 1) ^ ((lapic->flags >> 1) & 1)) max_cpus++; continue; } case 9: { // Processor local x2APIC if (!x2apic) continue; struct madt_x2apic *x2lapic = (void *)madt_ptr; // Check if we can actually try to start the AP if ((x2lapic->flags & 1) ^ ((x2lapic->flags >> 1) & 1)) max_cpus++; continue; } } } *header_ptr = ext_mem_alloc( header_hack_size + max_cpus * sizeof(struct smp_information)); struct smp_information *ret = *header_ptr + header_hack_size; *cpu_count = 0; // Try to start all APs for (uint8_t *madt_ptr = (uint8_t *)madt->madt_entries_begin; (uintptr_t)madt_ptr < (uintptr_t)madt + madt->header.length; madt_ptr += *(madt_ptr + 1)) { switch (*madt_ptr) { case 0: { // Processor local xAPIC struct madt_lapic *lapic = (void *)madt_ptr; // Check if we can actually try to start the AP if (!((lapic->flags & 1) ^ ((lapic->flags >> 1) & 1))) continue; struct smp_information *info_struct = &ret[*cpu_count]; info_struct->acpi_processor_uid = lapic->acpi_processor_uid; info_struct->lapic_id = lapic->lapic_id; // Do not try to restart the BSP if (lapic->lapic_id == bsp_lapic_id) { (*cpu_count)++; continue; } printv("smp: [xAPIC] Found candidate AP for bring-up. LAPIC ID: %u\n", lapic->lapic_id); // Try to start the AP if (!smp_start_ap(lapic->lapic_id, &gdtr, info_struct, longmode, lv5, (uintptr_t)pagemap.top_level, x2apic, nx)) { print("smp: FAILED to bring-up AP\n"); continue; } printv("smp: Successfully brought up AP\n"); (*cpu_count)++; continue; } case 9: { // Processor local x2APIC if (!x2apic) continue; struct madt_x2apic *x2lapic = (void *)madt_ptr; // Check if we can actually try to start the AP if (!((x2lapic->flags & 1) ^ ((x2lapic->flags >> 1) & 1))) continue; struct smp_information *info_struct = &ret[*cpu_count]; info_struct->acpi_processor_uid = x2lapic->acpi_processor_uid; info_struct->lapic_id = x2lapic->x2apic_id; // Do not try to restart the BSP if (x2lapic->x2apic_id == bsp_x2apic_id) { (*cpu_count)++; continue; } printv("smp: [x2APIC] Found candidate AP for bring-up. LAPIC ID: %u\n", x2lapic->x2apic_id); // Try to start the AP if (!smp_start_ap(x2lapic->x2apic_id, &gdtr, info_struct, longmode, lv5, (uintptr_t)pagemap.top_level, true, nx)) { print("smp: FAILED to bring-up AP\n"); continue; } printv("smp: Successfully brought up AP\n"); (*cpu_count)++; continue; } } } return ret; }