#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define LIMINE_NO_POINTERS #include #include #define MAX_REQUESTS 128 #define MAX_MEMMAP 256 static uint64_t physical_base, virtual_base, slide, direct_map_offset; static size_t requests_count; static void *requests[MAX_REQUESTS]; static uint64_t reported_addr(void *addr) { return (uint64_t)(uintptr_t)addr + direct_map_offset; } static struct limine_file get_file(struct file_handle *file, char *cmdline) { struct limine_file ret = {0}; if (file->pxe) { ret.tftp_ip = file->pxe_ip; ret.tftp_port = file->pxe_port; } else { struct volume *vol = file->vol; ret.partition_index = vol->partition; ret.mbr_disk_id = mbr_get_id(vol); if (vol->guid_valid) { memcpy(&ret.part_uuid, &vol->guid, sizeof(struct limine_uuid)); } if (vol->part_guid_valid) { memcpy(&ret.gpt_part_uuid, &vol->part_guid, sizeof(struct limine_uuid)); } struct guid gpt_disk_uuid; if (gpt_get_guid(&gpt_disk_uuid, vol->backing_dev ?: vol) == true) { memcpy(&ret.gpt_disk_uuid, &gpt_disk_uuid, sizeof(struct limine_uuid)); } } char *path = ext_mem_alloc(strlen(file->path) + 1); strcpy(path, file->path); ret.path = reported_addr(path); ret.base = reported_addr(freadall(file, MEMMAP_KERNEL_AND_MODULES)); ret.length = file->size; ret.cmdline = reported_addr(cmdline); return ret; } static void *_get_request(uint64_t id[4]) { for (size_t i = 0; i < requests_count; i++) { uint64_t *p = requests[i]; if (p[2] != id[2]) { continue; } if (p[3] != id[3]) { continue; } return p; } return NULL; } #define get_request(REQ) _get_request((uint64_t[4])REQ) #define FEAT_START do { #define FEAT_END } while (0); #if defined (__i386__) extern symbol stivale2_term_write_entry; extern void *stivale2_rt_stack; extern uint64_t stivale2_term_callback_ptr; void stivale2_term_callback(uint64_t, uint64_t, uint64_t, uint64_t); #endif bool limine_load(char *config, char *cmdline) { uint32_t eax, ebx, ecx, edx; char *kernel_path = config_get_value(config, 0, "KERNEL_PATH"); if (kernel_path == NULL) panic(true, "limine: KERNEL_PATH not specified"); struct file_handle *kernel_file; if ((kernel_file = uri_open(kernel_path)) == NULL) panic(true, "limine: Failed to open kernel with path `%s`. Is the path correct?", kernel_path); uint8_t *kernel = freadall(kernel_file, MEMMAP_BOOTLOADER_RECLAIMABLE); char *kaslr_s = config_get_value(config, 0, "KASLR"); bool kaslr = true; if (kaslr_s != NULL && strcmp(kaslr_s, "no") == 0) kaslr = false; int bits = elf_bits(kernel); if (bits == -1 || bits == 32) { printv("limine: Kernel in unrecognised format"); return false; } // ELF loading uint64_t entry_point = 0; struct elf_range *ranges; uint64_t ranges_count; uint64_t image_size; bool is_reloc; if (elf64_load(kernel, &entry_point, NULL, &slide, MEMMAP_KERNEL_AND_MODULES, kaslr, false, &ranges, &ranges_count, true, &physical_base, &virtual_base, &image_size, &is_reloc)) { return false; } kaslr = is_reloc; // Load requests requests_count = 0; uint64_t common_magic[2] = { LIMINE_COMMON_MAGIC }; for (size_t i = 0; i < ALIGN_DOWN(image_size, 8); i += 8) { uint64_t *p = (void *)(uintptr_t)physical_base + i; if (p[0] != common_magic[0]) { continue; } if (p[1] != common_magic[1]) { continue; } if (requests_count == MAX_REQUESTS) { panic(true, "limine: Maximum requests exceeded"); } // Check for a conflict if (_get_request(p) != NULL) { panic(true, "limine: Conflict detected for request ID %X %X", p[2], p[3]); } requests[requests_count++] = p; } if (requests_count == 0) { return false; } // Check if 64 bit CPU if (!cpuid(0x80000001, 0, &eax, &ebx, &ecx, &edx) || !(edx & (1 << 29))) { panic(true, "limine: This CPU does not support 64-bit mode."); } print("limine: Loading kernel `%s`...\n", kernel_path); printv("limine: Physical base: %X\n", physical_base); printv("limine: Virtual base: %X\n", virtual_base); printv("limine: Slide: %X\n", slide); printv("limine: ELF entry point: %X\n", entry_point); printv("limine: Requests count: %u\n", requests_count); // 5 level paging feature & HHDM slide bool want_5lv; FEAT_START // Check if 5-level paging is available bool level5pg = false; if (cpuid(0x00000007, 0, &eax, &ebx, &ecx, &edx) && (ecx & (1 << 16))) { printv("limine: CPU has 5-level paging support\n"); level5pg = true; } struct limine_5_level_paging_request *lv5pg_request = get_request(LIMINE_5_LEVEL_PAGING_REQUEST); want_5lv = lv5pg_request != NULL && level5pg; direct_map_offset = want_5lv ? 0xff00000000000000 : 0xffff800000000000; if (kaslr) { direct_map_offset += (rand64() & ~((uint64_t)0x40000000 - 1)) & 0xfffffffffff; } if (want_5lv) { void *lv5pg_response = ext_mem_alloc(sizeof(struct limine_5_level_paging_response)); lv5pg_request->response = reported_addr(lv5pg_response); } FEAT_END struct limine_file *kf = ext_mem_alloc(sizeof(struct limine_file)); *kf = get_file(kernel_file, cmdline); fclose(kernel_file); // Entry point feature FEAT_START struct limine_entry_point_request *entrypoint_request = get_request(LIMINE_ENTRY_POINT_REQUEST); if (entrypoint_request == NULL) { break; } entry_point = entrypoint_request->entry; print("limine: Entry point at %X\n", entry_point); struct limine_entry_point_response *entrypoint_response = ext_mem_alloc(sizeof(struct limine_entry_point_response)); entrypoint_request->response = reported_addr(entrypoint_response); FEAT_END // Bootloader info feature FEAT_START struct limine_bootloader_info_request *bootloader_info_request = get_request(LIMINE_BOOTLOADER_INFO_REQUEST); if (bootloader_info_request == NULL) { break; // next feature } struct limine_bootloader_info_response *bootloader_info_response = ext_mem_alloc(sizeof(struct limine_bootloader_info_response)); bootloader_info_response->name = reported_addr("Limine"); bootloader_info_response->version = reported_addr(LIMINE_VERSION); bootloader_info_request->response = reported_addr(bootloader_info_response); FEAT_END // Kernel address feature FEAT_START struct limine_kernel_address_request *kernel_address_request = get_request(LIMINE_KERNEL_ADDRESS_REQUEST); if (kernel_address_request == NULL) { break; // next feature } struct limine_kernel_address_response *kernel_address_response = ext_mem_alloc(sizeof(struct limine_kernel_address_response)); kernel_address_response->physical_base = physical_base; kernel_address_response->virtual_base = virtual_base; kernel_address_request->response = reported_addr(kernel_address_response); FEAT_END // HHDM feature FEAT_START struct limine_hhdm_request *hhdm_request = get_request(LIMINE_HHDM_REQUEST); if (hhdm_request == NULL) { break; // next feature } struct limine_hhdm_response *hhdm_response = ext_mem_alloc(sizeof(struct limine_hhdm_response)); hhdm_response->offset = direct_map_offset; hhdm_request->response = reported_addr(hhdm_response); FEAT_END // RSDP feature FEAT_START struct limine_rsdp_request *rsdp_request = get_request(LIMINE_RSDP_REQUEST); if (rsdp_request == NULL) { break; // next feature } struct limine_rsdp_response *rsdp_response = ext_mem_alloc(sizeof(struct limine_rsdp_response)); void *rsdp = acpi_get_rsdp(); if (rsdp) { rsdp_response->address = reported_addr(rsdp); } rsdp_request->response = reported_addr(rsdp_response); FEAT_END // SMBIOS feature FEAT_START struct limine_smbios_request *smbios_request = get_request(LIMINE_SMBIOS_REQUEST); if (smbios_request == NULL) { break; // next feature } struct limine_smbios_response *smbios_response = ext_mem_alloc(sizeof(struct limine_smbios_response)); void *smbios_entry_32 = NULL, *smbios_entry_64 = NULL; acpi_get_smbios(&smbios_entry_32, &smbios_entry_64); if (smbios_entry_32) { smbios_response->entry_32 = reported_addr(smbios_entry_32); } if (smbios_entry_64) { smbios_response->entry_64 = reported_addr(smbios_entry_64); } smbios_request->response = reported_addr(smbios_response); FEAT_END #if uefi == 1 // EFI system table feature FEAT_START struct limine_efi_system_table_request *est_request = get_request(LIMINE_EFI_SYSTEM_TABLE_REQUEST); if (est_request == NULL) { break; // next feature } struct limine_efi_system_table_response *est_response = ext_mem_alloc(sizeof(struct limine_efi_system_table_response)); est_response->address = reported_addr(gST); est_request->response = reported_addr(est_response); FEAT_END #endif // Stack size uint64_t stack_size = 16384; FEAT_START struct limine_stack_size_request *stack_size_request = get_request(LIMINE_STACK_SIZE_REQUEST); if (stack_size_request == NULL) { break; // next feature } struct limine_stack_size_response *stack_size_response = ext_mem_alloc(sizeof(struct limine_stack_size_response)); stack_size = stack_size_request->stack_size; stack_size_request->response = reported_addr(stack_size_response); FEAT_END // Kernel file FEAT_START struct limine_kernel_file_request *kernel_file_request = get_request(LIMINE_KERNEL_FILE_REQUEST); if (kernel_file_request == NULL) { break; // next feature } struct limine_kernel_file_response *kernel_file_response = ext_mem_alloc(sizeof(struct limine_kernel_file_response)); kernel_file_response->kernel_file = reported_addr(kf); kernel_file_request->response = reported_addr(kernel_file_response); FEAT_END // Modules FEAT_START struct limine_module_request *module_request = get_request(LIMINE_MODULE_REQUEST); if (module_request == NULL) { break; // next feature } size_t module_count; for (module_count = 0; ; module_count++) { char *module_file = config_get_value(config, module_count, "MODULE_PATH"); if (module_file == NULL) break; } if (module_count == 0) { break; } struct limine_module_response *module_response = ext_mem_alloc(sizeof(struct limine_module_response)); struct limine_file *modules = ext_mem_alloc(module_count * sizeof(struct limine_file)); for (size_t i = 0; i < module_count; i++) { struct conf_tuple conf_tuple = config_get_tuple(config, i, "MODULE_PATH", "MODULE_CMDLINE"); char *module_path = conf_tuple.value1; char *module_cmdline = conf_tuple.value2; if (module_cmdline == NULL) { module_cmdline = ""; } print("limine: Loading module `%s`...\n", module_path); struct file_handle *f; if ((f = uri_open(module_path)) == NULL) panic(true, "limine: Failed to open module with path `%s`. Is the path correct?", module_path); struct limine_file *l = &modules[i]; *l = get_file(f, module_cmdline); fclose(f); } uint64_t *modules_list = ext_mem_alloc(module_count * sizeof(uint64_t)); for (size_t i = 0; i < module_count; i++) { modules_list[i] = reported_addr(&modules[i]); } module_response->module_count = module_count; module_response->modules = reported_addr(modules_list); module_request->response = reported_addr(module_response); FEAT_END size_t req_width = 0, req_height = 0, req_bpp = 0; char *resolution = config_get_value(config, 0, "RESOLUTION"); if (resolution != NULL) { parse_resolution(&req_width, &req_height, &req_bpp, resolution); } struct fb_info fb; // Terminal feature FEAT_START struct limine_terminal_request *terminal_request = get_request(LIMINE_TERMINAL_REQUEST); if (terminal_request == NULL) { break; // next feature } struct limine_terminal_response *terminal_response = ext_mem_alloc(sizeof(struct limine_terminal_response)); quiet = false; serial = false; term_vbe(req_width, req_height); if (current_video_mode < 0) { panic(true, "limine: Failed to initialise terminal"); } fb = fbinfo; #if defined (__i386__) term_callback = stivale2_term_callback; stivale2_term_callback_ptr = terminal_request->callback; #elif defined (__x86_64__) term_callback = (void *)terminal_request->callback; #endif #if defined (__i386__) if (stivale2_rt_stack == NULL) { stivale2_rt_stack = ext_mem_alloc(16384) + 16384; } terminal_response->write = (uintptr_t)(void *)stivale2_term_write_entry; #elif defined (__x86_64__) terminal_response->write = (uintptr_t)term_write; #endif terminal_response->columns = term_cols; terminal_response->rows = term_rows; terminal_request->response = reported_addr(terminal_response); goto skip_fb_init; FEAT_END // Framebuffer feature FEAT_START term_deinit(); if (!fb_init(&fb, req_width, req_height, req_bpp)) { panic(true, "limine: Could not acquire framebuffer"); } skip_fb_init:; struct limine_framebuffer_request *framebuffer_request = get_request(LIMINE_FRAMEBUFFER_REQUEST); if (framebuffer_request == NULL) { break; // next feature } memmap_alloc_range(fb.framebuffer_addr, (uint64_t)fb.framebuffer_pitch * fb.framebuffer_height, MEMMAP_FRAMEBUFFER, false, false, false, true); struct limine_framebuffer_response *framebuffer_response = ext_mem_alloc(sizeof(struct limine_framebuffer_response)); // For now we only support 1 framebuffer struct limine_framebuffer *fbp = ext_mem_alloc(sizeof(struct limine_framebuffer)); struct edid_info_struct *edid_info = get_edid_info(); if (edid_info != NULL) { fbp->edid_size = sizeof(struct edid_info_struct); fbp->edid = reported_addr(edid_info); } fbp->memory_model = LIMINE_FRAMEBUFFER_RGB; fbp->address = reported_addr((void *)(uintptr_t)fb.framebuffer_addr); fbp->width = fb.framebuffer_width; fbp->height = fb.framebuffer_height; fbp->bpp = fb.framebuffer_bpp; fbp->pitch = fb.framebuffer_pitch; fbp->red_mask_size = fb.red_mask_size; fbp->red_mask_shift = fb.red_mask_shift; fbp->green_mask_size = fb.green_mask_size; fbp->green_mask_shift = fb.green_mask_shift; fbp->blue_mask_size = fb.blue_mask_size; fbp->blue_mask_shift = fb.blue_mask_shift; uint64_t *fb_list = ext_mem_alloc(1 * sizeof(uint64_t)); fb_list[0] = reported_addr(fbp); framebuffer_response->framebuffer_count = 1; framebuffer_response->framebuffers = reported_addr(fb_list); framebuffer_request->response = reported_addr(framebuffer_response); FEAT_END // Boot time feature FEAT_START struct limine_boot_time_request *boot_time_request = get_request(LIMINE_BOOT_TIME_REQUEST); if (boot_time_request == NULL) { break; // next feature } struct limine_boot_time_response *boot_time_response = ext_mem_alloc(sizeof(struct limine_boot_time_response)); boot_time_response->boot_time = time(); boot_time_request->response = reported_addr(boot_time_response); FEAT_END // Wrap-up stuff before memmap close struct gdtr *local_gdt = ext_mem_alloc(sizeof(struct gdtr)); local_gdt->limit = gdt.limit; uint64_t local_gdt_base = (uint64_t)gdt.ptr; local_gdt_base += direct_map_offset; local_gdt->ptr = local_gdt_base; #if defined (__i386__) local_gdt->ptr_hi = local_gdt_base >> 32; #endif void *stack = ext_mem_alloc(stack_size) + stack_size; pagemap_t pagemap = {0}; pagemap = stivale_build_pagemap(want_5lv, true, ranges, ranges_count, true, physical_base, virtual_base, direct_map_offset); #if uefi == 1 efi_exit_boot_services(); #endif // SMP FEAT_START struct limine_smp_request *smp_request = get_request(LIMINE_SMP_REQUEST); if (smp_request == NULL) { break; // next feature } struct limine_smp_info *smp_array; struct smp_information *smp_info; size_t cpu_count; uint32_t bsp_lapic_id; smp_info = init_smp(0, (void **)&smp_array, &cpu_count, &bsp_lapic_id, true, want_5lv, pagemap, smp_request->flags & LIMINE_SMP_X2APIC, true, direct_map_offset); if (smp_info == NULL) { break; } for (size_t i = 0; i < cpu_count; i++) { void *cpu_stack = ext_mem_alloc(stack_size) + stack_size; smp_info[i].stack_addr = reported_addr(cpu_stack + stack_size); } struct limine_smp_response *smp_response = ext_mem_alloc(sizeof(struct limine_smp_response)); smp_response->flags |= (smp_request->flags & LIMINE_SMP_X2APIC) && x2apic_check(); smp_response->bsp_lapic_id = bsp_lapic_id; uint64_t *smp_list = ext_mem_alloc(cpu_count * sizeof(uint64_t)); for (size_t i = 0; i < cpu_count; i++) { smp_list[i] = reported_addr(&smp_array[i]); } smp_response->cpu_count = cpu_count; smp_response->cpus = reported_addr(smp_list); smp_request->response = reported_addr(smp_response); FEAT_END // Memmap FEAT_START struct limine_memmap_request *memmap_request = get_request(LIMINE_MEMMAP_REQUEST); struct limine_memmap_response *memmap_response; struct limine_memmap_entry *_memmap; uint64_t *memmap_list; if (memmap_request != NULL) { memmap_response = ext_mem_alloc(sizeof(struct limine_memmap_response)); _memmap = ext_mem_alloc(sizeof(struct limine_memmap_entry) * MAX_MEMMAP); memmap_list = ext_mem_alloc(MAX_MEMMAP * sizeof(uint64_t)); } size_t mmap_entries; struct e820_entry_t *mmap = get_memmap(&mmap_entries); if (memmap_request == NULL) { break; // next feature } if (mmap_entries > MAX_MEMMAP) { panic(false, "limine: Too many memmap entries"); } for (size_t i = 0; i < mmap_entries; i++) { _memmap[i].base = mmap[i].base; _memmap[i].length = mmap[i].length; switch (mmap[i].type) { case MEMMAP_USABLE: _memmap[i].type = LIMINE_MEMMAP_USABLE; break; case MEMMAP_ACPI_RECLAIMABLE: _memmap[i].type = LIMINE_MEMMAP_ACPI_RECLAIMABLE; break; case MEMMAP_ACPI_NVS: _memmap[i].type = LIMINE_MEMMAP_ACPI_NVS; break; case MEMMAP_BAD_MEMORY: _memmap[i].type = LIMINE_MEMMAP_BAD_MEMORY; break; case MEMMAP_BOOTLOADER_RECLAIMABLE: _memmap[i].type = LIMINE_MEMMAP_BOOTLOADER_RECLAIMABLE; break; case MEMMAP_KERNEL_AND_MODULES: _memmap[i].type = LIMINE_MEMMAP_KERNEL_AND_MODULES; break; case MEMMAP_FRAMEBUFFER: _memmap[i].type = LIMINE_MEMMAP_FRAMEBUFFER; break; default: case MEMMAP_RESERVED: _memmap[i].type = LIMINE_MEMMAP_RESERVED; break; } } for (size_t i = 0; i < mmap_entries; i++) { memmap_list[i] = reported_addr(&_memmap[i]); } memmap_response->entry_count = mmap_entries; memmap_response->entries = reported_addr(memmap_list); memmap_request->response = reported_addr(memmap_response); FEAT_END // Clear terminal for kernels that will use the stivale2 terminal term_write((uint64_t)(uintptr_t)("\e[2J\e[H"), 7); term_runtime = true; stivale_spinup(64, want_5lv, &pagemap, entry_point, 0, reported_addr(stack), true, (uintptr_t)local_gdt); __builtin_unreachable(); }