#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define REPORTED_ADDR(PTR) \ ((PTR) + ((stivale_hdr.flags & (1 << 3)) ? \ direct_map_offset : 0)) bool stivale_load_by_anchor(void **_anchor, const char *magic, uint8_t *file, uint64_t filesize) { struct stivale_anchor *anchor = NULL; size_t magiclen = strlen(magic); for (size_t i = 0; i < filesize; i += 16) { if (memcmp(file + i, magic, magiclen) == 0) { anchor = (void *)(file + i); } } if (anchor == NULL) { return false; } memmap_alloc_range(anchor->phys_load_addr, filesize, MEMMAP_KERNEL_AND_MODULES, true, true, false, false); memcpy((void *)(uintptr_t)anchor->phys_load_addr, file, filesize); size_t bss_size = anchor->phys_bss_end - anchor->phys_bss_start; memmap_alloc_range(anchor->phys_bss_start, bss_size, MEMMAP_KERNEL_AND_MODULES, true, true, false, false); memset((void *)(uintptr_t)anchor->phys_bss_start, 0, bss_size); *_anchor = anchor; return true; } bool stivale_load(char *config, char *cmdline) { struct stivale_struct *stivale_struct = ext_mem_alloc(sizeof(struct stivale_struct)); // BIOS or UEFI? #if bios == 1 stivale_struct->flags |= (1 << 0); #endif stivale_struct->flags |= (1 << 1); // we give colour information stivale_struct->flags |= (1 << 2); // we give SMBIOS information struct file_handle *kernel_file; char *kernel_path = config_get_value(config, 0, "KERNEL_PATH"); if (kernel_path == NULL) panic(true, "stivale: KERNEL_PATH not specified"); if ((kernel_file = uri_open(kernel_path)) == NULL) panic(true, "stivale: Failed to open kernel with path `%s`. Is the path correct?", kernel_path); char *kaslr_s = config_get_value(config, 0, "KASLR"); bool kaslr = true; if (kaslr_s != NULL && strcmp(kaslr_s, "no") == 0) kaslr = false; struct stivale_header stivale_hdr; bool level5pg = false; uint64_t slide = 0; uint64_t entry_point = 0; uint8_t *kernel = freadall(kernel_file, STIVALE_MMAP_BOOTLOADER_RECLAIMABLE); int bits = elf_bits(kernel); bool loaded_by_anchor = false; size_t kernel_file_size = kernel_file->size; fclose(kernel_file); if (bits == -1) { struct stivale_anchor *anchor; if (!stivale_load_by_anchor((void **)&anchor, "STIVALE1 ANCHOR", kernel, kernel_file_size)) { goto fail; } bits = anchor->bits; memcpy(&stivale_hdr, (void *)(uintptr_t)anchor->phys_stivalehdr, sizeof(struct stivale_header)); loaded_by_anchor = true; } else { switch (bits) { case 64: if (elf64_load_section(kernel, &stivale_hdr, ".stivalehdr", sizeof(struct stivale_header), slide)) { goto fail; } break; case 32: if (elf32_load_section(kernel, &stivale_hdr, ".stivalehdr", sizeof(struct stivale_header))) { goto fail; } break; } } print("stivale: Loading kernel `%s`...\n", kernel_path); int ret = 0; switch (bits) { case 64: { // Check if 64 bit CPU uint32_t eax, ebx, ecx, edx; if (!cpuid(0x80000001, 0, &eax, &ebx, &ecx, &edx) || !(edx & (1 << 29))) { panic(true, "stivale: This CPU does not support 64-bit mode."); } // Check if 5-level paging is available if (cpuid(0x00000007, 0, &eax, &ebx, &ecx, &edx) && (ecx & (1 << 16))) { printv("stivale: CPU has 5-level paging support\n"); level5pg = true; } if (!loaded_by_anchor) { if (elf64_load(kernel, &entry_point, NULL, &slide, STIVALE_MMAP_KERNEL_AND_MODULES, kaslr, false, NULL, NULL, false, NULL, NULL)) panic(true, "stivale: ELF64 load failure"); ret = elf64_load_section(kernel, &stivale_hdr, ".stivalehdr", sizeof(struct stivale_header), slide); } break; } case 32: { if (!loaded_by_anchor) { if (elf32_load(kernel, (uint32_t *)&entry_point, NULL, STIVALE_MMAP_KERNEL_AND_MODULES)) panic(true, "stivale: ELF32 load failure"); ret = elf32_load_section(kernel, &stivale_hdr, ".stivalehdr", sizeof(struct stivale_header)); } break; } default: panic(true, "stivale: Not 32 nor 64-bit kernel. What is this?"); } printv("stivale: %u-bit kernel detected\n", bits); switch (ret) { case 1: panic(true, "stivale: File is not a valid ELF."); case 2: panic(true, "stivale: Section .stivalehdr not found."); case 3: panic(true, "stivale: Section .stivalehdr exceeds the size of the struct."); case 4: panic(true, "stivale: Section .stivalehdr is smaller than size of the struct."); } if ((stivale_hdr.flags & (1 << 3)) && bits == 32) { panic(true, "stivale: Higher half addresses header flag not supported in 32-bit mode."); } bool want_5lv = level5pg && (stivale_hdr.flags & (1 << 1)); uint64_t direct_map_offset = want_5lv ? 0xff00000000000000 : 0xffff800000000000; struct gdtr *local_gdt = ext_mem_alloc(sizeof(struct gdtr)); local_gdt->limit = gdt.limit; uint64_t local_gdt_base = (uint64_t)gdt.ptr; if (stivale_hdr.flags & (1 << 3)) { local_gdt_base += direct_map_offset; } local_gdt->ptr = local_gdt_base; #if defined (__i386__) local_gdt->ptr_hi = local_gdt_base >> 32; #endif if (stivale_hdr.entry_point != 0) entry_point = stivale_hdr.entry_point; if (verbose) { print("stivale: Kernel slide: %X\n", slide); print("stivale: Entry point at: %X\n", entry_point); print("stivale: Requested stack at: %X\n", stivale_hdr.stack); } // The spec says the stack has to be 16-byte aligned if ((stivale_hdr.stack & (16 - 1)) != 0) { print("stivale: WARNING: Requested stack is not 16-byte aligned\n"); } // It also says the stack cannot be NULL for 32-bit kernels if (bits == 32 && stivale_hdr.stack == 0) { panic(true, "stivale: The stack cannot be 0 for 32-bit kernels"); } stivale_struct->module_count = 0; uint64_t *prev_mod_ptr = &stivale_struct->modules; for (int i = 0; ; i++) { struct conf_tuple conf_tuple = config_get_tuple(config, i, "MODULE_PATH", "MODULE_STRING"); char *module_path = conf_tuple.value1; char *module_string = conf_tuple.value2; if (module_path == NULL) break; stivale_struct->module_count++; struct stivale_module *m = ext_mem_alloc(sizeof(struct stivale_module)); // TODO: perhaps change the module string to to be a pointer. // // NOTE: By default, the module string is the file name. if (module_string == NULL) { size_t str_len = strlen(module_path); if (str_len > 127) str_len = 127; memcpy(m->string, module_path, str_len); } else { // TODO perhaps change this to be a pointer size_t str_len = strlen(module_string); if (str_len > 127) str_len = 127; memcpy(m->string, module_string, str_len); } print("stivale: Loading module `%s`...\n", module_path); struct file_handle *f; if ((f = uri_open(module_path)) == NULL) panic(true, "stivale: Failed to open module with path `%s`. Is the path correct?", module_path); m->begin = REPORTED_ADDR((uint64_t)(size_t)freadall(f, STIVALE_MMAP_KERNEL_AND_MODULES)); m->end = m->begin + f->size; m->next = 0; *prev_mod_ptr = REPORTED_ADDR((uint64_t)(size_t)m); prev_mod_ptr = &m->next; fclose(f); if (verbose) { print("stivale: Requested module %u:\n", i); print(" Path: %s\n", module_path); print(" String: %s\n", m->string); print(" Begin: %X\n", m->begin); print(" End: %X\n", m->end); } } uint64_t rsdp = (uint64_t)(size_t)acpi_get_rsdp(); if (rsdp) stivale_struct->rsdp = REPORTED_ADDR(rsdp); uint64_t smbios_entry_32 = 0, smbios_entry_64 = 0; acpi_get_smbios((void **)&smbios_entry_32, (void **)&smbios_entry_64); if (smbios_entry_32) stivale_struct->smbios_entry_32 = REPORTED_ADDR(smbios_entry_32); if (smbios_entry_64) stivale_struct->smbios_entry_64 = REPORTED_ADDR(smbios_entry_64); stivale_struct->cmdline = REPORTED_ADDR((uint64_t)(size_t)cmdline); stivale_struct->epoch = time(); printv("stivale: Current epoch: %U\n", stivale_struct->epoch); term_deinit(); if (stivale_hdr.flags & (1 << 0)) { size_t req_width = stivale_hdr.framebuffer_width; size_t req_height = stivale_hdr.framebuffer_height; size_t req_bpp = stivale_hdr.framebuffer_bpp; char *resolution = config_get_value(config, 0, "RESOLUTION"); if (resolution != NULL) parse_resolution(&req_width, &req_height, &req_bpp, resolution); struct fb_info fbinfo; if (!fb_init(&fbinfo, req_width, req_height, req_bpp)) panic(true, "stivale: Unable to set video mode"); memmap_alloc_range(fbinfo.framebuffer_addr, (uint64_t)fbinfo.framebuffer_pitch * fbinfo.framebuffer_height, MEMMAP_FRAMEBUFFER, false, false, false, true); stivale_struct->framebuffer_addr = REPORTED_ADDR((uint64_t)fbinfo.framebuffer_addr); stivale_struct->framebuffer_width = fbinfo.framebuffer_width; stivale_struct->framebuffer_height = fbinfo.framebuffer_height; stivale_struct->framebuffer_bpp = fbinfo.framebuffer_bpp; stivale_struct->framebuffer_pitch = fbinfo.framebuffer_pitch; stivale_struct->fb_memory_model = STIVALE_FBUF_MMODEL_RGB; stivale_struct->fb_red_mask_size = fbinfo.red_mask_size; stivale_struct->fb_red_mask_shift = fbinfo.red_mask_shift; stivale_struct->fb_green_mask_size = fbinfo.green_mask_size; stivale_struct->fb_green_mask_shift = fbinfo.green_mask_shift; stivale_struct->fb_blue_mask_size = fbinfo.blue_mask_size; stivale_struct->fb_blue_mask_shift = fbinfo.blue_mask_shift; } else { #if uefi == 1 panic(true, "stivale: Cannot use text mode with UEFI."); #elif bios == 1 size_t rows, cols; init_vga_textmode(&rows, &cols, false); #endif } #if uefi == 1 efi_exit_boot_services(); #endif pagemap_t pagemap = {0}; if (bits == 64) pagemap = stivale_build_pagemap(want_5lv, false, NULL, 0, false, 0, 0, direct_map_offset); // Reserve 32K at 0x70000 if possible if (!memmap_alloc_range(0x70000, 0x8000, MEMMAP_USABLE, true, false, false, false)) { if ((stivale_hdr.flags & (1 << 4)) == 0) { panic(false, "stivale: Could not allocate low memory area"); } } struct e820_entry_t *mmap_copy = ext_mem_alloc(256 * sizeof(struct e820_entry_t)); size_t mmap_entries; struct e820_entry_t *mmap = get_memmap(&mmap_entries); if (mmap_entries > 256) { panic(false, "stivale: Too many memory map entries!"); } memcpy(mmap_copy, mmap, mmap_entries * sizeof(struct e820_entry_t)); stivale_struct->memory_map_entries = (uint64_t)mmap_entries; stivale_struct->memory_map_addr = REPORTED_ADDR((uint64_t)(size_t)mmap_copy); stivale_spinup(bits, want_5lv, &pagemap, entry_point, REPORTED_ADDR((uint64_t)(uintptr_t)stivale_struct), stivale_hdr.stack, false, (uintptr_t)local_gdt); __builtin_unreachable(); fail: pmm_free(kernel, kernel_file_size); pmm_free(stivale_struct, sizeof(struct stivale_struct)); return false; } pagemap_t stivale_build_pagemap(bool level5pg, bool unmap_null, struct elf_range *ranges, size_t ranges_count, bool want_fully_virtual, uint64_t physical_base, uint64_t virtual_base, uint64_t direct_map_offset) { pagemap_t pagemap = new_pagemap(level5pg ? 5 : 4); if (ranges_count == 0) { // Map 0 to 2GiB at 0xffffffff80000000 for (uint64_t i = 0; i < 0x80000000; i += 0x40000000) { map_page(pagemap, 0xffffffff80000000 + i, i, 0x03, Size1GiB); } } else { for (size_t i = 0; i < ranges_count; i++) { uint64_t virt = ranges[i].base; uint64_t phys; if (virt & ((uint64_t)1 << 63)) { if (want_fully_virtual) { phys = physical_base + (virt - virtual_base); } else { phys = virt - FIXED_HIGHER_HALF_OFFSET_64; } } else { panic(false, "stivale2: Protected memory ranges are only supported for higher half kernels"); } uint64_t pf = VMM_FLAG_PRESENT | (ranges[i].permissions & ELF_PF_X ? 0 : VMM_FLAG_NOEXEC) | (ranges[i].permissions & ELF_PF_W ? VMM_FLAG_WRITE : 0); for (uint64_t j = 0; j < ranges[i].length; j += 0x1000) { map_page(pagemap, virt + j, phys + j, pf, Size4KiB); } } } // Sub 2MiB mappings for (uint64_t i = 0; i < 0x200000; i += 0x1000) { if (!(i == 0 && unmap_null)) map_page(pagemap, i, i, 0x03, Size4KiB); map_page(pagemap, direct_map_offset + i, i, 0x03, Size4KiB); } // Map 2MiB to 4GiB at higher half base and 0 // // NOTE: We cannot just directly map from 2MiB to 4GiB with 1GiB // pages because if you do the math. // // start = 0x200000 // end = 0x40000000 // // pages_required = (end - start) / (4096 * 512 * 512) // // So we map 2MiB to 1GiB with 2MiB pages and then map the rest // with 1GiB pages :^) for (uint64_t i = 0x200000; i < 0x40000000; i += 0x200000) { map_page(pagemap, i, i, 0x03, Size2MiB); map_page(pagemap, direct_map_offset + i, i, 0x03, Size2MiB); } for (uint64_t i = 0x40000000; i < 0x100000000; i += 0x40000000) { map_page(pagemap, i, i, 0x03, Size1GiB); map_page(pagemap, direct_map_offset + i, i, 0x03, Size1GiB); } size_t _memmap_entries = memmap_entries; struct e820_entry_t *_memmap = ext_mem_alloc(_memmap_entries * sizeof(struct e820_entry_t)); for (size_t i = 0; i < _memmap_entries; i++) _memmap[i] = memmap[i]; // Map any other region of memory from the memmap for (size_t i = 0; i < _memmap_entries; i++) { uint64_t base = _memmap[i].base; uint64_t length = _memmap[i].length; uint64_t top = base + length; if (base < 0x100000000) base = 0x100000000; if (base >= top) continue; uint64_t aligned_base = ALIGN_DOWN(base, 0x40000000); uint64_t aligned_top = ALIGN_UP(top, 0x40000000); uint64_t aligned_length = aligned_top - aligned_base; for (uint64_t j = 0; j < aligned_length; j += 0x40000000) { uint64_t page = aligned_base + j; map_page(pagemap, page, page, 0x03, Size1GiB); map_page(pagemap, direct_map_offset + page, page, 0x03, Size1GiB); } } return pagemap; } #if uefi == 1 extern symbol ImageBase; #endif noreturn void stivale_spinup_32( int bits, bool level5pg, uint32_t pagemap_top_lv, uint32_t entry_point_lo, uint32_t entry_point_hi, uint32_t stivale_struct_lo, uint32_t stivale_struct_hi, uint32_t stack_lo, uint32_t stack_hi, uint32_t local_gdt); noreturn void stivale_spinup( int bits, bool level5pg, pagemap_t *pagemap, uint64_t entry_point, uint64_t _stivale_struct, uint64_t stack, bool enable_nx, uint32_t local_gdt) { #if bios == 1 if (bits == 64) { // If we're going 64, we might as well call this BIOS interrupt // to tell the BIOS that we are entering Long Mode, since it is in // the specification. struct rm_regs r = {0}; r.eax = 0xec00; r.ebx = 0x02; // Long mode only rm_int(0x15, &r, &r); } #endif if (enable_nx) { vmm_assert_nx(); } pic_mask_all(); io_apic_mask_all(); irq_flush_type = IRQ_PIC_APIC_FLUSH; common_spinup(stivale_spinup_32, 11, bits, level5pg, enable_nx, (uint32_t)(uintptr_t)pagemap->top_level, (uint32_t)entry_point, (uint32_t)(entry_point >> 32), (uint32_t)_stivale_struct, (uint32_t)(_stivale_struct >> 32), (uint32_t)stack, (uint32_t)(stack >> 32), local_gdt); }