#include #include #include #include #include #include #include #include #include #include #include #define PT_LOAD 0x00000001 #define PT_DYNAMIC 0x00000002 #define PT_INTERP 0x00000003 #define PT_PHDR 0x00000006 #define DT_NULL 0x00000000 #define DT_NEEDED 0x00000001 #define DT_RELA 0x00000007 #define DT_RELASZ 0x00000008 #define DT_RELAENT 0x00000009 #define ABI_SYSV 0x00 #define ARCH_X86_64 0x3e #define ARCH_X86_32 0x03 #define ARCH_AARCH64 0xb7 #define BITS_LE 0x01 #define ET_DYN 0x0003 #define SHT_RELA 0x00000004 #define R_X86_64_RELATIVE 0x00000008 #define R_AARCH64_RELATIVE 0x00000403 /* Indices into identification array */ #define EI_CLASS 4 #define EI_DATA 5 #define EI_VERSION 6 #define EI_OSABI 7 struct elf32_hdr { uint8_t ident[16]; uint16_t type; uint16_t machine; uint32_t version; uint32_t entry; uint32_t phoff; uint32_t shoff; uint32_t flags; uint16_t hdr_size; uint16_t phdr_size; uint16_t ph_num; uint16_t shdr_size; uint16_t sh_num; uint16_t shstrndx; }; struct elf64_phdr { uint32_t p_type; uint32_t p_flags; uint64_t p_offset; uint64_t p_vaddr; uint64_t p_paddr; uint64_t p_filesz; uint64_t p_memsz; uint64_t p_align; }; struct elf32_phdr { uint32_t p_type; uint32_t p_offset; uint32_t p_vaddr; uint32_t p_paddr; uint32_t p_filesz; uint32_t p_memsz; uint32_t p_flags; uint32_t p_align; }; struct elf32_shdr { uint32_t sh_name; uint32_t sh_type; uint32_t sh_flags; uint32_t sh_addr; uint32_t sh_offset; uint32_t sh_size; uint32_t sh_link; uint32_t sh_info; uint32_t sh_addralign; uint32_t sh_entsize; }; struct elf64_rela { uint64_t r_addr; uint32_t r_info; uint32_t r_symbol; uint64_t r_addend; }; struct elf64_dyn { uint64_t d_tag; uint64_t d_un; }; int elf_bits(uint8_t *elf) { struct elf64_hdr *hdr = (void *)elf; if (strncmp((char *)hdr->ident, "\177ELF", 4)) { printv("elf: Not a valid ELF file.\n"); return -1; } switch (hdr->machine) { case ARCH_X86_64: case ARCH_AARCH64: return 64; case ARCH_X86_32: return 32; default: return -1; } } struct elf_section_hdr_info elf64_section_hdr_info(uint8_t *elf) { struct elf_section_hdr_info info = {0}; struct elf64_hdr *hdr = (void *)elf; info.num = hdr->sh_num; info.section_entry_size = hdr->shdr_size; info.str_section_idx = hdr->shstrndx; info.section_offset = hdr->shoff; return info; } struct elf_section_hdr_info elf32_section_hdr_info(uint8_t *elf) { struct elf_section_hdr_info info = {0}; struct elf32_hdr *hdr = (void *)elf; info.num = hdr->sh_num; info.section_entry_size = hdr->shdr_size; info.str_section_idx = hdr->shstrndx; info.section_offset = hdr->shoff; return info; } static bool elf64_is_relocatable(uint8_t *elf, struct elf64_hdr *hdr) { if (hdr->phdr_size < sizeof(struct elf64_phdr)) { panic(true, "elf: phdr_size < sizeof(struct elf64_phdr)"); } // Find DYN segment for (uint16_t i = 0; i < hdr->ph_num; i++) { struct elf64_phdr *phdr = (void *)elf + (hdr->phoff + i * hdr->phdr_size); if (phdr->p_type != PT_DYNAMIC) { continue; } for (uint16_t j = 0; j < phdr->p_filesz / sizeof(struct elf64_dyn); j++) { struct elf64_dyn *dyn = (void *)elf + (phdr->p_offset + j * sizeof(struct elf64_dyn)); switch (dyn->d_tag) { case DT_RELA: return true; } } } return false; } static bool elf64_apply_relocations(uint8_t *elf, struct elf64_hdr *hdr, void *buffer, uint64_t vaddr, size_t size, uint64_t slide) { if (hdr->phdr_size < sizeof(struct elf64_phdr)) { panic(true, "elf: phdr_size < sizeof(struct elf64_phdr)"); } // Find DYN segment for (uint16_t i = 0; i < hdr->ph_num; i++) { struct elf64_phdr *phdr = (void *)elf + (hdr->phoff + i * hdr->phdr_size); if (phdr->p_type != PT_DYNAMIC) continue; uint64_t rela_offset = 0; uint64_t rela_size = 0; uint64_t rela_ent = 0; for (uint16_t j = 0; j < phdr->p_filesz / sizeof(struct elf64_dyn); j++) { struct elf64_dyn *dyn = (void *)elf + (phdr->p_offset + j * sizeof(struct elf64_dyn)); switch (dyn->d_tag) { case DT_RELA: rela_offset = dyn->d_un; break; case DT_RELAENT: rela_ent = dyn->d_un; break; case DT_RELASZ: rela_size = dyn->d_un; break; } } if (rela_offset == 0) { break; } if (rela_ent != sizeof(struct elf64_rela)) { print("elf: Unknown sh_entsize for RELA section!\n"); return false; } for (uint16_t j = 0; j < hdr->ph_num; j++) { struct elf64_phdr *_phdr = (void *)elf + (hdr->phoff + j * hdr->phdr_size); if (_phdr->p_vaddr <= rela_offset && _phdr->p_vaddr + _phdr->p_filesz > rela_offset) { rela_offset -= _phdr->p_vaddr; rela_offset += _phdr->p_offset; break; } } // This is a RELA header, get and apply all relocations for (uint64_t offset = 0; offset < rela_size; offset += rela_ent) { struct elf64_rela *relocation = (void *)elf + (rela_offset + offset); switch (relocation->r_info) { #if defined (__x86_64__) || defined (__i386__) case R_X86_64_RELATIVE: #elif defined (__aarch64__) case R_AARCH64_RELATIVE: #else #error Unknown architecture #endif { // Relocation is before buffer if (relocation->r_addr < vaddr) continue; // Relocation is after buffer if (vaddr + size < relocation->r_addr + 8) continue; // It's inside it, calculate where it is uint64_t *ptr = (uint64_t *)((uint8_t *)buffer - vaddr + relocation->r_addr); // Write the relocated value *ptr = slide + relocation->r_addend; break; } default: { print("elf: Unknown RELA type: %x\n", relocation->r_info); return false; } } } break; } return true; } bool elf64_load_section(uint8_t *elf, void *buffer, const char *name, size_t limit, uint64_t slide) { struct elf64_hdr *hdr = (void *)elf; if (strncmp((char *)hdr->ident, "\177ELF", 4)) { printv("elf: Not a valid ELF file.\n"); return false; } if (hdr->ident[EI_DATA] != BITS_LE) { printv("elf: Not a Little-endian ELF file.\n"); return false; } #if defined (__x86_64__) || defined (__i386__) if (hdr->machine != ARCH_X86_64) { printv("elf: Not an x86_64 ELF file.\n"); return false; } #elif defined (__aarch64__) if (hdr->machine != ARCH_AARCH64) { printv("elf: Not an aarch64 ELF file.\n"); return false; } #else #error Unknown architecture #endif if (hdr->shdr_size < sizeof(struct elf64_shdr)) { panic(true, "elf: shdr_size < sizeof(struct elf64_shdr)"); } struct elf64_shdr *shstrtab = (void *)elf + (hdr->shoff + hdr->shstrndx * hdr->shdr_size); char *names = (void *)elf + shstrtab->sh_offset; for (uint16_t i = 0; i < hdr->sh_num; i++) { struct elf64_shdr *section = (void *)elf + (hdr->shoff + i * hdr->shdr_size); if (strcmp(&names[section->sh_name], name) == 0) { if (limit == 0) { *(void **)buffer = ext_mem_alloc(section->sh_size); buffer = *(void **)buffer; limit = section->sh_size; } if (section->sh_size > limit) { return false; } memcpy(buffer, elf + section->sh_offset, section->sh_size); return elf64_apply_relocations(elf, hdr, buffer, section->sh_addr, section->sh_size, slide); } } return false; } static uint64_t elf64_max_align(uint8_t *elf) { uint64_t ret = 0; struct elf64_hdr *hdr = (void *)elf; if (hdr->phdr_size < sizeof(struct elf64_phdr)) { panic(true, "elf: phdr_size < sizeof(struct elf64_phdr)"); } for (uint16_t i = 0; i < hdr->ph_num; i++) { struct elf64_phdr *phdr = (void *)elf + (hdr->phoff + i * hdr->phdr_size); if (phdr->p_type != PT_LOAD) { continue; } if (phdr->p_align > ret) { ret = phdr->p_align; } } if (ret == 0) { panic(true, "elf: Executable has no loadable segments"); } return ret; } static void elf64_get_ranges(uint8_t *elf, uint64_t slide, struct elf_range **_ranges, uint64_t *_ranges_count) { struct elf64_hdr *hdr = (void *)elf; uint64_t ranges_count = 0; if (hdr->phdr_size < sizeof(struct elf64_phdr)) { panic(true, "elf: phdr_size < sizeof(struct elf64_phdr)"); } for (uint16_t i = 0; i < hdr->ph_num; i++) { struct elf64_phdr *phdr = (void *)elf + (hdr->phoff + i * hdr->phdr_size); if (phdr->p_type != PT_LOAD) { continue; } if (phdr->p_vaddr < FIXED_HIGHER_HALF_OFFSET_64) { continue; } ranges_count++; } if (ranges_count == 0) { panic(true, "elf: No higher half PHDRs exist"); } struct elf_range *ranges = ext_mem_alloc(ranges_count * sizeof(struct elf_range)); size_t r = 0; for (uint16_t i = 0; i < hdr->ph_num; i++) { struct elf64_phdr *phdr = (void *)elf + (hdr->phoff + i * hdr->phdr_size); if (phdr->p_type != PT_LOAD) { continue; } if (phdr->p_vaddr < FIXED_HIGHER_HALF_OFFSET_64) { continue; } uint64_t load_addr = phdr->p_vaddr + slide; uint64_t this_top = load_addr + phdr->p_memsz; ranges[r].base = load_addr & ~(phdr->p_align - 1); ranges[r].length = ALIGN_UP(this_top - ranges[r].base, phdr->p_align); ranges[r].permissions = phdr->p_flags & 0b111; r++; } *_ranges_count = ranges_count; *_ranges = ranges; } bool elf64_load(uint8_t *elf, uint64_t *entry_point, uint64_t *_slide, uint32_t alloc_type, bool kaslr, struct elf_range **ranges, uint64_t *ranges_count, uint64_t *physical_base, uint64_t *virtual_base, uint64_t *_image_size, bool *is_reloc) { struct elf64_hdr *hdr = (void *)elf; if (strncmp((char *)hdr->ident, "\177ELF", 4)) { printv("elf: Not a valid ELF file.\n"); return false; } if (hdr->ident[EI_DATA] != BITS_LE) { panic(true, "elf: Not a Little-endian ELF file.\n"); } #if defined (__x86_64__) || defined (__i386__) if (hdr->machine != ARCH_X86_64) { panic(true, "elf: Not an x86_64 ELF file.\n"); } #elif defined (__aarch64__) if (hdr->machine != ARCH_AARCH64) { panic(true, "elf: Not an aarch64 ELF file.\n"); } #else #error Unknown architecture #endif if (is_reloc) { *is_reloc = false; } uint64_t slide = 0; size_t try_count = 0; size_t max_simulated_tries = 0x10000; uint64_t entry = hdr->entry; uint64_t max_align = elf64_max_align(elf); uint64_t image_size = 0; if (hdr->phdr_size < sizeof(struct elf64_phdr)) { panic(true, "elf: phdr_size < sizeof(struct elf64_phdr)"); } uint64_t min_vaddr = (uint64_t)-1; uint64_t max_vaddr = 0; for (uint16_t i = 0; i < hdr->ph_num; i++) { struct elf64_phdr *phdr = (void *)elf + (hdr->phoff + i * hdr->phdr_size); if (phdr->p_type != PT_LOAD) { continue; } // Drop entries not in the higher half if (phdr->p_vaddr < FIXED_HIGHER_HALF_OFFSET_64) { continue; } // check for overlapping phdrs for (uint16_t j = 0; j < hdr->ph_num; j++) { struct elf64_phdr *phdr_in = (void *)elf + (hdr->phoff + j * hdr->phdr_size); if (phdr_in->p_type != PT_LOAD) { continue; } // Drop entries not in the higher half if (phdr_in->p_vaddr < FIXED_HIGHER_HALF_OFFSET_64) { continue; } if (phdr_in == phdr) { continue; } if ((phdr_in->p_vaddr >= phdr->p_vaddr && phdr_in->p_vaddr < phdr->p_vaddr + phdr->p_memsz) || (phdr_in->p_vaddr + phdr_in->p_memsz > phdr->p_vaddr && phdr_in->p_vaddr + phdr_in->p_memsz <= phdr->p_vaddr + phdr->p_memsz)) { panic(true, "elf: Attempted to load ELF file with overlapping PHDRs (%u and %u overlap)", i, j); } } if (phdr->p_vaddr < min_vaddr) { min_vaddr = phdr->p_vaddr; } if (phdr->p_vaddr + phdr->p_memsz > max_vaddr) { max_vaddr = phdr->p_vaddr + phdr->p_memsz; } } if (max_vaddr == 0 || min_vaddr == (uint64_t)-1) { panic(true, "elf: No higher half PHDRs exist"); } image_size = max_vaddr - min_vaddr; *physical_base = (uintptr_t)ext_mem_alloc_type_aligned(image_size, alloc_type, max_align); *virtual_base = min_vaddr; if (_image_size) { *_image_size = image_size; } if (elf64_is_relocatable(elf, hdr)) { if (is_reloc) { *is_reloc = true; } } again: if (*is_reloc && kaslr) { slide = rand32() & ~(max_align - 1); if ((*virtual_base - FIXED_HIGHER_HALF_OFFSET_64) + slide + image_size >= 0x80000000) { if (++try_count == max_simulated_tries) { panic(true, "elf: Image wants to load too high"); } goto again; } } for (uint16_t i = 0; i < hdr->ph_num; i++) { struct elf64_phdr *phdr = (void *)elf + (hdr->phoff + i * hdr->phdr_size); if (phdr->p_type != PT_LOAD) { continue; } // Drop entries not in the higher half if (phdr->p_vaddr < FIXED_HIGHER_HALF_OFFSET_64) { continue; } // Sanity checks if (phdr->p_filesz > phdr->p_memsz) { panic(true, "elf: p_filesz > p_memsz"); } uint64_t load_addr = *physical_base + (phdr->p_vaddr - *virtual_base); #if defined (__aarch64__) uint64_t this_top = load_addr + phdr->p_memsz; uint64_t mem_base, mem_size; mem_base = load_addr & ~(phdr->p_align - 1); mem_size = this_top - mem_base; #endif memcpy((void *)(uintptr_t)load_addr, elf + (phdr->p_offset), phdr->p_filesz); if (!elf64_apply_relocations(elf, hdr, (void *)(uintptr_t)load_addr, phdr->p_vaddr, phdr->p_memsz, slide)) { panic(true, "elf: Failed to apply relocations"); } #if defined (__aarch64__) clean_inval_dcache_poc(mem_base, mem_base + mem_size); inval_icache_pou(mem_base, mem_base + mem_size); #endif } *virtual_base += slide; *entry_point = entry + slide; if (_slide) { *_slide = slide; } if (ranges_count != NULL && ranges != NULL) { elf64_get_ranges(elf, slide, ranges, ranges_count); } return true; } bool elf32_load_elsewhere(uint8_t *elf, uint64_t *entry_point, struct elsewhere_range **ranges, uint64_t *ranges_count) { struct elf32_hdr *hdr = (void *)elf; if (strncmp((char *)hdr->ident, "\177ELF", 4)) { printv("elf: Not a valid ELF file.\n"); return false; } if (hdr->ident[EI_DATA] != BITS_LE) { printv("elf: Not a Little-endian ELF file.\n"); return false; } if (hdr->machine != ARCH_X86_32) { printv("elf: Not an x86_32 ELF file.\n"); return false; } *entry_point = hdr->entry; bool entry_adjusted = false; if (hdr->phdr_size < sizeof(struct elf32_phdr)) { panic(true, "elf: phdr_size < sizeof(struct elf32_phdr)"); } *ranges_count = 0; for (uint16_t i = 0; i < hdr->ph_num; i++) { struct elf32_phdr *phdr = (void *)elf + (hdr->phoff + i * hdr->phdr_size); if (phdr->p_type != PT_LOAD) continue; *ranges_count += 1; } *ranges = ext_mem_alloc(sizeof(struct elsewhere_range) * *ranges_count); size_t cur_entry = 0; for (uint16_t i = 0; i < hdr->ph_num; i++) { struct elf32_phdr *phdr = (void *)elf + (hdr->phoff + i * hdr->phdr_size); if (phdr->p_type != PT_LOAD) continue; // Sanity checks if (phdr->p_filesz > phdr->p_memsz) { panic(true, "elf: p_filesz > p_memsz"); } void *elsewhere = ext_mem_alloc(phdr->p_memsz); memcpy(elsewhere, elf + phdr->p_offset, phdr->p_filesz); if (!entry_adjusted && *entry_point >= phdr->p_vaddr && *entry_point < (phdr->p_vaddr + phdr->p_memsz)) { *entry_point -= phdr->p_vaddr; *entry_point += phdr->p_paddr; entry_adjusted = true; } (*ranges)[cur_entry].elsewhere = (uintptr_t)elsewhere; (*ranges)[cur_entry].target = phdr->p_paddr; (*ranges)[cur_entry].length = phdr->p_memsz; cur_entry++; } return true; } bool elf64_load_elsewhere(uint8_t *elf, uint64_t *entry_point, struct elsewhere_range **ranges, uint64_t *ranges_count) { struct elf64_hdr *hdr = (void *)elf; if (strncmp((char *)hdr->ident, "\177ELF", 4)) { printv("elf: Not a valid ELF file.\n"); return false; } if (hdr->ident[EI_DATA] != BITS_LE) { printv("elf: Not a Little-endian ELF file.\n"); return false; } if (hdr->machine != ARCH_X86_64) { printv("elf: Not an x86_64 ELF file.\n"); return false; } *entry_point = hdr->entry; bool entry_adjusted = false; if (hdr->phdr_size < sizeof(struct elf64_phdr)) { panic(true, "elf: phdr_size < sizeof(struct elf64_phdr)"); } *ranges_count = 0; for (uint16_t i = 0; i < hdr->ph_num; i++) { struct elf64_phdr *phdr = (void *)elf + (hdr->phoff + i * hdr->phdr_size); if (phdr->p_type != PT_LOAD) continue; *ranges_count += 1; } *ranges = ext_mem_alloc(sizeof(struct elsewhere_range) * *ranges_count); size_t cur_entry = 0; for (uint16_t i = 0; i < hdr->ph_num; i++) { struct elf64_phdr *phdr = (void *)elf + (hdr->phoff + i * hdr->phdr_size); if (phdr->p_type != PT_LOAD) continue; // Sanity checks if (phdr->p_filesz > phdr->p_memsz) { panic(true, "elf: p_filesz > p_memsz"); } void *elsewhere = ext_mem_alloc(phdr->p_memsz); memcpy(elsewhere, elf + phdr->p_offset, phdr->p_filesz); if (!entry_adjusted && *entry_point >= phdr->p_vaddr && *entry_point < (phdr->p_vaddr + phdr->p_memsz)) { *entry_point -= phdr->p_vaddr; *entry_point += phdr->p_paddr; entry_adjusted = true; } (*ranges)[cur_entry].elsewhere = (uintptr_t)elsewhere; (*ranges)[cur_entry].target = phdr->p_paddr; (*ranges)[cur_entry].length = phdr->p_memsz; cur_entry++; } return true; }