#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static struct multiboot_header *load_multiboot2_header(uint8_t *kernel) { struct multiboot_header *ptr = NULL; size_t header_offset; for (header_offset = 0; header_offset < MULTIBOOT_SEARCH; header_offset += MULTIBOOT_HEADER_ALIGN) { uint32_t v; memcpy(&v, kernel + header_offset, 4); if (v == MULTIBOOT2_HEADER_MAGIC) { ptr = (void *)(kernel + header_offset); break; } } if (ptr->magic != MULTIBOOT2_HEADER_MAGIC) { panic("multiboot2: Could not find header"); } if (ptr->magic + ptr->architecture + ptr->checksum + ptr->header_length) { panic("mutliboot2: Header checksum is invalid"); } return ptr; } /// Returns the size required to store the multiboot2 info. static size_t get_multiboot2_info_size( char *cmdline, size_t modules_size, uint32_t section_hdr_size ) { return ALIGN_UP(sizeof(struct multiboot2_start_tag), MULTIBOOT_TAG_ALIGN) + // start ALIGN_UP(strlen(cmdline) + 1 + offsetof(struct multiboot_tag_string, string), MULTIBOOT_TAG_ALIGN) + // cmdline ALIGN_UP(8 + offsetof(struct multiboot_tag_string, string), MULTIBOOT_TAG_ALIGN) + // bootloader brand ALIGN_UP(sizeof(struct multiboot_tag_framebuffer), MULTIBOOT_TAG_ALIGN) + // framebuffer ALIGN_UP(sizeof(struct multiboot_tag_new_acpi) + 36, MULTIBOOT_TAG_ALIGN) + // new ACPI info ALIGN_UP(sizeof(struct multiboot_tag_elf_sections) + section_hdr_size, MULTIBOOT_TAG_ALIGN) + // ELF info ALIGN_UP(modules_size, MULTIBOOT_TAG_ALIGN) + // modules ALIGN_UP(sizeof(struct multiboot_tag_mmap) + sizeof(struct multiboot_mmap_entry) * 256, MULTIBOOT_TAG_ALIGN) + // MMAP #if uefi == 1 ALIGN_UP(sizeof(struct multiboot_tag_efi_mmap) + (efi_desc_size * 256), MULTIBOOT_TAG_ALIGN) + // EFI MMAP #endif ALIGN_UP(sizeof(struct multiboot_tag), MULTIBOOT_TAG_ALIGN); // end } #define append_tag(P, TAG) ({ (P) += ALIGN_UP((TAG)->size, MULTIBOOT_TAG_ALIGN); }) void multiboot2_load(char *config, char* cmdline) { struct file_handle *kernel_file = ext_mem_alloc(sizeof(struct file_handle)); char *kernel_path = config_get_value(config, 0, "KERNEL_PATH"); if (kernel_path == NULL) panic("multiboot2: KERNEL_PATH not specified"); print("multiboot2: Loading kernel `%s`...\n", kernel_path); if (!uri_open(kernel_file, kernel_path)) panic("multiboot2: Failed to open kernel with path `%s`. Is the path correct?", kernel_path); uint8_t *kernel = freadall(kernel_file, MEMMAP_KERNEL_AND_MODULES); struct multiboot_header *header = load_multiboot2_header(kernel); struct multiboot_header_tag_address *addresstag = NULL; struct multiboot_header_tag_framebuffer *fbtag = NULL; bool is_new_acpi_required = false; bool is_elf_info_requested = false; uint32_t entry_point = 0xffffffff; // Iterate through the entries... for (struct multiboot_header_tag *tag = (struct multiboot_header_tag*)(header + 1); // header + 1 to skip the header struct. tag < (struct multiboot_header_tag *)((uintptr_t)header + header->header_length) && tag->type != MULTIBOOT_HEADER_TAG_END; tag = (struct multiboot_header_tag *)((uintptr_t)tag + ALIGN_UP(tag->size, MULTIBOOT_TAG_ALIGN))) { switch (tag->type) { case MULTIBOOT_HEADER_TAG_INFORMATION_REQUEST: { // Iterate the requests and check if they are supported by or not. struct multiboot_header_tag_information_request *request = (void *)tag; uint32_t size = (request->size - sizeof(struct multiboot_header_tag_information_request)) / sizeof(uint32_t); bool is_required = !(request->flags & MULTIBOOT_HEADER_TAG_OPTIONAL); for (uint32_t i = 0; i < size; i++) { uint32_t r = request->requests[i]; switch (r) { // We already support the following requests: case MULTIBOOT_TAG_TYPE_CMDLINE: case MULTIBOOT_TAG_TYPE_BOOT_LOADER_NAME: case MULTIBOOT_TAG_TYPE_MODULE: case MULTIBOOT_TAG_TYPE_MMAP: case MULTIBOOT_TAG_TYPE_EFI_MMAP: case MULTIBOOT_TAG_TYPE_FRAMEBUFFER: break; case MULTIBOOT_TAG_TYPE_ACPI_NEW: is_new_acpi_required = is_required; break; case MULTIBOOT_TAG_TYPE_ELF_SECTIONS: is_elf_info_requested = is_required; break; default: if (is_required) panic("multiboot2: Requested tag `%d` which is not supported", r); break; } } break; } case MULTIBOOT_HEADER_TAG_FRAMEBUFFER: { fbtag = (void *)tag; break; } case MULTIBOOT_HEADER_TAG_ENTRY_ADDRESS: { struct multiboot_header_tag_entry_address *entrytag = (void *)tag; entry_point = entrytag->entry_addr; break; } case MULTIBOOT_HEADER_TAG_ADDRESS: { addresstag = (void *)tag; break; } // We always align the modules ;^) case MULTIBOOT_HEADER_TAG_MODULE_ALIGN: break; default: panic("multiboot2: Unknown header tag type"); } } uint32_t kernel_top; if (addresstag != NULL) { if (addresstag->load_addr > addresstag->header_addr) panic("multiboot2: Illegal load address"); size_t load_size = 0; if (addresstag->load_end_addr) load_size = addresstag->load_end_addr - addresstag->load_addr; else load_size = kernel_file->size; size_t header_offset = (size_t)header - (size_t)kernel; memmap_alloc_range(addresstag->load_addr, load_size, MEMMAP_KERNEL_AND_MODULES, true, true, false, false); memcpy((void *)(uintptr_t)addresstag->load_addr, kernel + (header_offset - (addresstag->header_addr - addresstag->load_addr)), load_size); kernel_top = addresstag->load_addr + load_size; if (addresstag->bss_end_addr) { uintptr_t bss_addr = addresstag->load_addr + load_size; if (addresstag->bss_end_addr < bss_addr) panic("multiboot2: Illegal bss end address"); uint32_t bss_size = addresstag->bss_end_addr - bss_addr; memmap_alloc_range(bss_addr, bss_size, MEMMAP_KERNEL_AND_MODULES, true, true, false, false); memset((void *)bss_addr, 0, bss_size); kernel_top = bss_addr + bss_size; } } else { int bits = elf_bits(kernel); uint64_t e = 0, t = 0; switch (bits) { case 32: if (elf32_load(kernel, (uint32_t *)&e, (uint32_t *)&t, MEMMAP_KERNEL_AND_MODULES)) panic("multiboot2: ELF32 load failure"); break; case 64: { if (elf64_load(kernel, &e, &t, NULL, MEMMAP_KERNEL_AND_MODULES, false, true, NULL, NULL)) panic("multiboot2: ELF64 load failure"); break; } default: panic("multiboot2: Invalid ELF file bitness"); } if (entry_point == 0xffffffff) { entry_point = e; } kernel_top = t; } struct elf_section_hdr_info *section_hdr_info = NULL; int bits = elf_bits(kernel); switch (bits) { case 32: section_hdr_info = elf32_section_hdr_info(kernel); break; case 64: { section_hdr_info = elf64_section_hdr_info(kernel); break; } } size_t modules_size = 0; size_t n_modules; for (n_modules = 0;; n_modules++) { if (config_get_value(config, modules_size, "MODULE_PATH") == NULL) break; char *module_cmdline = config_get_value(config, modules_size, "MODULE_STRING"); if (module_cmdline == NULL) { module_cmdline = ""; } modules_size += sizeof(struct multiboot_tag_module) + strlen(module_cmdline) + 1; } size_t mb2_info_size = get_multiboot2_info_size(cmdline, modules_size, section_hdr_info ? section_hdr_info->section_hdr_size : 0); size_t info_idx = 0; uint8_t *mb2_info = conv_mem_alloc(mb2_info_size); struct multiboot2_start_tag* mbi_start = (struct multiboot2_start_tag *)mb2_info; info_idx += sizeof(struct multiboot2_start_tag); mbi_start->size = mb2_info_size; mbi_start->reserved = 0x00; ////////////////////////////////////////////// // Create modules tag ////////////////////////////////////////////// for (size_t i = 0; i < n_modules; i++) { char *module_path = config_get_value(config, i, "MODULE_PATH"); if (module_path == NULL) panic("multiboot2: Module disappeared unexpectedly"); print("multiboot2: Loading module `%s`...\n", module_path); struct file_handle f; if (!uri_open(&f, module_path)) panic("multiboot2: Failed to open module with path `%s`. Is the path correct?", module_path); char *module_cmdline = config_get_value(config, i, "MODULE_STRING"); void *module_addr = (void *)(uintptr_t)ALIGN_UP(kernel_top, 4096); // Module commandline can be null, so we guard against that and make the // string "". if (module_cmdline == NULL) { module_cmdline = ""; } memmap_alloc_range((uintptr_t)module_addr, f.size, MEMMAP_KERNEL_AND_MODULES, true, true, false, false); kernel_top = (uintptr_t)module_addr + f.size; fread(&f, module_addr, 0, f.size); struct multiboot_tag_module *module_tag = (struct multiboot_tag_module *)(mb2_info + info_idx); module_tag->type = MULTIBOOT_TAG_TYPE_MODULE; module_tag->size = sizeof(struct multiboot_tag_module) + strlen(module_cmdline) + 1; module_tag->mod_start = (uint32_t)(size_t)module_addr; module_tag->mod_end = module_tag->mod_start + f.size; strcpy(module_tag->cmdline, module_cmdline); // Copy over the command line if (verbose) { print("multiboot2: Requested module %u:\n", i); print(" Path: %s\n", module_path); print(" String: \"%s\"\n", module_cmdline ?: ""); print(" Begin: %x\n", module_tag->mod_start); print(" End: %x\n", module_tag->mod_end); } append_tag(info_idx, module_tag); } ////////////////////////////////////////////// // Create command line tag ////////////////////////////////////////////// { uint32_t size = strlen(cmdline) + 1 + offsetof(struct multiboot_tag_string, string); struct multiboot_tag_string *tag = (struct multiboot_tag_string *)(mb2_info + info_idx); tag->type = MULTIBOOT_TAG_TYPE_CMDLINE; tag->size = size; strcpy(tag->string, cmdline); append_tag(info_idx, tag); } ////////////////////////////////////////////// // Create bootloader name tag ////////////////////////////////////////////// { char brand[] = "Limine"; uint32_t size = sizeof(brand) + offsetof(struct multiboot_tag_string, string); struct multiboot_tag_string *tag = (struct multiboot_tag_string *)(mb2_info + info_idx); tag->type = MULTIBOOT_TAG_TYPE_BOOT_LOADER_NAME; tag->size = size; strcpy(tag->string, brand); append_tag(info_idx, tag); } ////////////////////////////////////////////// // Create framebuffer tag ////////////////////////////////////////////// { term_deinit(); if (fbtag) { size_t req_width = fbtag->width; size_t req_height = fbtag->height; size_t req_bpp = fbtag->depth; char *resolution = config_get_value(config, 0, "RESOLUTION"); if (resolution != NULL) parse_resolution(&req_width, &req_height, &req_bpp, resolution); struct multiboot_tag_framebuffer *tag = (struct multiboot_tag_framebuffer *)(mb2_info + info_idx); struct fb_info fbinfo; if (!fb_init(&fbinfo, req_width, req_height, req_bpp)) { size_t rows, cols; init_vga_textmode(&rows, &cols, false); tag->common.framebuffer_addr = 0xb8000; tag->common.framebuffer_pitch = 2 * cols; tag->common.framebuffer_width = cols; tag->common.framebuffer_height = rows; tag->common.framebuffer_bpp = 16; tag->common.framebuffer_type = MULTIBOOT_FRAMEBUFFER_TYPE_EGA_TEXT; } else { tag->common.type = MULTIBOOT_TAG_TYPE_FRAMEBUFFER; tag->common.size = sizeof(struct multiboot_tag_framebuffer); tag->common.framebuffer_addr = fbinfo.framebuffer_addr; tag->common.framebuffer_pitch = fbinfo.framebuffer_pitch; tag->common.framebuffer_width = fbinfo.framebuffer_width; tag->common.framebuffer_height = fbinfo.framebuffer_height; tag->common.framebuffer_bpp = fbinfo.framebuffer_bpp; tag->common.framebuffer_type = MULTIBOOT_FRAMEBUFFER_TYPE_RGB; // We only support RGB for VBE tag->framebuffer_red_field_position = fbinfo.red_mask_shift; tag->framebuffer_red_mask_size = fbinfo.red_mask_size; tag->framebuffer_green_field_position = fbinfo.green_mask_shift; tag->framebuffer_green_mask_size = fbinfo.green_mask_size; tag->framebuffer_blue_field_position = fbinfo.blue_mask_shift; tag->framebuffer_blue_mask_size = fbinfo.blue_mask_size; } append_tag(info_idx, &tag->common); } else { #if uefi == 1 panic("multiboot2: cannot use text mode with UEFI"); #elif bios == 1 size_t rows, cols; init_vga_textmode(&rows, &cols, false); #endif } } ////////////////////////////////////////////// // Create new ACPI info tag ////////////////////////////////////////////// { void *new_rsdp = acpi_get_rsdp(); if (new_rsdp != NULL) { uint32_t size = sizeof(struct multiboot_tag_new_acpi) + 36; // XSDP is 36 bytes wide struct multiboot_tag_new_acpi *tag = (struct multiboot_tag_new_acpi *)(mb2_info + info_idx); tag->type = MULTIBOOT_TAG_TYPE_ACPI_NEW; tag->size = size; memcpy(tag->rsdp, new_rsdp, 36); append_tag(info_idx, tag); } else if (is_new_acpi_required) { panic("multiboot2: RSDP requested but not found"); } } ////////////////////////////////////////////// // Create ELF info tag ////////////////////////////////////////////// { if (section_hdr_info == NULL) { if (is_elf_info_requested) { panic("multiboot2: Cannot return ELF file information"); } } else { uint32_t size = sizeof(struct multiboot_tag_elf_sections) + section_hdr_info->section_hdr_size; struct multiboot_tag_elf_sections *tag = (struct multiboot_tag_elf_sections*)(mb2_info + info_idx); tag->type = MULTIBOOT_TAG_TYPE_ELF_SECTIONS; tag->size = size; tag->num = section_hdr_info->num; tag->entsize = section_hdr_info->section_entry_size; tag->shndx = section_hdr_info->str_section_idx; memcpy(tag->sections, section_hdr_info->section_hdrs, section_hdr_info->section_hdr_size); append_tag(info_idx, tag); } } #if uefi == 1 efi_exit_boot_services(); #endif ////////////////////////////////////////////// // Create memory map tag ////////////////////////////////////////////// { size_t mb_mmap_count; struct e820_entry_t *raw_memmap = get_raw_memmap(&mb_mmap_count); if (mb_mmap_count > 256) { panic("multiboot2: too many memory map entries"); } // Create the normal memory map tag. uint32_t mmap_size = sizeof(struct multiboot_tag_mmap) + sizeof(struct multiboot_mmap_entry) * mb_mmap_count; struct multiboot_tag_mmap *mmap_tag = (struct multiboot_tag_mmap *)(mb2_info + info_idx); mmap_tag->type = MULTIBOOT_TAG_TYPE_MMAP; mmap_tag->entry_size = sizeof(struct multiboot_mmap_entry); mmap_tag->entry_version = 0; mmap_tag->size = mmap_size; for (size_t i = 0; i < mb_mmap_count; i++) { struct multiboot_mmap_entry *entry = &mmap_tag->entries[i]; entry->addr = raw_memmap[i].base; entry->len = raw_memmap[i].length; entry->type = raw_memmap[i].type; entry->zero = 0; } append_tag(info_idx, mmap_tag); } ////////////////////////////////////////////// // Create EFI memory map tag ////////////////////////////////////////////// #if uefi == 1 { if ((efi_mmap_size / efi_desc_size) > 256) { panic("multiboot2: too many EFI memory map entries"); } // Create the EFI memory map tag. uint32_t size = sizeof(struct multiboot_tag_efi_mmap) * efi_mmap_size; struct multiboot_tag_efi_mmap *mmap_tag = (struct multiboot_tag_efi_mmap *)(mb2_info + info_idx); mmap_tag->type = MULTIBOOT_TAG_TYPE_EFI_MMAP; mmap_tag->descr_vers = efi_desc_ver; mmap_tag->descr_size = efi_desc_size; mmap_tag->size = size; // Copy over the EFI memory map. memcpy(mmap_tag->efi_mmap, efi_mmap, efi_mmap_size); append_tag(info_idx, mmap_tag); } #endif ////////////////////////////////////////////// // Create end tag ////////////////////////////////////////////// { struct multiboot_tag *end_tag = (struct multiboot_tag *)(mb2_info + info_idx); end_tag->type = MULTIBOOT_TAG_TYPE_END; end_tag->size = sizeof(struct multiboot_tag); append_tag(info_idx, end_tag); } pic_flush(); common_spinup(multiboot2_spinup_32, 2, entry_point, (uint32_t)(uintptr_t)mbi_start); }