linux: Initial support for 32 bit boot protocol instead of 16 bit one

This commit is contained in:
mintsuki 2021-03-19 09:36:49 +01:00
parent 0cc0e019cd
commit cd3a64c9f1
7 changed files with 526 additions and 113 deletions

View File

@ -109,11 +109,7 @@ void stage3_common(void) {
stivale2_load(config, cmdline, boot_volume->pxe, efi_system_table);
} else if (!strcmp(proto, "linux")) {
#if defined (bios)
linux_load(config, cmdline);
#elif defined (uefi)
panic("UEFI Limine does not support the Linux boot protocol");
#endif
} else if (!strcmp(proto, "chainload")) {
#if defined (bios)
chainload(config);

View File

@ -10,9 +10,13 @@ section .text
mov dword [rsp], %1
%endmacro
extern gdt
global do_32
bits 64
do_32:
lgdt [rel gdt]
mov rbp, rsp
lidt [rel invalid_idt]

View File

@ -6,6 +6,7 @@
#include <stdbool.h>
#include <sys/e820.h>
#define MEMMAP_REMOVE_RANGE 0
#define MEMMAP_USABLE 1
#define MEMMAP_RESERVED 2
#define MEMMAP_ACPI_RECLAIMABLE 3
@ -15,6 +16,9 @@
#define MEMMAP_KERNEL_AND_MODULES 0x1001
#define MEMMAP_EFI_RECLAIMABLE 0x2000
extern size_t bump_allocator_base;
extern size_t bump_allocator_limit;
extern struct e820_entry_t memmap[];
extern size_t memmap_entries;

View File

@ -19,13 +19,13 @@
#if defined (bios)
extern symbol bss_end;
static size_t bump_allocator_base = (size_t)bss_end;
static size_t bump_allocator_limit = BUMP_ALLOC_LIMIT_HIGH;
size_t bump_allocator_base = (size_t)bss_end;
size_t bump_allocator_limit = BUMP_ALLOC_LIMIT_HIGH;
#endif
#if defined (uefi)
static size_t bump_allocator_base = BUMP_ALLOC_LIMIT_HIGH;
static size_t bump_allocator_limit = BUMP_ALLOC_LIMIT_HIGH;
size_t bump_allocator_base = BUMP_ALLOC_LIMIT_HIGH;
size_t bump_allocator_limit = BUMP_ALLOC_LIMIT_HIGH;
#endif
void *conv_mem_alloc(size_t count) {
@ -342,7 +342,7 @@ void init_memmap(void) {
memmap_alloc_range(bump_allocator_base,
bump_allocator_limit - bump_allocator_base,
MEMMAP_RESERVED, true, true);
MEMMAP_REMOVE_RANGE, true, true);
print("pmm: Conventional mem allocator base: %X\n", bump_allocator_base);
print("pmm: Conventional mem allocator limit: %X\n", bump_allocator_limit);
@ -440,30 +440,48 @@ bool memmap_alloc_range(uint64_t base, uint64_t length, uint32_t type, bool free
uint64_t entry_top = memmap[i].base + memmap[i].length;
uint32_t entry_type = memmap[i].type;
if (type == MEMMAP_REMOVE_RANGE &&
base == entry_base && top == entry_top) {
// Eradicate from memmap
for (size_t j = i; j < memmap_entries - 1; j++) {
memmap[j] = memmap[j+1];
}
memmap_entries--;
return true;
}
if (base >= entry_base && base < entry_top &&
top >= entry_base && top <= entry_top) {
struct e820_entry_t *target;
memmap[i].length -= entry_top - base;
if (memmap[i].length == 0) {
target = &memmap[i];
} else {
if (memmap_entries >= MEMMAP_MAX_ENTRIES)
panic("Memory map exhausted.");
if (type != MEMMAP_REMOVE_RANGE) {
if (memmap[i].length == 0) {
target = &memmap[i];
} else {
if (memmap_entries >= MEMMAP_MAX_ENTRIES)
panic("Memory map exhausted.");
target = &memmap[memmap_entries++];
target = &memmap[memmap_entries++];
}
target->type = type;
target->base = base;
target->length = length;
}
target->type = type;
target->base = base;
target->length = length;
if (top < entry_top) {
if (memmap_entries >= MEMMAP_MAX_ENTRIES)
panic("Memory map exhausted.");
if (memmap[i].length == 0) {
target = &memmap[i];
} else {
if (memmap_entries >= MEMMAP_MAX_ENTRIES)
panic("Memory map exhausted.");
target = &memmap[memmap_entries++];
target = &memmap[memmap_entries++];
}
target->type = entry_type;
target->base = top;

63
stage23/protos/linux.32.c Normal file
View File

@ -0,0 +1,63 @@
#include <sys/gdt.h>
__attribute__((noreturn)) void linux_spinup(void *entry, void *boot_params) {
struct gdt_desc linux_gdt_descs[] = {
{0},
{0},
{
.limit = 0xffff,
.base_low = 0x0000,
.base_mid = 0x00,
.access = 0b10011010,
.granularity = 0b11001111,
.base_hi = 0x00
},
{
.limit = 0xffff,
.base_low = 0x0000,
.base_mid = 0x00,
.access = 0b10010010,
.granularity = 0b11001111,
.base_hi = 0x00
}
};
struct gdtr linux_gdt = {
sizeof(linux_gdt_descs) - 1,
(uintptr_t)linux_gdt_descs,
#if defined (bios)
0
#endif
};
asm volatile (
"lgdt %0\n\t"
"push 0x10\n\t"
"call 1f\n\t"
"1:\n\t"
"add dword ptr [esp], 5\n\t"
"retf\n\t"
"mov eax, 0x18\n\t"
"mov ds, eax\n\t"
"mov es, eax\n\t"
"mov fs, eax\n\t"
"mov gs, eax\n\t"
"mov ss, eax\n\t"
"xor ebp, ebp\n\t"
"xor edi, edi\n\t"
"xor ebx, ebx\n\t"
"jmp ecx\n\t"
:
: "m"(linux_gdt), "c"(entry), "S"(boot_params)
: "memory"
);
__builtin_unreachable();
}

View File

@ -1,5 +1,3 @@
#if defined (bios)
#include <stdint.h>
#include <stddef.h>
#include <protos/linux.h>
@ -14,57 +12,313 @@
#include <mm/pmm.h>
#include <mm/mtrr.h>
#include <sys/idt.h>
#include <lib/fb.h>
#include <lib/acpi.h>
#define KERNEL_LOAD_ADDR ((size_t)0x100000)
#define KERNEL_HEAP_SIZE ((size_t)0x6000)
__attribute__((noreturn)) void linux_spinup(void *entry, void *boot_params);
__attribute__((noinline))
__attribute__((section(".realmode")))
static void spinup(uint16_t real_mode_code_seg, uint16_t kernel_entry_seg,
uint16_t stack_pointer) {
struct idtr real_mode_idt = { 0x3ff, 0x0 };
// The following definitions and struct were copied and adapted from Linux
// kernel headers released under GPL-2.0 WITH Linux-syscall-note
// allowing their inclusion in non GPL compliant code.
asm volatile (
"cli\n\t"
"cld\n\t"
#define EDD_MBR_SIG_MAX 16
#define E820_MAX_ENTRIES_ZEROPAGE 128
#define EDDMAXNR 6
"lidt [eax]\n\t"
struct setup_header {
uint8_t setup_sects;
uint16_t root_flags;
uint32_t syssize;
uint16_t ram_size;
uint16_t vid_mode;
uint16_t root_dev;
uint16_t boot_flag;
uint16_t jump;
uint32_t header;
uint16_t version;
uint32_t realmode_swtch;
uint16_t start_sys_seg;
uint16_t kernel_version;
uint8_t type_of_loader;
uint8_t loadflags;
uint16_t setup_move_size;
uint32_t code32_start;
uint32_t ramdisk_image;
uint32_t ramdisk_size;
uint32_t bootsect_kludge;
uint16_t heap_end_ptr;
uint8_t ext_loader_ver;
uint8_t ext_loader_type;
uint32_t cmd_line_ptr;
uint32_t initrd_addr_max;
uint32_t kernel_alignment;
uint8_t relocatable_kernel;
uint8_t min_alignment;
uint16_t xloadflags;
uint32_t cmdline_size;
uint32_t hardware_subarch;
uint64_t hardware_subarch_data;
uint32_t payload_offset;
uint32_t payload_length;
uint64_t setup_data;
uint64_t pref_address;
uint32_t init_size;
uint32_t handover_offset;
uint32_t kernel_info_offset;
} __attribute__((packed));
"jmp 0x08:1f\n\t"
"1: .code16\n\t"
"mov ax, 0x10\n\t"
"mov ds, ax\n\t"
"mov es, ax\n\t"
"mov fs, ax\n\t"
"mov gs, ax\n\t"
"mov ss, ax\n\t"
"mov eax, cr0\n\t"
"and al, 0xfe\n\t"
"mov cr0, eax\n\t"
"mov eax, OFFSET 1f\n\t"
"push 0\n\t"
"push ax\n\t"
"retf\n\t"
"1:\n\t"
"mov ds, bx\n\t"
"mov es, bx\n\t"
"mov fs, bx\n\t"
"mov gs, bx\n\t"
"mov ss, bx\n\t"
"mov esp, edx\n\t"
struct screen_info {
uint8_t orig_x; /* 0x00 */
uint8_t orig_y; /* 0x01 */
uint16_t ext_mem_k; /* 0x02 */
uint16_t orig_video_page; /* 0x04 */
uint8_t orig_video_mode; /* 0x06 */
uint8_t orig_video_cols; /* 0x07 */
uint8_t flags; /* 0x08 */
uint8_t unused2; /* 0x09 */
uint16_t orig_video_ega_bx;/* 0x0a */
uint16_t unused3; /* 0x0c */
uint8_t orig_video_lines; /* 0x0e */
uint8_t orig_video_isVGA; /* 0x0f */
uint16_t orig_video_points;/* 0x10 */
"push cx\n\t"
"push 0\n\t"
/* VESA graphic mode -- linear frame buffer */
uint16_t lfb_width; /* 0x12 */
uint16_t lfb_height; /* 0x14 */
uint16_t lfb_depth; /* 0x16 */
uint32_t lfb_base; /* 0x18 */
uint32_t lfb_size; /* 0x1c */
uint16_t cl_magic, cl_offset; /* 0x20 */
uint16_t lfb_linelength; /* 0x24 */
uint8_t red_size; /* 0x26 */
uint8_t red_pos; /* 0x27 */
uint8_t green_size; /* 0x28 */
uint8_t green_pos; /* 0x29 */
uint8_t blue_size; /* 0x2a */
uint8_t blue_pos; /* 0x2b */
uint8_t rsvd_size; /* 0x2c */
uint8_t rsvd_pos; /* 0x2d */
uint16_t vesapm_seg; /* 0x2e */
uint16_t vesapm_off; /* 0x30 */
uint16_t pages; /* 0x32 */
uint16_t vesa_attributes; /* 0x34 */
uint32_t capabilities; /* 0x36 */
uint32_t ext_lfb_base; /* 0x3a */
uint8_t _reserved[2]; /* 0x3e */
} __attribute__((packed));
"retf\n\t"
struct apm_bios_info {
uint16_t version;
uint16_t cseg;
uint32_t offset;
uint16_t cseg_16;
uint16_t dseg;
uint16_t flags;
uint16_t cseg_len;
uint16_t cseg_16_len;
uint16_t dseg_len;
};
".code32\n\t"
:
: "a" (&real_mode_idt), "b" (real_mode_code_seg), "c" (kernel_entry_seg),
"d" (stack_pointer)
: "memory"
);
}
struct ist_info {
uint32_t signature;
uint32_t command;
uint32_t event;
uint32_t perf_level;
};
struct sys_desc_table {
uint16_t length;
uint8_t table[14];
};
struct olpc_ofw_header {
uint32_t ofw_magic; /* OFW signature */
uint32_t ofw_version;
uint32_t cif_handler; /* callback into OFW */
uint32_t irq_desc_table;
} __attribute__((packed));
struct edid_info {
unsigned char dummy[128];
};
struct efi_info {
uint32_t efi_loader_signature;
uint32_t efi_systab;
uint32_t efi_memdesc_size;
uint32_t efi_memdesc_version;
uint32_t efi_memmap;
uint32_t efi_memmap_size;
uint32_t efi_systab_hi;
uint32_t efi_memmap_hi;
};
struct boot_e820_entry {
uint64_t addr;
uint64_t size;
uint32_t type;
} __attribute__((packed));
struct edd_device_params {
uint16_t length;
uint16_t info_flags;
uint32_t num_default_cylinders;
uint32_t num_default_heads;
uint32_t sectors_per_track;
uint64_t number_of_sectors;
uint16_t bytes_per_sector;
uint32_t dpte_ptr; /* 0xFFFFFFFF for our purposes */
uint16_t key; /* = 0xBEDD */
uint8_t device_path_info_length; /* = 44 */
uint8_t reserved2;
uint16_t reserved3;
uint8_t host_bus_type[4];
uint8_t interface_type[8];
union {
struct {
uint16_t base_address;
uint16_t reserved1;
uint32_t reserved2;
} __attribute__ ((packed)) isa;
struct {
uint8_t bus;
uint8_t slot;
uint8_t function;
uint8_t channel;
uint32_t reserved;
} __attribute__ ((packed)) pci;
/* pcix is same as pci */
struct {
uint64_t reserved;
} __attribute__ ((packed)) ibnd;
struct {
uint64_t reserved;
} __attribute__ ((packed)) xprs;
struct {
uint64_t reserved;
} __attribute__ ((packed)) htpt;
struct {
uint64_t reserved;
} __attribute__ ((packed)) unknown;
} interface_path;
union {
struct {
uint8_t device;
uint8_t reserved1;
uint16_t reserved2;
uint32_t reserved3;
uint64_t reserved4;
} __attribute__ ((packed)) ata;
struct {
uint8_t device;
uint8_t lun;
uint8_t reserved1;
uint8_t reserved2;
uint32_t reserved3;
uint64_t reserved4;
} __attribute__ ((packed)) atapi;
struct {
uint16_t id;
uint64_t lun;
uint16_t reserved1;
uint32_t reserved2;
} __attribute__ ((packed)) scsi;
struct {
uint64_t serial_number;
uint64_t reserved;
} __attribute__ ((packed)) usb;
struct {
uint64_t eui;
uint64_t reserved;
} __attribute__ ((packed)) i1394;
struct {
uint64_t wwid;
uint64_t lun;
} __attribute__ ((packed)) fibre;
struct {
uint64_t identity_tag;
uint64_t reserved;
} __attribute__ ((packed)) i2o;
struct {
uint32_t array_number;
uint32_t reserved1;
uint64_t reserved2;
} __attribute__ ((packed)) raid;
struct {
uint8_t device;
uint8_t reserved1;
uint16_t reserved2;
uint32_t reserved3;
uint64_t reserved4;
} __attribute__ ((packed)) sata;
struct {
uint64_t reserved1;
uint64_t reserved2;
} __attribute__ ((packed)) unknown;
} device_path;
uint8_t reserved4;
uint8_t checksum;
} __attribute__ ((packed));
struct edd_info {
uint8_t device;
uint8_t version;
uint16_t interface_support;
uint16_t legacy_max_cylinder;
uint8_t legacy_max_head;
uint8_t legacy_sectors_per_track;
struct edd_device_params params;
} __attribute__ ((packed));
struct boot_params {
struct screen_info screen_info; /* 0x000 */
struct apm_bios_info apm_bios_info; /* 0x040 */
uint8_t _pad2[4]; /* 0x054 */
uint64_t tboot_addr; /* 0x058 */
struct ist_info ist_info; /* 0x060 */
uint64_t acpi_rsdp_addr; /* 0x070 */
uint8_t _pad3[8]; /* 0x078 */
uint8_t hd0_info[16]; /* obsolete! */ /* 0x080 */
uint8_t hd1_info[16]; /* obsolete! */ /* 0x090 */
struct sys_desc_table sys_desc_table; /* obsolete! */ /* 0x0a0 */
struct olpc_ofw_header olpc_ofw_header; /* 0x0b0 */
uint32_t ext_ramdisk_image; /* 0x0c0 */
uint32_t ext_ramdisk_size; /* 0x0c4 */
uint32_t ext_cmd_line_ptr; /* 0x0c8 */
uint8_t _pad4[116]; /* 0x0cc */
struct edid_info edid_info; /* 0x140 */
struct efi_info efi_info; /* 0x1c0 */
uint32_t alt_mem_k; /* 0x1e0 */
uint32_t scratch; /* Scratch field! */ /* 0x1e4 */
uint8_t e820_entries; /* 0x1e8 */
uint8_t eddbuf_entries; /* 0x1e9 */
uint8_t edd_mbr_sig_buf_entries; /* 0x1ea */
uint8_t kbd_status; /* 0x1eb */
uint8_t secure_boot; /* 0x1ec */
uint8_t _pad5[2]; /* 0x1ed */
/*
* The sentinel is set to a nonzero value (0xff) in header.S.
*
* A bootloader is supposed to only take setup_header and put
* it into a clean boot_params buffer. If it turns out that
* it is clumsy or too generous with the buffer, it most
* probably will pick up the sentinel variable too. The fact
* that this variable then is still 0xff will let kernel
* know that some variables in boot_params are invalid and
* kernel should zero out certain portions of boot_params.
*/
uint8_t sentinel; /* 0x1ef */
uint8_t _pad6[1]; /* 0x1f0 */
struct setup_header hdr; /* setup header */ /* 0x1f1 */
uint8_t _pad7[0x290-0x1f1-sizeof(struct setup_header)];
uint32_t edd_mbr_sig_buffer[EDD_MBR_SIG_MAX]; /* 0x290 */
struct boot_e820_entry e820_table[E820_MAX_ENTRIES_ZEROPAGE]; /* 0x2d0 */
uint8_t _pad8[48]; /* 0xcd0 */
struct edd_info eddbuf[EDDMAXNR]; /* 0xd00 */
uint8_t _pad9[276]; /* 0xeec */
} __attribute__((packed));
// End of Linux code
void linux_load(char *config, char *cmdline) {
struct file_handle *kernel = ext_mem_alloc(sizeof(struct file_handle));
@ -94,61 +348,64 @@ void linux_load(char *config, char *cmdline) {
size_t real_mode_code_size = 512 + setup_code_size;
size_t real_mode_and_heap_size = 0x8000 + KERNEL_HEAP_SIZE;
struct boot_params *boot_params = ext_mem_alloc(sizeof(struct boot_params));
void *real_mode_code = conv_mem_alloc_aligned(0x10000, 0x1000);
struct setup_header *setup_header = &boot_params->hdr;
fread(kernel, real_mode_code, 0, real_mode_code_size);
size_t setup_header_end = ({
uint8_t x;
fread(kernel, &x, 0x201, 1);
0x202 + x;
});
uint16_t boot_protocol_ver;
boot_protocol_ver = *((uint16_t *)(real_mode_code + 0x206));
fread(kernel, setup_header, 0x1f1, setup_header_end - 0x1f1);
print("linux: Boot protocol: %u.%u\n",
boot_protocol_ver >> 8, boot_protocol_ver & 0xff);
setup_header->version >> 8, setup_header->version & 0xff);
if (boot_protocol_ver < 0x203) {
if (setup_header->version < 0x203) {
panic("Linux protocols < 2.03 are not supported");
}
size_t heap_end_ptr = real_mode_and_heap_size - 0x200;
*((uint16_t *)(real_mode_code + 0x224)) = (uint16_t)heap_end_ptr;
char *cmdline_reloc = real_mode_code + real_mode_and_heap_size;
strcpy(cmdline_reloc, cmdline);
setup_header->cmd_line_ptr = (uint32_t)(uintptr_t)cmdline;
// vid_mode. 0xffff means "normal"
*((uint16_t *)(real_mode_code + 0x1fa)) = 0xffff;
setup_header->vid_mode = 0xffff;
char *kernel_version;
kernel_version = real_mode_code + *((uint16_t *)(real_mode_code + 0x20e)) + 0x200;
if (kernel_version) {
char *kernel_version = ext_mem_alloc(128);
if (setup_header->kernel_version != 0) {
fread(kernel, kernel_version, setup_header->kernel_version + 0x200, 128);
print("linux: Kernel version: %s\n", kernel_version);
}
// set type of loader
*((uint8_t *)(real_mode_code + 0x210)) = 0xff;
setup_header->type_of_loader = 0xff;
uint8_t loadflags;
loadflags = *((uint8_t *)(real_mode_code + 0x211));
if (!(loadflags & (1 << 0))) {
if (!(setup_header->loadflags & (1 << 0))) {
panic("Linux kernels that load at 0x10000 are not supported");
}
loadflags &= ~(1 << 5); // print early messages
loadflags |= (1 << 7); // can use heap
*((uint8_t *)(real_mode_code + 0x211)) = loadflags;
*((uint32_t *)(real_mode_code + 0x228)) = (uint32_t)cmdline_reloc;
setup_header->loadflags &= ~(1 << 5); // print early messages
// load kernel
uintptr_t kernel_load_addr = 0x100000;
print("linux: Loading kernel...\n");
memmap_alloc_range(KERNEL_LOAD_ADDR, kernel->size - real_mode_code_size, 0, true, true);
fread(kernel, (void *)KERNEL_LOAD_ADDR, real_mode_code_size, kernel->size - real_mode_code_size);
for (;;) {
if (memmap_alloc_range(kernel_load_addr,
kernel->size - real_mode_code_size,
MEMMAP_BOOTLOADER_RECLAIMABLE, true, false))
break;
uint32_t modules_mem_base = *((uint32_t *)(real_mode_code + 0x22c)) + 1;
kernel_load_addr += 0x100000;
}
fread(kernel, (void *)kernel_load_addr, real_mode_code_size, kernel->size - real_mode_code_size);
print("linux: Kernel loaded at %x\n", kernel_load_addr);
///////////////////////////////////////
// Modules
///////////////////////////////////////
uint32_t modules_mem_base = setup_header->initrd_addr_max;
if (modules_mem_base == 0)
modules_mem_base = 0x38000000;
@ -170,7 +427,8 @@ void linux_load(char *config, char *cmdline) {
modules_mem_base = ALIGN_DOWN(modules_mem_base, 4096);
for (;;) {
if (memmap_alloc_range(modules_mem_base, size_of_all_modules, 0, true, false))
if (memmap_alloc_range(modules_mem_base, size_of_all_modules,
MEMMAP_BOOTLOADER_RECLAIMABLE, true, false))
break;
modules_mem_base -= 4096;
}
@ -193,18 +451,95 @@ void linux_load(char *config, char *cmdline) {
}
if (size_of_all_modules != 0) {
*((uint32_t *)(real_mode_code + 0x218)) = (uint32_t)modules_mem_base;
*((uint32_t *)(real_mode_code + 0x21c)) = (uint32_t)size_of_all_modules;
setup_header->ramdisk_image = (uint32_t)modules_mem_base;
setup_header->ramdisk_size = (uint32_t)size_of_all_modules;
}
uint16_t real_mode_code_seg = rm_seg(real_mode_code);
uint16_t kernel_entry_seg = real_mode_code_seg + 0x20;
///////////////////////////////////////
// Video
///////////////////////////////////////
term_deinit();
mtrr_restore();
spinup(real_mode_code_seg, kernel_entry_seg, real_mode_and_heap_size);
}
struct screen_info *screen_info = &boot_params->screen_info;
int req_width = 0, req_height = 0, req_bpp = 0;
char *resolution = config_get_value(config, 0, "RESOLUTION");
if (resolution != NULL)
parse_resolution(&req_width, &req_height, &req_bpp, resolution);
struct fb_info fbinfo;
if (!fb_init(&fbinfo, req_width, req_height, req_bpp))
panic("linux: Unable to set video mode");
screen_info->lfb_base = fbinfo.framebuffer_addr;
screen_info->lfb_size = fbinfo.framebuffer_pitch * fbinfo.framebuffer_height;
screen_info->lfb_width = fbinfo.framebuffer_width;
screen_info->lfb_height = fbinfo.framebuffer_height;
screen_info->lfb_depth = fbinfo.framebuffer_bpp;
screen_info->lfb_linelength = fbinfo.framebuffer_pitch;
screen_info->red_size = fbinfo.red_mask_size;
screen_info->red_pos = fbinfo.red_mask_shift;
screen_info->green_size = fbinfo.green_mask_size;
screen_info->green_pos = fbinfo.green_mask_shift;
screen_info->blue_size = fbinfo.blue_mask_size;
screen_info->blue_pos = fbinfo.blue_mask_shift;
screen_info->orig_video_isVGA = 0x23;
///////////////////////////////////////
// RSDP
///////////////////////////////////////
boot_params->acpi_rsdp_addr = (uintptr_t)acpi_get_rsdp();
///////////////////////////////////////
// Jettison UEFI
///////////////////////////////////////
#if defined (uefi)
efi_exit_boot_services();
#endif
///////////////////////////////////////
// e820
///////////////////////////////////////
struct boot_e820_entry *e820_table = boot_params->e820_table;
size_t memmap_entries;
struct e820_entry_t *memmap = get_memmap(&memmap_entries);
boot_params->e820_entries = memmap_entries + 1;
e820_table[0].addr = bump_allocator_base;
e820_table[0].size = bump_allocator_limit - bump_allocator_base;
e820_table[0].type = MEMMAP_USABLE;
for (size_t i = 1; i < memmap_entries + 1; i++) {
e820_table[i].addr = memmap[i-1].base;
e820_table[i].size = memmap[i-1].length;
e820_table[i].type = memmap[i-1].type;
switch (e820_table[i].type) {
case MEMMAP_BOOTLOADER_RECLAIMABLE:
case MEMMAP_EFI_RECLAIMABLE:
e820_table[i].type = MEMMAP_USABLE;
break;
}
}
///////////////////////////////////////
// Spin up
///////////////////////////////////////
#if defined (uefi)
do_32(linux_spinup, 2, (void *)kernel_load_addr, boot_params);
#endif
#if defined (bios)
linux_spinup((void *)kernel_load_addr, boot_params);
#endif
}

View File

@ -283,13 +283,6 @@ __attribute__((noreturn)) void stivale_spinup(
pic_flush();
#if defined (uefi)
asm volatile (
"lgdt %0\n\t"
:
: "m"(gdt)
: "memory"
);
do_32(stivale_spinup_32, 8,
bits, level5pg, (uint32_t)(uintptr_t)pagemap->top_level,
(uint32_t)entry_point, (uint32_t)(entry_point >> 32),