parent
714d8ac2ce
commit
64c897a82d
|
@ -21,7 +21,6 @@ struct memmap_entry {
|
|||
#define MEMMAP_KERNEL_AND_MODULES 0x1001
|
||||
#define MEMMAP_FRAMEBUFFER 0x1002
|
||||
#define MEMMAP_EFI_RECLAIMABLE 0x2000
|
||||
#define MEMMAP_EFI_BOOTSERVICES 0x2001
|
||||
|
||||
struct meminfo {
|
||||
size_t uppermem;
|
||||
|
@ -49,6 +48,8 @@ void init_memmap(void);
|
|||
struct memmap_entry *get_memmap(size_t *entries);
|
||||
struct memmap_entry *get_raw_memmap(size_t *entry_count);
|
||||
void print_memmap(struct memmap_entry *mm, size_t size);
|
||||
bool memmap_alloc_range_in(struct memmap_entry *m, size_t *_count,
|
||||
uint64_t base, uint64_t length, uint32_t type, uint32_t overlay_type, bool do_panic, bool simulation, bool new_entry);
|
||||
bool memmap_alloc_range(uint64_t base, uint64_t length, uint32_t type, uint32_t overlay_type, bool panic, bool simulation, bool new_entry);
|
||||
void pmm_randomise_memory(void);
|
||||
|
||||
|
|
|
@ -84,8 +84,6 @@ static const char *memmap_type(uint32_t type) {
|
|||
return "Kernel/Modules";
|
||||
case MEMMAP_EFI_RECLAIMABLE:
|
||||
return "EFI reclaimable";
|
||||
case MEMMAP_EFI_BOOTSERVICES:
|
||||
return "EFI boot services";
|
||||
default:
|
||||
return "???";
|
||||
}
|
||||
|
@ -118,10 +116,6 @@ static bool align_entry(uint64_t *base, uint64_t *length) {
|
|||
return true;
|
||||
}
|
||||
|
||||
static bool sanitiser_keep_first_page = false;
|
||||
|
||||
#define MEMMAP_DROP_LATER ((uint32_t)-1)
|
||||
|
||||
static void sanitise_entries(struct memmap_entry *m, size_t *_count, bool align_entries) {
|
||||
size_t count = *_count;
|
||||
|
||||
|
@ -144,14 +138,6 @@ static void sanitise_entries(struct memmap_entry *m, size_t *_count, bool align_
|
|||
|
||||
if ( (res_base >= base && res_base < top)
|
||||
&& (res_top >= base && res_top < top) ) {
|
||||
// Drop the entry entirely if usable
|
||||
if (m[j].type == MEMMAP_USABLE) {
|
||||
m[j].type = MEMMAP_DROP_LATER;
|
||||
}
|
||||
if (m[j].type == MEMMAP_DROP_LATER) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// TODO actually handle splitting off usable chunks
|
||||
panic(false, "A non-usable memory map entry is inside a usable section.");
|
||||
}
|
||||
|
@ -176,22 +162,12 @@ static void sanitise_entries(struct memmap_entry *m, size_t *_count, bool align_
|
|||
}
|
||||
}
|
||||
|
||||
// Collect "drop later" entries
|
||||
for (size_t i = 0; i < count; i++) {
|
||||
if (m[i].type != MEMMAP_DROP_LATER) {
|
||||
continue;
|
||||
}
|
||||
|
||||
m[i] = m[count - 1];
|
||||
count--; i--;
|
||||
}
|
||||
|
||||
// Remove 0 length usable entries and usable entries below 0x1000
|
||||
for (size_t i = 0; i < count; i++) {
|
||||
if (m[i].type != MEMMAP_USABLE)
|
||||
continue;
|
||||
|
||||
if (!sanitiser_keep_first_page && m[i].base < 0x1000) {
|
||||
if (m[i].base < 0x1000) {
|
||||
if (m[i].base + m[i].length <= 0x1000) {
|
||||
goto del_mm1;
|
||||
}
|
||||
|
@ -356,7 +332,7 @@ void init_memmap(void) {
|
|||
our_type = MEMMAP_RESERVED; break;
|
||||
case EfiBootServicesCode:
|
||||
case EfiBootServicesData:
|
||||
our_type = MEMMAP_EFI_BOOTSERVICES; break;
|
||||
our_type = MEMMAP_EFI_RECLAIMABLE; break;
|
||||
case EfiACPIReclaimMemory:
|
||||
our_type = MEMMAP_ACPI_RECLAIMABLE; break;
|
||||
case EfiACPIMemoryNVS:
|
||||
|
@ -447,24 +423,23 @@ void pmm_reclaim_uefi_mem(void) {
|
|||
|
||||
struct memmap_entry *recl = ext_mem_alloc(recl_i * sizeof(struct memmap_entry));
|
||||
|
||||
{
|
||||
size_t recl_j = 0;
|
||||
for (size_t i = 0; i < memmap_entries; i++) {
|
||||
for (size_t i = 0, j = 0; i < memmap_entries; i++) {
|
||||
if (memmap[i].type == MEMMAP_EFI_RECLAIMABLE) {
|
||||
recl[recl_j++] = memmap[i];
|
||||
}
|
||||
recl[j++] = memmap[i];
|
||||
}
|
||||
}
|
||||
|
||||
another_recl:;
|
||||
for (size_t ri = 0; ri < recl_i; ri++) {
|
||||
struct memmap_entry *r = &recl[ri];
|
||||
|
||||
// Punch holes in our EFI reclaimable entry for every EFI area which is
|
||||
// boot services or conventional that fits within
|
||||
size_t efi_mmap_entry_count = efi_mmap_size / efi_desc_size;
|
||||
for (size_t i = 0; i < efi_mmap_entry_count; i++) {
|
||||
EFI_MEMORY_DESCRIPTOR *entry = (void *)efi_mmap + i * efi_desc_size;
|
||||
|
||||
uint64_t base = recl->base;
|
||||
uint64_t top = base + recl->length;
|
||||
uint64_t base = r->base;
|
||||
uint64_t top = base + r->length;
|
||||
uint64_t efi_base = entry->PhysicalStart;
|
||||
uint64_t efi_size = entry->NumberOfPages * 4096;
|
||||
|
||||
|
@ -503,48 +478,7 @@ another_recl:;
|
|||
our_type = MEMMAP_RESERVED; break;
|
||||
}
|
||||
|
||||
memmap_alloc_range(efi_base, efi_size, our_type, false, true, false, true);
|
||||
}
|
||||
|
||||
if (--recl_i > 0) {
|
||||
recl++;
|
||||
goto another_recl;
|
||||
}
|
||||
|
||||
// Ensure the boot services are still boot services, or free, in
|
||||
// the EFI memmap, and disallow allocations since our stack and page tables
|
||||
// are placed in this newly freed memory.
|
||||
for (size_t i = 0; i < memmap_entries; i++) {
|
||||
if (memmap[i].type != MEMMAP_EFI_BOOTSERVICES)
|
||||
continue;
|
||||
|
||||
// Go through EFI memmap and ensure this entry fits within a boot services
|
||||
// or conventional entry
|
||||
size_t entry_count = efi_mmap_size / efi_desc_size;
|
||||
|
||||
for (size_t j = 0; j < entry_count; j++) {
|
||||
EFI_MEMORY_DESCRIPTOR *entry = (void *)efi_mmap + j * efi_desc_size;
|
||||
|
||||
switch (entry->Type) {
|
||||
case EfiBootServicesCode:
|
||||
case EfiBootServicesData:
|
||||
case EfiConventionalMemory:
|
||||
break;
|
||||
default:
|
||||
continue;
|
||||
}
|
||||
|
||||
uintptr_t base = memmap[i].base;
|
||||
uintptr_t top = base + memmap[i].length;
|
||||
uintptr_t efi_base = entry->PhysicalStart;
|
||||
uintptr_t efi_size = entry->NumberOfPages * 4096;
|
||||
uintptr_t efi_top = efi_base + efi_size;
|
||||
|
||||
if (!(base >= efi_base && base < efi_top
|
||||
&& top > efi_base && top <= efi_top))
|
||||
continue;
|
||||
|
||||
memmap[i].type = MEMMAP_USABLE;
|
||||
memmap_alloc_range_in(memmap, &memmap_entries, efi_base, efi_size, our_type, 0, true, false, false);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -618,10 +552,7 @@ struct memmap_entry *get_raw_memmap(size_t *entry_count) {
|
|||
mmap[i].type = our_type;
|
||||
}
|
||||
|
||||
bool s_old = sanitiser_keep_first_page;
|
||||
sanitiser_keep_first_page = true;
|
||||
sanitise_entries(mmap, &mmap_count, false);
|
||||
sanitiser_keep_first_page = s_old;
|
||||
|
||||
*entry_count = mmap_count;
|
||||
return mmap;
|
||||
|
@ -715,19 +646,22 @@ struct meminfo mmap_get_info(size_t mmap_count, struct memmap_entry *mmap) {
|
|||
return info;
|
||||
}
|
||||
|
||||
static bool pmm_new_entry(uint64_t base, uint64_t length, uint32_t type) {
|
||||
static bool pmm_new_entry(struct memmap_entry *m, size_t *_count,
|
||||
uint64_t base, uint64_t length, uint32_t type) {
|
||||
size_t count = *_count;
|
||||
|
||||
uint64_t top = base + length;
|
||||
|
||||
// Handle overlapping new entries.
|
||||
for (size_t i = 0; i < memmap_entries; i++) {
|
||||
uint64_t entry_base = memmap[i].base;
|
||||
uint64_t entry_top = memmap[i].base + memmap[i].length;
|
||||
for (size_t i = 0; i < count; i++) {
|
||||
uint64_t entry_base = m[i].base;
|
||||
uint64_t entry_top = m[i].base + m[i].length;
|
||||
|
||||
// Full overlap
|
||||
if (base <= entry_base && top >= entry_top) {
|
||||
// Remove overlapped entry
|
||||
memmap[i] = memmap[memmap_entries - 1];
|
||||
memmap_entries--;
|
||||
m[i] = m[count - 1];
|
||||
count--;
|
||||
i--;
|
||||
continue;
|
||||
}
|
||||
|
@ -735,30 +669,30 @@ static bool pmm_new_entry(uint64_t base, uint64_t length, uint32_t type) {
|
|||
// Partial overlap (bottom)
|
||||
if (base <= entry_base && top < entry_top && top > entry_base) {
|
||||
// Entry gets bottom shaved off
|
||||
memmap[i].base += top - entry_base;
|
||||
memmap[i].length -= top - entry_base;
|
||||
m[i].base += top - entry_base;
|
||||
m[i].length -= top - entry_base;
|
||||
continue;
|
||||
}
|
||||
|
||||
// Partial overlap (top)
|
||||
if (base > entry_base && base < entry_top && top >= entry_top) {
|
||||
// Entry gets top shaved off
|
||||
memmap[i].length -= entry_top - base;
|
||||
m[i].length -= entry_top - base;
|
||||
continue;
|
||||
}
|
||||
|
||||
// Nested (pain)
|
||||
if (base > entry_base && top < entry_top) {
|
||||
// Entry gets top shaved off first
|
||||
memmap[i].length -= entry_top - base;
|
||||
m[i].length -= entry_top - base;
|
||||
|
||||
// Now we need to create a new entry
|
||||
if (memmap_entries >= memmap_max_entries)
|
||||
if (count >= memmap_max_entries)
|
||||
panic(false, "Memory map exhausted.");
|
||||
|
||||
struct memmap_entry *new_entry = &memmap[memmap_entries++];
|
||||
struct memmap_entry *new_entry = &m[count++];
|
||||
|
||||
new_entry->type = memmap[i].type;
|
||||
new_entry->type = m[i].type;
|
||||
new_entry->base = top;
|
||||
new_entry->length = entry_top - top;
|
||||
|
||||
|
@ -766,19 +700,23 @@ static bool pmm_new_entry(uint64_t base, uint64_t length, uint32_t type) {
|
|||
}
|
||||
}
|
||||
|
||||
if (memmap_entries >= memmap_max_entries)
|
||||
if (count >= memmap_max_entries)
|
||||
panic(false, "Memory map exhausted.");
|
||||
|
||||
struct memmap_entry *target = &memmap[memmap_entries++];
|
||||
struct memmap_entry *target = &m[count++];
|
||||
|
||||
target->type = type;
|
||||
target->base = base;
|
||||
target->length = length;
|
||||
|
||||
*_count = count;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool memmap_alloc_range(uint64_t base, uint64_t length, uint32_t type, uint32_t overlay_type, bool do_panic, bool simulation, bool new_entry) {
|
||||
bool memmap_alloc_range_in(struct memmap_entry *m, size_t *_count,
|
||||
uint64_t base, uint64_t length, uint32_t type, uint32_t overlay_type, bool do_panic, bool simulation, bool new_entry) {
|
||||
size_t count = *_count;
|
||||
|
||||
if (length == 0)
|
||||
return true;
|
||||
|
||||
|
@ -788,18 +726,18 @@ bool memmap_alloc_range(uint64_t base, uint64_t length, uint32_t type, uint32_t
|
|||
|
||||
uint64_t top = base + length;
|
||||
|
||||
for (size_t i = 0; i < memmap_entries; i++) {
|
||||
if (overlay_type != 0 && memmap[i].type != overlay_type)
|
||||
for (size_t i = 0; i < count; i++) {
|
||||
if (overlay_type != 0 && m[i].type != overlay_type)
|
||||
continue;
|
||||
|
||||
uint64_t entry_base = memmap[i].base;
|
||||
uint64_t entry_top = memmap[i].base + memmap[i].length;
|
||||
uint64_t entry_base = m[i].base;
|
||||
uint64_t entry_top = m[i].base + m[i].length;
|
||||
|
||||
if (base >= entry_base && base < entry_top && top <= entry_top) {
|
||||
if (simulation)
|
||||
return true;
|
||||
|
||||
if (pmm_new_entry(base, length, type) == true) {
|
||||
if (pmm_new_entry(m, &count, base, length, type) == true) {
|
||||
goto success;
|
||||
}
|
||||
}
|
||||
|
@ -812,11 +750,16 @@ bool memmap_alloc_range(uint64_t base, uint64_t length, uint32_t type, uint32_t
|
|||
return false;
|
||||
}
|
||||
|
||||
if (pmm_new_entry(base, length, type) == false) {
|
||||
if (pmm_new_entry(m, &count, base, length, type) == false) {
|
||||
return false;
|
||||
}
|
||||
|
||||
success:
|
||||
sanitise_entries(memmap, &memmap_entries, false);
|
||||
sanitise_entries(m, &count, false);
|
||||
*_count = count;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool memmap_alloc_range(uint64_t base, uint64_t length, uint32_t type, uint32_t overlay_type, bool do_panic, bool simulation, bool new_entry) {
|
||||
return memmap_alloc_range_in(memmap, &memmap_entries, base, length, type, overlay_type, do_panic, simulation, new_entry);
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue