elf: Undo all the mess caused by multiboot in preparation for separate functions

This commit is contained in:
mintsuki 2022-06-29 07:48:10 +02:00
parent a2f7d2d314
commit 4e0ec6d544
2 changed files with 29 additions and 140 deletions

View File

@ -393,56 +393,6 @@ out:
return ret;
}
static void elf32_get_ranges(uint8_t *elf, uint64_t slide, struct elf_range **_ranges, uint64_t *_ranges_count) {
struct elf32_hdr hdr;
memcpy(&hdr, elf + (0), sizeof(struct elf32_hdr));
uint64_t ranges_count = 0;
if (hdr.phdr_size < sizeof(struct elf32_phdr)) {
panic(true, "elf: phdr_size < sizeof(struct elf64_phdr)");
}
for (uint16_t i = 0; i < hdr.ph_num; i++) {
struct elf32_phdr phdr;
memcpy(&phdr, elf + (hdr.phoff + i * hdr.phdr_size),
sizeof(struct elf32_phdr));
if (phdr.p_type != PT_LOAD)
continue;
ranges_count++;
}
if (ranges_count == 0) {
panic(true, "elf: Attempted to use PMRs but no higher half PHDRs exist");
}
struct elf_range *ranges = ext_mem_alloc(ranges_count * sizeof(struct elf_range));
size_t r = 0;
for (uint16_t i = 0; i < hdr.ph_num; i++) {
struct elf32_phdr phdr;
memcpy(&phdr, elf + (hdr.phoff + i * hdr.phdr_size),
sizeof(struct elf32_phdr));
if (phdr.p_type != PT_LOAD)
continue;
uint64_t load_addr = phdr.p_paddr + slide;
uint64_t this_top = load_addr + phdr.p_memsz;
ranges[r].base = load_addr;
ranges[r].length = this_top - ranges[r].base;
ranges[r].permissions = phdr.p_flags & 0b111;
r++;
}
*_ranges_count = ranges_count;
*_ranges = ranges;
}
static uint64_t elf64_max_align(uint8_t *elf) {
uint64_t ret = 0;
@ -473,7 +423,7 @@ static uint64_t elf64_max_align(uint8_t *elf) {
return ret;
}
static void elf64_get_ranges(uint8_t *elf, uint64_t slide, bool use_paddr, struct elf_range **_ranges, uint64_t *_ranges_count) {
static void elf64_get_ranges(uint8_t *elf, uint64_t slide, struct elf_range **_ranges, uint64_t *_ranges_count) {
struct elf64_hdr hdr;
memcpy(&hdr, elf + (0), sizeof(struct elf64_hdr));
@ -491,7 +441,7 @@ static void elf64_get_ranges(uint8_t *elf, uint64_t slide, bool use_paddr, struc
if (phdr.p_type != PT_LOAD)
continue;
if (!use_paddr && phdr.p_vaddr < FIXED_HIGHER_HALF_OFFSET_64) {
if (phdr.p_vaddr < FIXED_HIGHER_HALF_OFFSET_64) {
continue;
}
@ -515,27 +465,18 @@ static void elf64_get_ranges(uint8_t *elf, uint64_t slide, bool use_paddr, struc
uint64_t load_addr = 0;
if (use_paddr) {
load_addr = phdr.p_paddr;
} else {
load_addr = phdr.p_vaddr;
load_addr = phdr.p_vaddr;
if (phdr.p_vaddr < FIXED_HIGHER_HALF_OFFSET_64) {
continue;
}
if (phdr.p_vaddr < FIXED_HIGHER_HALF_OFFSET_64) {
continue;
}
load_addr += slide;
uint64_t this_top = load_addr + phdr.p_memsz;
if (use_paddr) {
ranges[r].base = load_addr;
ranges[r].length = this_top - ranges[r].base;
} else {
ranges[r].base = load_addr & ~(phdr.p_align - 1);
ranges[r].length = ALIGN_UP(this_top - ranges[r].base, phdr.p_align);
}
ranges[r].base = load_addr & ~(phdr.p_align - 1);
ranges[r].length = ALIGN_UP(this_top - ranges[r].base, phdr.p_align);
ranges[r].permissions = phdr.p_flags & 0b111;
r++;
@ -545,7 +486,7 @@ static void elf64_get_ranges(uint8_t *elf, uint64_t slide, bool use_paddr, struc
*_ranges = ranges;
}
int elf64_load(uint8_t *elf, uint64_t *entry_point, uint64_t *top, uint64_t *_slide, uint32_t alloc_type, bool kaslr, bool use_paddr, struct elf_range **ranges, uint64_t *ranges_count, bool fully_virtual, uint64_t *physical_base, uint64_t *virtual_base, uint64_t *_image_size, bool *is_reloc) {
int elf64_load(uint8_t *elf, uint64_t *entry_point, uint64_t *top, uint64_t *_slide, uint32_t alloc_type, bool kaslr, struct elf_range **ranges, uint64_t *ranges_count, bool fully_virtual, uint64_t *physical_base, uint64_t *virtual_base, uint64_t *_image_size, bool *is_reloc) {
struct elf64_hdr hdr;
memcpy(&hdr, elf + (0), sizeof(struct elf64_hdr));
@ -623,11 +564,6 @@ int elf64_load(uint8_t *elf, uint64_t *entry_point, uint64_t *top, uint64_t *_sl
}
}
if (use_paddr) {
simulation = true;
goto final;
}
if (!elf64_is_relocatable(elf, &hdr)) {
simulation = false;
goto final;
@ -670,25 +606,19 @@ final:
panic(true, "elf: p_filesz > p_memsz");
}
uint64_t load_addr = 0;
uint64_t load_addr = phdr.p_vaddr;
if (use_paddr) {
load_addr = phdr.p_paddr;
} else {
load_addr = phdr.p_vaddr;
if (phdr.p_vaddr >= FIXED_HIGHER_HALF_OFFSET_64) {
higher_half = true;
if (phdr.p_vaddr >= FIXED_HIGHER_HALF_OFFSET_64) {
higher_half = true;
if (fully_virtual) {
load_addr = *physical_base + (phdr.p_vaddr - *virtual_base);
} else {
load_addr = phdr.p_vaddr - FIXED_HIGHER_HALF_OFFSET_64;
}
} else if (ranges) {
// Drop lower half
continue;
if (fully_virtual) {
load_addr = *physical_base + (phdr.p_vaddr - *virtual_base);
} else {
load_addr = phdr.p_vaddr - FIXED_HIGHER_HALF_OFFSET_64;
}
} else if (ranges) {
// Drop lower half
continue;
}
if (!fully_virtual) {
@ -706,11 +636,7 @@ final:
uint64_t mem_base, mem_size;
if (ranges) {
if (use_paddr) {
mem_base = load_addr;
} else {
mem_base = load_addr & ~(phdr.p_align - 1);
}
mem_base = load_addr & ~(phdr.p_align - 1);
mem_size = this_top - mem_base;
} else {
mem_base = load_addr;
@ -742,17 +668,9 @@ final:
memset(ptr, 0, to_zero);
}
if (!use_paddr && elf64_apply_relocations(elf, &hdr, (void *)(uintptr_t)load_addr, phdr.p_vaddr, phdr.p_memsz, slide)) {
if (elf64_apply_relocations(elf, &hdr, (void *)(uintptr_t)load_addr, phdr.p_vaddr, phdr.p_memsz, slide)) {
panic(true, "elf: Failed to apply relocations");
}
if (use_paddr) {
if (!entry_adjusted && entry >= phdr.p_vaddr && entry < (phdr.p_vaddr + phdr.p_memsz)) {
entry -= phdr.p_vaddr;
entry += phdr.p_paddr;
entry_adjusted = true;
}
}
}
if (simulation) {
@ -769,13 +687,13 @@ final:
*_slide = slide;
if (ranges_count != NULL && ranges != NULL) {
elf64_get_ranges(elf, slide, use_paddr, ranges, ranges_count);
elf64_get_ranges(elf, slide, ranges, ranges_count);
}
return 0;
}
int elf32_load(uint8_t *elf, uint32_t *entry_point, uint32_t *top, uint32_t alloc_type, uint64_t *_slide, struct elf_range **ranges, uint64_t *ranges_count) {
int elf32_load(uint8_t *elf, uint32_t *entry_point, uint32_t *top, uint32_t alloc_type) {
struct elf32_hdr hdr;
memcpy(&hdr, elf + (0), sizeof(struct elf32_hdr));
@ -794,15 +712,9 @@ int elf32_load(uint8_t *elf, uint32_t *entry_point, uint32_t *top, uint32_t allo
return -1;
}
uint64_t slide = 0;
bool simulation = true;
size_t try_count = 0;
size_t max_simulated_tries = 0x100000;
uint32_t entry = hdr.entry;
bool entry_adjusted = false;
again:
if (top)
*top = 0;
@ -823,33 +735,21 @@ again:
panic(true, "elf: p_filesz > p_memsz");
}
uint64_t load_addr = phdr.p_paddr + slide;
if (top) {
uint32_t this_top = load_addr + phdr.p_memsz;
uint32_t this_top = phdr.p_paddr + phdr.p_memsz;
if (this_top > *top) {
*top = this_top;
}
}
if (!memmap_alloc_range((size_t)load_addr, (size_t)phdr.p_memsz, alloc_type, true, false, simulation, false)) {
if (simulation == false || ++try_count == max_simulated_tries) {
panic(true, "elf: Failed to allocate necessary memory range (%X-%X)", load_addr, load_addr + phdr.p_memsz);
}
slide += 0x1000;
goto again;
}
memmap_alloc_range((size_t)phdr.p_paddr, (size_t)phdr.p_memsz, alloc_type, true, true, false, false);
if (simulation) {
continue;
}
memcpy((void *)(uintptr_t)load_addr, elf + (phdr.p_offset), phdr.p_filesz);
memcpy((void *)(uintptr_t)phdr.p_paddr, elf + (phdr.p_offset), phdr.p_filesz);
size_t to_zero = (size_t)(phdr.p_memsz - phdr.p_filesz);
if (to_zero) {
void *ptr = (void *)(uintptr_t)(load_addr + phdr.p_filesz);
void *ptr = (void *)(uintptr_t)(phdr.p_paddr + phdr.p_filesz);
memset(ptr, 0, to_zero);
}
@ -860,18 +760,7 @@ again:
}
}
if (simulation) {
simulation = false;
goto again;
}
*entry_point = entry + slide;
if (_slide)
*_slide = slide;
if (ranges_count != NULL && ranges != NULL) {
elf32_get_ranges(elf, slide, ranges, ranges_count);
}
*entry_point = entry;
return 0;
}

View File

@ -26,11 +26,11 @@ struct elf_section_hdr_info {
int elf_bits(uint8_t *elf);
int elf64_load(uint8_t *elf, uint64_t *entry_point, uint64_t *top, uint64_t *_slide, uint32_t alloc_type, bool kaslr, bool use_paddr, struct elf_range **ranges, uint64_t *ranges_count, bool fully_virtual, uint64_t *physical_base, uint64_t *virtual_base, uint64_t *image_size, bool *is_reloc);
int elf64_load(uint8_t *elf, uint64_t *entry_point, uint64_t *top, uint64_t *_slide, uint32_t alloc_type, bool kaslr, struct elf_range **ranges, uint64_t *ranges_count, bool fully_virtual, uint64_t *physical_base, uint64_t *virtual_base, uint64_t *image_size, bool *is_reloc);
int elf64_load_section(uint8_t *elf, void *buffer, const char *name, size_t limit, uint64_t slide);
struct elf_section_hdr_info* elf64_section_hdr_info(uint8_t *elf);
int elf32_load(uint8_t *elf, uint32_t *entry_point, uint32_t *top, uint32_t alloc_type, uint64_t *_slide, struct elf_range **ranges, uint64_t *ranges_count);
int elf32_load(uint8_t *elf, uint32_t *entry_point, uint32_t *top, uint32_t alloc_type);
int elf32_load_section(uint8_t *elf, void *buffer, const char *name, size_t limit);
struct elf_section_hdr_info* elf32_section_hdr_info(uint8_t *elf);