mirror of
https://github.com/KolibriOS/kolibrios.git
synced 2024-12-17 20:32:35 +03:00
241079c114
git-svn-id: svn://kolibrios.org@4547 a494cfbc-eb01-0410-851d-a64ba20cac60
862 lines
31 KiB
PHP
862 lines
31 KiB
PHP
; Implementation of periodic transaction scheduler for USB.
|
|
; Bandwidth dedicated to periodic transactions is limited, so
|
|
; different pipes should be scheduled as uniformly as possible.
|
|
|
|
; USB2 scheduler.
|
|
; There are two parts: high-speed pipes and split-transaction pipes.
|
|
;
|
|
; High-speed scheduler uses the same algorithm as USB1 scheduler:
|
|
; when adding a pipe, optimize the following quantity:
|
|
; * for every microframe, take all bandwidth scheduled to periodic transfers,
|
|
; * calculate maximum over all microframes,
|
|
; * select a variant which minimizes that maximum;
|
|
; * if there are several such variants,
|
|
; prefer those that are closer to end of frame
|
|
; to minimize collisions with split transactions;
|
|
; when removing a pipe, do nothing (except for bookkeeping).
|
|
; in: esi -> usb_controller
|
|
; out: edx -> usb_static_ep, eax = S-Mask
|
|
proc ehci_select_hs_interrupt_list
|
|
; inherit some variables from usb_open_pipe
|
|
virtual at ebp-12
|
|
.targetsmask dd ?
|
|
.bandwidth dd ?
|
|
.target dd ?
|
|
dd ?
|
|
dd ?
|
|
.config_pipe dd ?
|
|
.endpoint dd ?
|
|
.maxpacket dd ?
|
|
.type dd ?
|
|
.interval dd ?
|
|
end virtual
|
|
; prolog, initialize local vars
|
|
or [.bandwidth], -1
|
|
or [.target], -1
|
|
or [.targetsmask], -1
|
|
push ebx edi ; save used registers to be stdcall
|
|
; 1. In EHCI, every list describes one millisecond = 8 microframes.
|
|
; Thus, there are two significantly different branches:
|
|
; for pipes with interval >= 8 microframes, advance to 2,
|
|
; for pipes which should be planned in every frame (one or more microframes),
|
|
; go to 9.
|
|
; Note: the actual interval for high-speed devices is 2^([.interval]-1),
|
|
; (the core specification forbids [.interval] == 0)
|
|
mov ecx, [.interval]
|
|
dec ecx
|
|
cmp ecx, 3
|
|
jb .every_frame
|
|
; 2. Determine the actual interval in milliseconds.
|
|
sub ecx, 3
|
|
cmp ecx, 5 ; maximum 32ms
|
|
jbe @f
|
|
movi ecx, 5
|
|
@@:
|
|
; There are four nested loops,
|
|
; * Loop #4 (the innermost one) calculates the total periodic bandwidth
|
|
; scheduled in the given microframe of the given millisecond.
|
|
; * Loop #3 calculates the maximum over all milliseconds
|
|
; in the given variant, that is the quantity we're trying to minimize.
|
|
; * Loops #1 and #2 check all variants;
|
|
; loop #1 is responsible for the target millisecond,
|
|
; loop #2 is responsible for the microframe within millisecond.
|
|
; 3. Prepare for loops.
|
|
; ebx = number of iterations of loop #1
|
|
; [esp] = delta of counter for loop #3, in bytes
|
|
; [esp+4] = delta between the first group and the target group, in bytes
|
|
movi ebx, 1
|
|
movi edx, sizeof.ehci_static_ep
|
|
shl ebx, cl
|
|
shl edx, cl
|
|
mov eax, 64*sizeof.ehci_static_ep
|
|
sub eax, edx
|
|
sub eax, edx
|
|
push eax
|
|
push edx
|
|
; 4. Select the best variant.
|
|
; 4a. Loop #1: initialize counter = pointer to ehci_static_ep for
|
|
; the target millisecond in the first group.
|
|
lea edx, [esi+ehci_controller.IntEDs-sizeof.ehci_controller]
|
|
.varloop0:
|
|
; 4b. Loop #2: initialize counter = microframe within the target millisecond.
|
|
xor ecx, ecx
|
|
.varloop:
|
|
; 4c. Loop #3: save counter of loop #1,
|
|
; initialize counter with the value of loop #1 counter,
|
|
; initialize maximal bandwidth = zero.
|
|
xor edi, edi
|
|
push edx
|
|
virtual at esp
|
|
.saved_counter1 dd ? ; step 4c
|
|
.loop3_delta dd ? ; step 3
|
|
.target_delta dd ? ; step 3
|
|
end virtual
|
|
.calc_max_bandwidth:
|
|
; 4d. Loop #4: initialize counter with the value of loop #3 counter,
|
|
; initialize total bandwidth = zero.
|
|
xor eax, eax
|
|
push edx
|
|
.calc_bandwidth:
|
|
; 4e. Loop #4: add the bandwidth from the current list
|
|
; and advance to the next list, while there is one.
|
|
add ax, [edx+ehci_static_ep.Bandwidths+ecx*2]
|
|
mov edx, [edx+ehci_static_ep.NextList]
|
|
test edx, edx
|
|
jnz .calc_bandwidth
|
|
; 4f. Loop #4 end: restore counter of loop #3.
|
|
pop edx
|
|
; 4g. Loop #3: update maximal bandwidth.
|
|
cmp eax, edi
|
|
jb @f
|
|
mov edi, eax
|
|
@@:
|
|
; 4h. Loop #3: advance the counter and repeat while within the first group.
|
|
lea eax, [esi+ehci_controller.IntEDs+32*sizeof.ehci_static_ep-sizeof.ehci_controller]
|
|
add edx, [.loop3_delta]
|
|
cmp edx, eax
|
|
jb .calc_max_bandwidth
|
|
; 4i. Loop #3 end: restore counter of loop #1.
|
|
pop edx
|
|
; 4j. Loop #2: if the current variant is better (maybe not strictly)
|
|
; then the previous optimum, update the optimal bandwidth and the target.
|
|
cmp edi, [.bandwidth]
|
|
ja @f
|
|
jb .update
|
|
cmp ecx, [.targetsmask]
|
|
jb @f
|
|
.update:
|
|
mov [.bandwidth], edi
|
|
mov [.target], edx
|
|
mov [.targetsmask], ecx
|
|
@@:
|
|
; 4k. Loop #2: continue 8 times for every microframe.
|
|
inc ecx
|
|
cmp ecx, 8
|
|
jb .varloop
|
|
; 4l. Loop #1: advance counter and repeat ebx times,
|
|
; ebx was calculated in step 3.
|
|
add edx, sizeof.ehci_static_ep
|
|
dec ebx
|
|
jnz .varloop0
|
|
; 5. Calculate bandwidth for the new pipe.
|
|
mov eax, [.maxpacket]
|
|
call calc_hs_bandwidth
|
|
mov ecx, [.maxpacket]
|
|
shr ecx, 11
|
|
inc ecx
|
|
and ecx, 3
|
|
imul eax, ecx
|
|
; 6. Get the pointer to the best list.
|
|
pop edx ; restore value from step 3
|
|
pop edx ; get delta calculated in step 3
|
|
add edx, [.target]
|
|
; 7. Check that bandwidth for the new pipe plus old bandwidth
|
|
; still fits to maximum allowed by the core specification
|
|
; current [.bandwidth] + new bandwidth <= limit;
|
|
; USB2 specification allows maximum 60000*80% bit times for periodic microframe
|
|
mov ecx, [.bandwidth]
|
|
add ecx, eax
|
|
cmp ecx, 48000
|
|
ja .no_bandwidth
|
|
; 8. Convert {o|u}hci_static_ep to usb_static_ep, update bandwidth and return.
|
|
mov ecx, [.targetsmask]
|
|
add [edx+ehci_static_ep.Bandwidths+ecx*2], ax
|
|
add edx, ehci_static_ep.SoftwarePart
|
|
movi eax, 1
|
|
shl eax, cl
|
|
pop edi ebx ; restore used registers to be stdcall
|
|
ret
|
|
.no_bandwidth:
|
|
dbgstr 'Periodic bandwidth limit reached'
|
|
xor eax, eax
|
|
xor edx, edx
|
|
pop edi ebx
|
|
ret
|
|
.every_frame:
|
|
; The pipe should be scheduled every frame in two or more microframes.
|
|
; 9. Calculate maximal bandwidth for every microframe: three nested loops.
|
|
; 9a. The outermost loop: ebx = microframe to calculate.
|
|
xor ebx, ebx
|
|
.calc_all_bandwidths:
|
|
; 9b. The intermediate loop:
|
|
; edx = pointer to ehci_static_ep in the first group, [esp] = counter,
|
|
; edi = maximal bandwidth
|
|
lea edx, [esi+ehci_controller.IntEDs-sizeof.ehci_controller]
|
|
xor edi, edi
|
|
push 32
|
|
.calc_max_bandwidth2:
|
|
; 9c. The innermost loop: calculate bandwidth for the given microframe
|
|
; in the given frame.
|
|
xor eax, eax
|
|
push edx
|
|
.calc_bandwidth2:
|
|
add ax, [edx+ehci_static_ep.Bandwidths+ebx*2]
|
|
mov edx, [edx+ehci_static_ep.NextList]
|
|
test edx, edx
|
|
jnz .calc_bandwidth2
|
|
pop edx
|
|
; 9d. The intermediate loop continued: update maximal bandwidth.
|
|
cmp eax, edi
|
|
jb @f
|
|
mov edi, eax
|
|
@@:
|
|
add edx, sizeof.ehci_static_ep
|
|
dec dword [esp]
|
|
jnz .calc_max_bandwidth2
|
|
pop eax
|
|
; 9e. Push the calculated maximal bandwidth and continue the outermost loop.
|
|
push edi
|
|
inc ebx
|
|
cmp ebx, 8
|
|
jb .calc_all_bandwidths
|
|
virtual at esp
|
|
.bandwidth7 dd ?
|
|
.bandwidth6 dd ?
|
|
.bandwidth5 dd ?
|
|
.bandwidth4 dd ?
|
|
.bandwidth3 dd ?
|
|
.bandwidth2 dd ?
|
|
.bandwidth1 dd ?
|
|
.bandwidth0 dd ?
|
|
end virtual
|
|
; 10. Select the best variant.
|
|
; edx = S-Mask = bitmask of scheduled microframes
|
|
movi edx, 0x11
|
|
cmp ecx, 1
|
|
ja @f
|
|
mov dl, 0x55
|
|
jz @f
|
|
mov dl, 0xFF
|
|
@@:
|
|
; try all variants edx, edx shl 1, edx shl 2, ...
|
|
; while they fit in the lower byte (8 microframes per frame)
|
|
.select_best_mframe:
|
|
xor edi, edi
|
|
mov ecx, edx
|
|
mov eax, esp
|
|
.calc_mframe:
|
|
add cl, cl
|
|
jnc @f
|
|
cmp edi, [eax]
|
|
jae @f
|
|
mov edi, [eax]
|
|
@@:
|
|
add eax, 4
|
|
test cl, cl
|
|
jnz .calc_mframe
|
|
cmp [.bandwidth], edi
|
|
jb @f
|
|
mov [.bandwidth], edi
|
|
mov [.targetsmask], edx
|
|
@@:
|
|
add dl, dl
|
|
jnc .select_best_mframe
|
|
; 11. Restore stack after step 9.
|
|
add esp, 8*4
|
|
; 12. Get the pointer to the target list (responsible for every microframe).
|
|
lea edx, [esi+ehci_controller.IntEDs.SoftwarePart+62*sizeof.ehci_static_ep-sizeof.ehci_controller]
|
|
; 13. Calculate bandwidth on the bus.
|
|
mov eax, [.maxpacket]
|
|
call calc_hs_bandwidth
|
|
mov ecx, [.maxpacket]
|
|
shr ecx, 11
|
|
inc ecx
|
|
and ecx, 3
|
|
imul eax, ecx
|
|
; 14. Check that current [.bandwidth] + new bandwidth <= limit;
|
|
; USB2 specification allows maximum 60000*80% bit times for periodic microframe.
|
|
mov ecx, [.bandwidth]
|
|
add ecx, eax
|
|
cmp ecx, 48000
|
|
ja .no_bandwidth
|
|
; 15. Update bandwidths including the new pipe.
|
|
mov ecx, [.targetsmask]
|
|
lea edi, [edx+ehci_static_ep.Bandwidths-ehci_static_ep.SoftwarePart]
|
|
.update_bandwidths:
|
|
shr ecx, 1
|
|
jnc @f
|
|
add [edi], ax
|
|
@@:
|
|
add edi, 2
|
|
test ecx, ecx
|
|
jnz .update_bandwidths
|
|
; 16. Return target list and target S-Mask.
|
|
mov eax, [.targetsmask]
|
|
pop edi ebx ; restore used registers to be stdcall
|
|
ret
|
|
endp
|
|
|
|
; Pipe is removing, update the corresponding lists.
|
|
; We do not reorder anything, so just update book-keeping variable
|
|
; in the list header.
|
|
proc ehci_hs_interrupt_list_unlink
|
|
movzx eax, word [ebx+ehci_pipe.Token-sizeof.ehci_pipe+2]
|
|
; calculate bandwidth
|
|
call calc_hs_bandwidth
|
|
mov ecx, [ebx+ehci_pipe.Flags-sizeof.ehci_pipe]
|
|
shr ecx, 30
|
|
imul eax, ecx
|
|
movzx ecx, byte [ebx+ehci_pipe.Flags-sizeof.ehci_pipe]
|
|
; get target list
|
|
mov edx, [ebx+usb_pipe.BaseList]
|
|
; update bandwidth
|
|
.dec_bandwidth:
|
|
shr ecx, 1
|
|
jnc @f
|
|
sub word [edx+ehci_static_ep.Bandwidths - ehci_static_ep.SoftwarePart], ax
|
|
@@:
|
|
add edx, 2
|
|
test ecx, ecx
|
|
jnz .dec_bandwidth
|
|
; return
|
|
ret
|
|
endp
|
|
|
|
; Helper procedure for USB2 scheduler: calculate bandwidth on the bus.
|
|
; in: low 11 bits of eax = payload size in bytes
|
|
; out: eax = maximal bandwidth in HS-bits
|
|
proc calc_hs_bandwidth
|
|
and eax, (1 shl 11) - 1 ; get payload for one transaction
|
|
add eax, 3 ; add 3 bytes for other fields in data packet, PID+CRC16
|
|
; Multiply by 8 for bytes -> bits and then by 7/6 to accomodate bit stuffing;
|
|
; total 28/3 = 9+1/3
|
|
mov edx, 55555556h
|
|
lea ecx, [eax*9]
|
|
mul edx
|
|
; Add 989 extra bits: 68 bits for Token packet (32 for SYNC, 24 for token+address,
|
|
; 4 extra bits for possible bit stuffing in token+address, 8 for EOP),
|
|
; 736 bits for bus turn-around, 40 bits for SYNC+EOP in Data packet,
|
|
; 8 bits for inter-packet delay, 49 bits for Handshake packet,
|
|
; 88 bits for another inter-packet delay.
|
|
lea eax, [ecx+edx+989]
|
|
ret
|
|
endp
|
|
|
|
; Split-transaction scheduler (aka TT scheduler, TT stands for Transaction
|
|
; Translator, section 11.14 of the core spec) needs to schedule three event
|
|
; types on two buses: Start-Split and Complete-Split on HS bus and normal
|
|
; transaction on FS/LS bus.
|
|
; Assume that FS/LS bus is more restricted and more important to be scheduled
|
|
; uniformly, so select the variant which minimizes maximal used bandwidth
|
|
; on FS/LS bus and does not overflow HS bus.
|
|
; If there are several such variants, prefer variants which is closest to
|
|
; start of frame, and within the same microframe consider HS bandwidth
|
|
; utilization as a last criteria.
|
|
|
|
; The procedure ehci_select_tt_interrupt_list has been splitted into several
|
|
; macro, each representing a logical step of the procedure,
|
|
; to simplify understanding what is going on. Consider all the following macro
|
|
; as logical parts of one procedure, they are meaningless outside the context.
|
|
|
|
; Given a frame, calculate bandwidth occupied by already opened pipes
|
|
; in every microframe.
|
|
; Look for both HS and FS/LS buses: there are 16 words of information,
|
|
; 8 for HS bus, 8 for FS/LS bus, for every microframe.
|
|
; Since we count already opened pipes, the total bandwidth in every microframe
|
|
; is less than 60000 bits (and even 60000*80% bits), otherwise the scheduler
|
|
; would not allow to open those pipes.
|
|
; edi -> first list for the frame
|
|
macro tt_calc_bandwidth_in_frame
|
|
{
|
|
local .lists, .pipes, .pipes_done, .carry
|
|
; 1. Zero everything.
|
|
xor eax, eax
|
|
mov edx, edi
|
|
repeat 4
|
|
mov dword [.budget+(%-1)*4], eax
|
|
end repeat
|
|
repeat 4
|
|
mov dword [.hs_bandwidth+(%-1)*4], eax
|
|
end repeat
|
|
mov [.total_budget], ax
|
|
; Loop over all lists for the given frame.
|
|
.lists:
|
|
; 2. Total HS bandwidth for all pipes in one list is kept inside list header,
|
|
; add it. Note that overflow is impossible, so we may add entire dwords.
|
|
mov ebx, [edx+ehci_static_ep.SoftwarePart+usb_static_ep.NextVirt]
|
|
repeat 4
|
|
mov eax, dword [edx+ehci_static_ep.Bandwidths+(%-1)*4]
|
|
add dword [.hs_bandwidth+(%-1)*4], eax
|
|
end repeat
|
|
; Loop over all pipes in the given list.
|
|
add edx, ehci_static_ep.SoftwarePart
|
|
.pipes:
|
|
cmp ebx, edx
|
|
jz .pipes_done
|
|
; 3. For every pipe in every list for the given frame:
|
|
; 3a. Check whether the pipe resides on the same FS/LS bus as the new pipe.
|
|
; If not, skip this pipe.
|
|
mov eax, [ebx+usb_pipe.DeviceData]
|
|
mov eax, [eax+usb_device_data.TTHub]
|
|
cmp eax, [.tthub]
|
|
jnz @f
|
|
; 3b. Calculate FS/LS budget for the opened pipe.
|
|
; Note that eax = TTHub after 3a.
|
|
call tt_calc_budget
|
|
; 3c. Update total budget: add the value from 3b
|
|
; to the budget of the first microframe scheduled for this pipe.
|
|
bsf ecx, [ebx+ehci_pipe.Flags-sizeof.ehci_pipe]
|
|
add [.budget+ecx*2], ax
|
|
@@:
|
|
mov ebx, [ebx+usb_pipe.NextVirt]
|
|
jmp .pipes
|
|
.pipes_done:
|
|
mov edx, [edx+ehci_static_ep.NextList-ehci_static_ep.SoftwarePart]
|
|
test edx, edx
|
|
jnz .lists
|
|
; 4. If the budget for some microframe is exceeded, carry it to the following
|
|
; microframe(s). The actual size of one microframe is 187.5 raw bytes;
|
|
; the core spec says that 188 bytes should be scheduled in every microframe.
|
|
xor eax, eax
|
|
xor ecx, ecx
|
|
.carry:
|
|
xor edx, edx
|
|
add ax, [.budget+ecx*2]
|
|
cmp ax, 188
|
|
jbe @f
|
|
mov dx, ax
|
|
mov ax, 188
|
|
sub dx, ax
|
|
@@:
|
|
mov [.budget+ecx*2], ax
|
|
add [.total_budget], ax
|
|
mov ax, dx
|
|
inc ecx
|
|
cmp ecx, 8
|
|
jb .carry
|
|
}
|
|
|
|
; Checks whether the new pipe fits in the existing FS budget
|
|
; starting from the given microframe. If not, mark the microframe
|
|
; as impossible for scheduling.
|
|
; in: ecx = microframe
|
|
macro tt_exclude_microframe_if_no_budget
|
|
{
|
|
local .loop, .good, .bad
|
|
; 1. If the new budget plus the current budget does not exceed 188 bytes,
|
|
; the variant is possible.
|
|
mov ax, [.budget+ecx*2]
|
|
mov edx, ecx
|
|
add ax, [.new_budget]
|
|
sub ax, 188
|
|
jbe .good
|
|
; 2. Otherwise,
|
|
; a) nothing should be scheduled in some following microframes,
|
|
; b) after adding the new budget everything should fit in first 6 microframes,
|
|
; this guarantees that even in the worst case 90% limit is satisfied.
|
|
.loop:
|
|
cmp edx, 5
|
|
jae .bad
|
|
cmp [.budget+(edx+1)*2], 0
|
|
jnz .bad
|
|
inc edx
|
|
sub ax, 188
|
|
ja .loop
|
|
.bad:
|
|
btr [.possible_microframes], ecx
|
|
.good:
|
|
}
|
|
|
|
; Calculate data corresponding to the particular scheduling variant for the new pipe.
|
|
; Data describe the current scheduling state collected over all frames touched
|
|
; by the given variant: maximal HS bandwidth, maximal FS/LS budget,
|
|
; which microframes fit in the current FS/LS budget for all frames.
|
|
macro tt_calc_statistics_for_one_variant
|
|
{
|
|
local .frames, .microframes
|
|
; 1. Initialize: zero maximal bandwidth,
|
|
; first 6 microframes are possible for scheduling.
|
|
xor eax, eax
|
|
repeat 4
|
|
mov dword [.max_hs_bandwidth+(%-1)*4], eax
|
|
end repeat
|
|
mov [.max_fs_bandwidth], ax
|
|
mov [.possible_microframes], 0x3F
|
|
; Loop over all frames starting with [.variant] advancing by [.variant_delta].
|
|
mov edi, [.variant]
|
|
.frames:
|
|
; 2. Calculate statistics for one frame.
|
|
tt_calc_bandwidth_in_frame
|
|
; 3. Update maximal FS budget.
|
|
mov ax, [.total_budget]
|
|
cmp ax, [.max_fs_bandwidth]
|
|
jb @f
|
|
mov [.max_fs_bandwidth], ax
|
|
@@:
|
|
; 4. For every microframe, update maximal HS bandwidth
|
|
; and check whether the microframe is allowed for scheduling.
|
|
xor ecx, ecx
|
|
.microframes:
|
|
mov ax, [.hs_bandwidth+ecx*2]
|
|
cmp ax, [.max_hs_bandwidth+ecx*2]
|
|
jb @f
|
|
mov [.max_hs_bandwidth+ecx*2], ax
|
|
@@:
|
|
tt_exclude_microframe_if_no_budget
|
|
inc ecx
|
|
cmp ecx, 8
|
|
jb .microframes
|
|
; Stop loop when outside of first descriptor group.
|
|
lea eax, [esi+ehci_controller.IntEDs+32*sizeof.ehci_static_ep-sizeof.ehci_controller]
|
|
add edi, [.variant_delta]
|
|
cmp edi, eax
|
|
jb .frames
|
|
}
|
|
|
|
struct usb_split_info
|
|
microframe_mask dd ? ; lower byte is S-mask, second byte is C-mask
|
|
ssplit_bandwidth dd ?
|
|
csplit_bandwidth dd ?
|
|
ends
|
|
|
|
; Check whether the current variant and the current microframe are allowed
|
|
; for scheduling. If so, check whether they are better than the previously
|
|
; selected variant+microframe, if any. If so, update the previously selected
|
|
; variant+microframe to current ones.
|
|
; ecx = microframe, [.variant] = variant
|
|
macro tt_check_variant_microframe
|
|
{
|
|
local .nothing, .update, .ssplit, .csplit, .csplit_done
|
|
; 1. If the current microframe does not fit in existing FS budget, do nothing.
|
|
bt [.possible_microframes], ecx
|
|
jnc .nothing
|
|
; 2. Calculate maximal HS bandwidth over all affected microframes.
|
|
; 2a. Start-split phase: one or more microframes starting with ecx,
|
|
; coded in lower byte of .info.microframe_mask.
|
|
xor ebx, ebx
|
|
xor edx, edx
|
|
.ssplit:
|
|
lea eax, [ecx+edx]
|
|
movzx eax, [.max_hs_bandwidth+eax*2]
|
|
add eax, [.info.ssplit_bandwidth]
|
|
cmp ebx, eax
|
|
ja @f
|
|
mov ebx, eax
|
|
@@:
|
|
inc edx
|
|
bt [.info.microframe_mask], edx
|
|
jc .ssplit
|
|
; 2b. Complete-split phase: zero or more microframes starting with
|
|
; ecx+(last start-split microframe)+2,
|
|
; coded in second byte of .info.microframe_mask.
|
|
add edx, 8
|
|
.csplit:
|
|
inc edx
|
|
bt [.info.microframe_mask], edx
|
|
jnc .csplit_done
|
|
lea eax, [ecx+edx]
|
|
cmp eax, 8
|
|
jae .csplit_done
|
|
movzx eax, [.max_hs_bandwidth+(eax-8)*2]
|
|
add eax, [.info.csplit_bandwidth]
|
|
cmp ebx, eax
|
|
ja .csplit
|
|
mov ebx, eax
|
|
jmp .csplit
|
|
.csplit_done:
|
|
; 3. Check that current HS bandwidth + new bandwidth <= limit;
|
|
; USB2 specification allows maximum 60000*80% bit times for periodic microframe.
|
|
cmp ebx, 48000
|
|
ja .nothing
|
|
; 4. This variant is possible for scheduling.
|
|
; Check whether it is better than the currently selected one.
|
|
; 4a. The primary criteria: FS/LS bandwidth.
|
|
mov ax, [.max_fs_bandwidth]
|
|
cmp ax, [.best_fs_bandwidth]
|
|
ja .nothing
|
|
jb .update
|
|
; 4b. The secondary criteria: prefer microframes which are closer to start of frame.
|
|
cmp ecx, [.targetsmask]
|
|
ja .nothing
|
|
jb .update
|
|
; 4c. The last criteria: HS bandwidth.
|
|
cmp ebx, [.bandwidth]
|
|
ja .nothing
|
|
.update:
|
|
; 5. This variant is better than the previously selected.
|
|
; Update the best variant with current data.
|
|
mov [.best_fs_bandwidth], ax
|
|
mov [.bandwidth], ebx
|
|
mov [.targetsmask], ecx
|
|
mov eax, [.variant]
|
|
mov [.target], eax
|
|
.nothing:
|
|
}
|
|
|
|
; TT scheduler: add new pipe.
|
|
; in: esi -> usb_controller, edi -> usb_pipe
|
|
; out: edx -> usb_static_ep, eax = S-Mask
|
|
proc ehci_select_tt_interrupt_list
|
|
virtual at ebp-12-.local_vars_size
|
|
.local_vars_start:
|
|
.info usb_split_info
|
|
.new_budget dw ?
|
|
.total_budget dw ?
|
|
.possible_microframes dd ?
|
|
.tthub dd ?
|
|
.budget rw 8
|
|
.hs_bandwidth rw 8
|
|
.max_hs_bandwidth rw 8
|
|
.max_fs_bandwidth dw ?
|
|
.best_fs_bandwidth dw ?
|
|
.variant dd ?
|
|
.variant_delta dd ?
|
|
.target_delta dd ?
|
|
.local_vars_size = $ - .local_vars_start
|
|
if .local_vars_size > 24*4
|
|
err Modify stack frame size in
|
|
end if
|
|
|
|
.targetsmask dd ?
|
|
.bandwidth dd ?
|
|
.target dd ?
|
|
dd ?
|
|
dd ?
|
|
.config_pipe dd ?
|
|
.endpoint dd ?
|
|
.maxpacket dd ?
|
|
.type dd ?
|
|
.interval dd ?
|
|
end virtual
|
|
mov eax, [edi+ehci_pipe.Token-sizeof.ehci_pipe]
|
|
shr eax, 16
|
|
and eax, (1 shl 11) - 1
|
|
push ebx edi
|
|
; 1. Compute the real interval. FS/LS devices encode the interval as
|
|
; number of milliseconds. Use the maximal power of two that is not greater than
|
|
; the given interval and EHCI scheduling area = 32 frames.
|
|
cmp [.interval], 1
|
|
adc [.interval], 0
|
|
mov ecx, 64
|
|
mov eax, 64 * sizeof.ehci_static_ep
|
|
@@:
|
|
shr ecx, 1
|
|
cmp [.interval], ecx
|
|
jb @b
|
|
mov [.interval], ecx
|
|
; 2. Compute variables for further calculations.
|
|
; 2a. [.variant_delta] is delta between two lists from the first group
|
|
; that correspond to the same variant.
|
|
imul ecx, sizeof.ehci_static_ep
|
|
mov [.variant_delta], ecx
|
|
; 2b. [.target_delta] is delta between the final answer from the group
|
|
; corresponding to [.interval] and the item from the first group.
|
|
sub eax, ecx
|
|
sub eax, ecx
|
|
mov [.target_delta], eax
|
|
; 2c. [.variant] is the first list from the first group that corresponds
|
|
; to the current variant.
|
|
lea eax, [esi+ehci_controller.IntEDs-sizeof.ehci_controller]
|
|
mov [.variant], eax
|
|
; 2d. [.tthub] identifies TT hub for new pipe, [.new_budget] is FS budget
|
|
; for new pipe.
|
|
mov eax, [edi+usb_pipe.DeviceData]
|
|
mov eax, [eax+usb_device_data.TTHub]
|
|
mov ebx, edi
|
|
mov [.tthub], eax
|
|
call tt_calc_budget
|
|
mov [.new_budget], ax
|
|
; 2e. [.usb_split_info] describes bandwidth used by new pipe on HS bus.
|
|
lea edi, [.info]
|
|
call tt_fill_split_info
|
|
test eax, eax
|
|
jz .no_bandwidth
|
|
; 2f. There is no best variant yet, put maximal possible values,
|
|
; so any variant would be better than the "current".
|
|
or [.best_fs_bandwidth], -1
|
|
or [.target], -1
|
|
or [.bandwidth], -1
|
|
or [.targetsmask], -1
|
|
; 3. Loop over all variants, for every variant decide whether it is acceptable,
|
|
; select the best variant from all acceptable variants.
|
|
.check_variants:
|
|
tt_calc_statistics_for_one_variant
|
|
xor ecx, ecx
|
|
.check_microframes:
|
|
tt_check_variant_microframe
|
|
inc ecx
|
|
cmp ecx, 6
|
|
jb .check_microframes
|
|
add [.variant], sizeof.ehci_static_ep
|
|
dec [.interval]
|
|
jnz .check_variants
|
|
; 4. If there is no acceptable variants, return error.
|
|
mov ecx, [.targetsmask]
|
|
mov edx, [.target]
|
|
cmp ecx, -1
|
|
jz .no_bandwidth
|
|
; 5. Calculate the answer: edx -> selected list, eax = S-Mask and C-Mask.
|
|
mov eax, [.info.microframe_mask]
|
|
add edx, [.target_delta]
|
|
shl eax, cl
|
|
and eax, 0xFFFF
|
|
; 6. Update HS bandwidths in the selected list.
|
|
xor ecx, ecx
|
|
mov ebx, [.info.ssplit_bandwidth]
|
|
.update_ssplit:
|
|
bt eax, ecx
|
|
jnc @f
|
|
add [edx+ehci_static_ep.Bandwidths+ecx*2], bx
|
|
@@:
|
|
inc ecx
|
|
cmp ecx, 8
|
|
jb .update_ssplit
|
|
mov ebx, [.info.csplit_bandwidth]
|
|
.update_csplit:
|
|
bt eax, ecx
|
|
jnc @f
|
|
add [edx+ehci_static_ep.Bandwidths+(ecx-8)*2], bx
|
|
@@:
|
|
inc ecx
|
|
cmp ecx, 16
|
|
jb .update_csplit
|
|
; 7. Return.
|
|
add edx, ehci_static_ep.SoftwarePart
|
|
pop edi ebx
|
|
ret
|
|
.no_bandwidth:
|
|
dbgstr 'Periodic bandwidth limit reached'
|
|
xor eax, eax
|
|
xor edx, edx
|
|
pop edi ebx
|
|
ret
|
|
endp
|
|
|
|
; Pipe is removing, update the corresponding lists.
|
|
; We do not reorder anything, so just update book-keeping variable
|
|
; in the list header.
|
|
proc ehci_fs_interrupt_list_unlink
|
|
; calculate bandwidth
|
|
push edi
|
|
sub esp, sizeof.usb_split_info
|
|
mov edi, esp
|
|
call tt_fill_split_info
|
|
; get target list
|
|
mov edx, [ebx+usb_pipe.BaseList]
|
|
; update bandwidth for Start-Split
|
|
mov eax, [edi+usb_split_info.ssplit_bandwidth]
|
|
xor ecx, ecx
|
|
.dec_bandwidth_1:
|
|
bt [ebx+ehci_pipe.Flags-sizeof.ehci_pipe], ecx
|
|
jnc @f
|
|
sub word [edx+ecx*2+ehci_static_ep.Bandwidths - ehci_static_ep.SoftwarePart], ax
|
|
@@:
|
|
inc ecx
|
|
cmp ecx, 8
|
|
jb .dec_bandwidth_1
|
|
; update bandwidth for Complete-Split
|
|
mov eax, [edi+usb_split_info.csplit_bandwidth]
|
|
.dec_bandwidth_2:
|
|
bt [ebx+ehci_pipe.Flags-sizeof.ehci_pipe], ecx
|
|
jnc @f
|
|
sub word [edx+(ecx-8)*2+ehci_static_ep.Bandwidths - ehci_static_ep.SoftwarePart], ax
|
|
@@:
|
|
inc ecx
|
|
cmp ecx, 16
|
|
jb .dec_bandwidth_2
|
|
add esp, sizeof.usb_split_info
|
|
pop edi
|
|
ret
|
|
endp
|
|
|
|
; Helper procedure for ehci_select_tt_interrupt_list.
|
|
; Calculates "best-case budget" according to the core spec,
|
|
; that is, number of bytes (not bits) corresponding to "optimistic" transaction
|
|
; time, including inter-packet delays/bus turn-around time,
|
|
; but without bit stuffing and timers drift.
|
|
; One extra TT-specific delay is added: TT think time from the hub descriptor.
|
|
; Similar to calc_usb1_bandwidth with corresponding changes.
|
|
; eax -> usb_hub with TT, ebx -> usb_pipe
|
|
proc tt_calc_budget
|
|
invoke usbhc_api.usb_get_tt_think_time ; ecx = TT think time in FS-bytes
|
|
mov eax, [ebx+ehci_pipe.Token-sizeof.ehci_pipe]
|
|
shr eax, 16
|
|
and eax, (1 shl 11) - 1 ; get data length
|
|
bt [ebx+ehci_pipe.Token-sizeof.ehci_pipe], 12
|
|
jc .low_speed
|
|
; Full-speed interrupt IN/OUT:
|
|
; 33 bits for Token packet (8 for SYNC, 24 for token+address, 3 for EOP),
|
|
; 18 bits for bus turn-around, 11 bits for SYNC+EOP in Data packet,
|
|
; 2 bits for inter-packet delay, 19 bits for Handshake packet,
|
|
; 2 bits for another inter-packet delay. 85 bits total, pad to 11 bytes.
|
|
lea eax, [eax+11+ecx]
|
|
; 1 byte is minimal TT think time in addition to ecx.
|
|
ret
|
|
.low_speed:
|
|
; Low-speed interrupt IN/OUT:
|
|
; multiply by 8 for LS -> FS,
|
|
; add 85 bytes as in full-speed interrupt and extra 5 bytes for two PRE packets
|
|
; and two hub delays.
|
|
; 1 byte is minimal TT think time in addition to ecx.
|
|
lea eax, [eax*8+90+ecx]
|
|
ret
|
|
endp
|
|
|
|
; Helper procedure for TT scheduler.
|
|
; Calculates Start-Split/Complete-Split masks and HS bandwidths.
|
|
; ebx -> usb_pipe, edi -> usb_split_info
|
|
proc tt_fill_split_info
|
|
; Interrupt endpoints.
|
|
; The core spec says in 5.7.3 "Interrupt Transfer Packet Size Constraints" that:
|
|
; The maximum allowable interrupt data payload size is 64 bytes or less for full-speed.
|
|
; Low-speed devices are limited to eight bytes or less maximum data payload size.
|
|
; This is important for scheduling, it guarantees that in any case transaction fits
|
|
; in two microframes (usually one, two if transaction has started too late in the first
|
|
; microframe), so check it.
|
|
mov eax, [ebx+ehci_pipe.Token-sizeof.ehci_pipe]
|
|
mov ecx, 8
|
|
bt eax, 12
|
|
jc @f
|
|
mov ecx, 64
|
|
@@:
|
|
shr eax, 16
|
|
and eax, (1 shl 11) - 1 ; get data length
|
|
cmp eax, ecx
|
|
ja .error
|
|
add eax, 3 ; add 3 bytes for other fields in data packet, PID+CRC16
|
|
; Multiply by 8 for bytes -> bits and then by 7/6 to accomodate bit stuffing;
|
|
; total 28/3 = 9+1/3
|
|
mov edx, 55555556h
|
|
lea ecx, [eax*9]
|
|
mul edx
|
|
; One start-split, three complete-splits (unless the last is too far,
|
|
; but this is handled by the caller).
|
|
mov eax, [ebx+usb_pipe.LastTD]
|
|
mov [edi+usb_split_info.microframe_mask], 0x1C01
|
|
; Structure and HS bandwidth of packets depends on the direction.
|
|
bt [eax+ehci_gtd.Token-sizeof.ehci_gtd], 8
|
|
jc .interrupt_in
|
|
.interrupt_out:
|
|
; Start-Split phase:
|
|
; 77 bits for SPLIT packet (32 for SYNC, 8 for EOP, 32 for data, 5 for bit stuffing),
|
|
; 88 bits for inter-packet delay, 68 bits for Token packet,
|
|
; 88 bits for inter-packet delay, 40 bits for SYNC+EOP in Data packet,
|
|
; 88 bits for last inter-packet delay, total 449 bits.
|
|
lea eax, [edx+ecx+449]
|
|
mov [edi+usb_split_info.ssplit_bandwidth], eax
|
|
; Complete-Split phase:
|
|
; 77 bits for SPLIT packet,
|
|
; 88 bits for inter-packet delay, 68 bits for Token packet,
|
|
; 736 bits for bus turn-around, 49 bits for Handshake packet,
|
|
; 8 bits for inter-packet delay, total 1026 bits.
|
|
mov [edi+usb_split_info.csplit_bandwidth], 1026
|
|
ret
|
|
.interrupt_in:
|
|
; Start-Split phase:
|
|
; 77 bits for SPLIT packet, 88 bits for inter-packet delay,
|
|
; 68 bits for Token packet, 88 bits for another inter-packet delay,
|
|
; total 321 bits.
|
|
mov [edi+usb_split_info.ssplit_bandwidth], 321
|
|
; Complete-Split phase:
|
|
; 77 bits for SPLIT packet, 88 bits for inter-packet delay,
|
|
; 68 bits for Token packet, 736 bits for bus turn-around,
|
|
; 40 bits for SYNC+EOP in Data packet, 8 bits for inter-packet delay,
|
|
; total 1017 bits.
|
|
lea eax, [edx+ecx+1017]
|
|
mov [edi+usb_split_info.csplit_bandwidth], eax
|
|
ret
|
|
.error:
|
|
xor eax, eax
|
|
ret
|
|
endp
|