mirror of
https://github.com/KolibriOS/kolibrios.git
synced 2024-12-16 03:42:35 +03:00
846fce0120
git-svn-id: svn://kolibrios.org@4874 a494cfbc-eb01-0410-851d-a64ba20cac60
167 lines
5.1 KiB
C
167 lines
5.1 KiB
C
|
|
/* @(#)e_exp.c 5.1 93/09/24 */
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
/* __ieee754_exp(x)
|
|
* Returns the exponential of x.
|
|
*
|
|
* Method
|
|
* 1. Argument reduction:
|
|
* Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
|
|
* Given x, find r and integer k such that
|
|
*
|
|
* x = k*ln2 + r, |r| <= 0.5*ln2.
|
|
*
|
|
* Here r will be represented as r = hi-lo for better
|
|
* accuracy.
|
|
*
|
|
* 2. Approximation of exp(r) by a special rational function on
|
|
* the interval [0,0.34658]:
|
|
* Write
|
|
* R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
|
|
* We use a special Reme algorithm on [0,0.34658] to generate
|
|
* a polynomial of degree 5 to approximate R. The maximum error
|
|
* of this polynomial approximation is bounded by 2**-59. In
|
|
* other words,
|
|
* R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
|
|
* (where z=r*r, and the values of P1 to P5 are listed below)
|
|
* and
|
|
* | 5 | -59
|
|
* | 2.0+P1*z+...+P5*z - R(z) | <= 2
|
|
* | |
|
|
* The computation of exp(r) thus becomes
|
|
* 2*r
|
|
* exp(r) = 1 + -------
|
|
* R - r
|
|
* r*R1(r)
|
|
* = 1 + r + ----------- (for better accuracy)
|
|
* 2 - R1(r)
|
|
* where
|
|
* 2 4 10
|
|
* R1(r) = r - (P1*r + P2*r + ... + P5*r ).
|
|
*
|
|
* 3. Scale back to obtain exp(x):
|
|
* From step 1, we have
|
|
* exp(x) = 2^k * exp(r)
|
|
*
|
|
* Special cases:
|
|
* exp(INF) is INF, exp(NaN) is NaN;
|
|
* exp(-INF) is 0, and
|
|
* for finite argument, only exp(0)=1 is exact.
|
|
*
|
|
* Accuracy:
|
|
* according to an error analysis, the error is always less than
|
|
* 1 ulp (unit in the last place).
|
|
*
|
|
* Misc. info.
|
|
* For IEEE double
|
|
* if x > 7.09782712893383973096e+02 then exp(x) overflow
|
|
* if x < -7.45133219101941108420e+02 then exp(x) underflow
|
|
*
|
|
* Constants:
|
|
* The hexadecimal values are the intended ones for the following
|
|
* constants. The decimal values may be used, provided that the
|
|
* compiler will convert from decimal to binary accurately enough
|
|
* to produce the hexadecimal values shown.
|
|
*/
|
|
|
|
#include "fdlibm.h"
|
|
|
|
#ifndef _DOUBLE_IS_32BITS
|
|
|
|
#ifdef __STDC__
|
|
static const double
|
|
#else
|
|
static double
|
|
#endif
|
|
one = 1.0,
|
|
halF[2] = {0.5,-0.5,},
|
|
huge = 1.0e+300,
|
|
twom1000= 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/
|
|
o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
|
|
u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */
|
|
ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
|
|
-6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
|
|
ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
|
|
-1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
|
|
invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
|
|
P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
|
|
P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
|
|
P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
|
|
P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
|
|
P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
|
|
|
|
|
|
#ifdef __STDC__
|
|
double __ieee754_exp(double x) /* default IEEE double exp */
|
|
#else
|
|
double __ieee754_exp(x) /* default IEEE double exp */
|
|
double x;
|
|
#endif
|
|
{
|
|
double y,hi,lo,c,t;
|
|
__int32_t k = 0,xsb;
|
|
__uint32_t hx;
|
|
|
|
GET_HIGH_WORD(hx,x);
|
|
xsb = (hx>>31)&1; /* sign bit of x */
|
|
hx &= 0x7fffffff; /* high word of |x| */
|
|
|
|
/* filter out non-finite argument */
|
|
if(hx >= 0x40862E42) { /* if |x|>=709.78... */
|
|
if(hx>=0x7ff00000) {
|
|
__uint32_t lx;
|
|
GET_LOW_WORD(lx,x);
|
|
if(((hx&0xfffff)|lx)!=0)
|
|
return x+x; /* NaN */
|
|
else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */
|
|
}
|
|
if(x > o_threshold) return huge*huge; /* overflow */
|
|
if(x < u_threshold) return twom1000*twom1000; /* underflow */
|
|
}
|
|
|
|
/* argument reduction */
|
|
if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
|
|
if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
|
|
hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
|
|
} else {
|
|
k = invln2*x+halF[xsb];
|
|
t = k;
|
|
hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */
|
|
lo = t*ln2LO[0];
|
|
}
|
|
x = hi - lo;
|
|
}
|
|
else if(hx < 0x3e300000) { /* when |x|<2**-28 */
|
|
if(huge+x>one) return one+x;/* trigger inexact */
|
|
}
|
|
|
|
/* x is now in primary range */
|
|
t = x*x;
|
|
c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
|
|
if(k==0) return one-((x*c)/(c-2.0)-x);
|
|
else y = one-((lo-(x*c)/(2.0-c))-hi);
|
|
if(k >= -1021) {
|
|
__uint32_t hy;
|
|
GET_HIGH_WORD(hy,y);
|
|
SET_HIGH_WORD(y,hy+(k<<20)); /* add k to y's exponent */
|
|
return y;
|
|
} else {
|
|
__uint32_t hy;
|
|
GET_HIGH_WORD(hy,y);
|
|
SET_HIGH_WORD(y,hy+((k+1000)<<20)); /* add k to y's exponent */
|
|
return y*twom1000;
|
|
}
|
|
}
|
|
|
|
#endif /* defined(_DOUBLE_IS_32BITS) */
|