mirror of
https://github.com/KolibriOS/kolibrios.git
synced 2025-01-05 21:24:24 +03:00
9d5ad505ec
git-svn-id: svn://kolibrios.org@5134 a494cfbc-eb01-0410-851d-a64ba20cac60
1824 lines
61 KiB
C++
1824 lines
61 KiB
C++
// hashtable.h header -*- C++ -*-
|
|
|
|
// Copyright (C) 2007-2013 Free Software Foundation, Inc.
|
|
//
|
|
// This file is part of the GNU ISO C++ Library. This library is free
|
|
// software; you can redistribute it and/or modify it under the
|
|
// terms of the GNU General Public License as published by the
|
|
// Free Software Foundation; either version 3, or (at your option)
|
|
// any later version.
|
|
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
|
|
// Under Section 7 of GPL version 3, you are granted additional
|
|
// permissions described in the GCC Runtime Library Exception, version
|
|
// 3.1, as published by the Free Software Foundation.
|
|
|
|
// You should have received a copy of the GNU General Public License and
|
|
// a copy of the GCC Runtime Library Exception along with this program;
|
|
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
|
// <http://www.gnu.org/licenses/>.
|
|
|
|
/** @file bits/hashtable.h
|
|
* This is an internal header file, included by other library headers.
|
|
* Do not attempt to use it directly. @headername{unordered_map, unordered_set}
|
|
*/
|
|
|
|
#ifndef _HASHTABLE_H
|
|
#define _HASHTABLE_H 1
|
|
|
|
#pragma GCC system_header
|
|
|
|
#include <bits/hashtable_policy.h>
|
|
|
|
namespace std _GLIBCXX_VISIBILITY(default)
|
|
{
|
|
_GLIBCXX_BEGIN_NAMESPACE_VERSION
|
|
|
|
template<typename _Tp, typename _Hash>
|
|
using __cache_default
|
|
= __not_<__and_<// Do not cache for fast hasher.
|
|
__is_fast_hash<_Hash>,
|
|
// Mandatory to make local_iterator default
|
|
// constructible and assignable.
|
|
is_default_constructible<_Hash>,
|
|
is_copy_assignable<_Hash>,
|
|
// Mandatory to have erase not throwing.
|
|
__detail::__is_noexcept_hash<_Tp, _Hash>>>;
|
|
|
|
/**
|
|
* Primary class template _Hashtable.
|
|
*
|
|
* @ingroup hashtable-detail
|
|
*
|
|
* @tparam _Value CopyConstructible type.
|
|
*
|
|
* @tparam _Key CopyConstructible type.
|
|
*
|
|
* @tparam _Alloc An allocator type
|
|
* ([lib.allocator.requirements]) whose _Alloc::value_type is
|
|
* _Value. As a conforming extension, we allow for
|
|
* _Alloc::value_type != _Value.
|
|
*
|
|
* @tparam _ExtractKey Function object that takes an object of type
|
|
* _Value and returns a value of type _Key.
|
|
*
|
|
* @tparam _Equal Function object that takes two objects of type k
|
|
* and returns a bool-like value that is true if the two objects
|
|
* are considered equal.
|
|
*
|
|
* @tparam _H1 The hash function. A unary function object with
|
|
* argument type _Key and result type size_t. Return values should
|
|
* be distributed over the entire range [0, numeric_limits<size_t>:::max()].
|
|
*
|
|
* @tparam _H2 The range-hashing function (in the terminology of
|
|
* Tavori and Dreizin). A binary function object whose argument
|
|
* types and result type are all size_t. Given arguments r and N,
|
|
* the return value is in the range [0, N).
|
|
*
|
|
* @tparam _Hash The ranged hash function (Tavori and Dreizin). A
|
|
* binary function whose argument types are _Key and size_t and
|
|
* whose result type is size_t. Given arguments k and N, the
|
|
* return value is in the range [0, N). Default: hash(k, N) =
|
|
* h2(h1(k), N). If _Hash is anything other than the default, _H1
|
|
* and _H2 are ignored.
|
|
*
|
|
* @tparam _RehashPolicy Policy class with three members, all of
|
|
* which govern the bucket count. _M_next_bkt(n) returns a bucket
|
|
* count no smaller than n. _M_bkt_for_elements(n) returns a
|
|
* bucket count appropriate for an element count of n.
|
|
* _M_need_rehash(n_bkt, n_elt, n_ins) determines whether, if the
|
|
* current bucket count is n_bkt and the current element count is
|
|
* n_elt, we need to increase the bucket count. If so, returns
|
|
* make_pair(true, n), where n is the new bucket count. If not,
|
|
* returns make_pair(false, <anything>)
|
|
*
|
|
* @tparam _Traits Compile-time class with three boolean
|
|
* std::integral_constant members: __cache_hash_code, __constant_iterators,
|
|
* __unique_keys.
|
|
*
|
|
* Each _Hashtable data structure has:
|
|
*
|
|
* - _Bucket[] _M_buckets
|
|
* - _Hash_node_base _M_bbegin
|
|
* - size_type _M_bucket_count
|
|
* - size_type _M_element_count
|
|
*
|
|
* with _Bucket being _Hash_node* and _Hash_node containing:
|
|
*
|
|
* - _Hash_node* _M_next
|
|
* - Tp _M_value
|
|
* - size_t _M_hash_code if cache_hash_code is true
|
|
*
|
|
* In terms of Standard containers the hashtable is like the aggregation of:
|
|
*
|
|
* - std::forward_list<_Node> containing the elements
|
|
* - std::vector<std::forward_list<_Node>::iterator> representing the buckets
|
|
*
|
|
* The non-empty buckets contain the node before the first node in the
|
|
* bucket. This design makes it possible to implement something like a
|
|
* std::forward_list::insert_after on container insertion and
|
|
* std::forward_list::erase_after on container erase
|
|
* calls. _M_before_begin is equivalent to
|
|
* std::forward_list::before_begin. Empty buckets contain
|
|
* nullptr. Note that one of the non-empty buckets contains
|
|
* &_M_before_begin which is not a dereferenceable node so the
|
|
* node pointer in a bucket shall never be dereferenced, only its
|
|
* next node can be.
|
|
*
|
|
* Walking through a bucket's nodes requires a check on the hash code to
|
|
* see if each node is still in the bucket. Such a design assumes a
|
|
* quite efficient hash functor and is one of the reasons it is
|
|
* highly advisable to set __cache_hash_code to true.
|
|
*
|
|
* The container iterators are simply built from nodes. This way
|
|
* incrementing the iterator is perfectly efficient independent of
|
|
* how many empty buckets there are in the container.
|
|
*
|
|
* On insert we compute the element's hash code and use it to find the
|
|
* bucket index. If the element must be inserted in an empty bucket
|
|
* we add it at the beginning of the singly linked list and make the
|
|
* bucket point to _M_before_begin. The bucket that used to point to
|
|
* _M_before_begin, if any, is updated to point to its new before
|
|
* begin node.
|
|
*
|
|
* On erase, the simple iterator design requires using the hash
|
|
* functor to get the index of the bucket to update. For this
|
|
* reason, when __cache_hash_code is set to false the hash functor must
|
|
* not throw and this is enforced by a static assertion.
|
|
*
|
|
* Functionality is implemented by decomposition into base classes,
|
|
* where the derived _Hashtable class is used in _Map_base,
|
|
* _Insert, _Rehash_base, and _Equality base classes to access the
|
|
* "this" pointer. _Hashtable_base is used in the base classes as a
|
|
* non-recursive, fully-completed-type so that detailed nested type
|
|
* information, such as iterator type and node type, can be
|
|
* used. This is similar to the "Curiously Recurring Template
|
|
* Pattern" (CRTP) technique, but uses a reconstructed, not
|
|
* explicitly passed, template pattern.
|
|
*
|
|
* Base class templates are:
|
|
* - __detail::_Hashtable_base
|
|
* - __detail::_Map_base
|
|
* - __detail::_Insert
|
|
* - __detail::_Rehash_base
|
|
* - __detail::_Equality
|
|
*/
|
|
template<typename _Key, typename _Value, typename _Alloc,
|
|
typename _ExtractKey, typename _Equal,
|
|
typename _H1, typename _H2, typename _Hash,
|
|
typename _RehashPolicy, typename _Traits>
|
|
class _Hashtable
|
|
: public __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _Traits>,
|
|
public __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>,
|
|
public __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>,
|
|
public __detail::_Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>,
|
|
public __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>
|
|
{
|
|
public:
|
|
typedef _Key key_type;
|
|
typedef _Value value_type;
|
|
typedef _Alloc allocator_type;
|
|
typedef _Equal key_equal;
|
|
|
|
// mapped_type, if present, comes from _Map_base.
|
|
// hasher, if present, comes from _Hash_code_base/_Hashtable_base.
|
|
typedef typename _Alloc::pointer pointer;
|
|
typedef typename _Alloc::const_pointer const_pointer;
|
|
typedef typename _Alloc::reference reference;
|
|
typedef typename _Alloc::const_reference const_reference;
|
|
|
|
private:
|
|
using __rehash_type = _RehashPolicy;
|
|
using __rehash_state = typename __rehash_type::_State;
|
|
|
|
using __traits_type = _Traits;
|
|
using __hash_cached = typename __traits_type::__hash_cached;
|
|
using __constant_iterators = typename __traits_type::__constant_iterators;
|
|
using __unique_keys = typename __traits_type::__unique_keys;
|
|
|
|
using __key_extract = typename std::conditional<
|
|
__constant_iterators::value,
|
|
__detail::_Identity,
|
|
__detail::_Select1st>::type;
|
|
|
|
using __hashtable_base = __detail::
|
|
_Hashtable_base<_Key, _Value, _ExtractKey,
|
|
_Equal, _H1, _H2, _Hash, _Traits>;
|
|
|
|
using __hash_code_base = typename __hashtable_base::__hash_code_base;
|
|
using __hash_code = typename __hashtable_base::__hash_code;
|
|
using __node_type = typename __hashtable_base::__node_type;
|
|
using __node_base = typename __hashtable_base::__node_base;
|
|
using __bucket_type = typename __hashtable_base::__bucket_type;
|
|
using __ireturn_type = typename __hashtable_base::__ireturn_type;
|
|
using __iconv_type = typename __hashtable_base::__iconv_type;
|
|
|
|
using __map_base = __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey,
|
|
_Equal, _H1, _H2, _Hash,
|
|
_RehashPolicy, _Traits>;
|
|
|
|
using __rehash_base = __detail::_Rehash_base<_Key, _Value, _Alloc,
|
|
_ExtractKey, _Equal,
|
|
_H1, _H2, _Hash,
|
|
_RehashPolicy, _Traits>;
|
|
|
|
using __eq_base = __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey,
|
|
_Equal, _H1, _H2, _Hash,
|
|
_RehashPolicy, _Traits>;
|
|
|
|
// Metaprogramming for picking apart hash caching.
|
|
using __hash_noexcept = __detail::__is_noexcept_hash<_Key, _H1>;
|
|
|
|
template<typename _Cond>
|
|
using __if_hash_cached = __or_<__not_<__hash_cached>, _Cond>;
|
|
|
|
template<typename _Cond>
|
|
using __if_hash_not_cached = __or_<__hash_cached, _Cond>;
|
|
|
|
// Compile-time diagnostics.
|
|
|
|
// When hash codes are not cached the hash functor shall not
|
|
// throw because it is used in methods (erase, swap...) that
|
|
// shall not throw.
|
|
static_assert(__if_hash_not_cached<__hash_noexcept>::value,
|
|
"Cache the hash code"
|
|
" or qualify your hash functor with noexcept");
|
|
|
|
// Following two static assertions are necessary to guarantee
|
|
// that local_iterator will be default constructible.
|
|
|
|
// When hash codes are cached local iterator inherits from H2 functor
|
|
// which must then be default constructible.
|
|
static_assert(__if_hash_cached<is_default_constructible<_H2>>::value,
|
|
"Functor used to map hash code to bucket index"
|
|
" must be default constructible");
|
|
|
|
// When hash codes are not cached local iterator inherits from
|
|
// __hash_code_base above to compute node bucket index so it has to be
|
|
// default constructible.
|
|
static_assert(__if_hash_not_cached<
|
|
is_default_constructible<
|
|
// We use _Hashtable_ebo_helper to access the protected
|
|
// default constructor.
|
|
__detail::_Hashtable_ebo_helper<0, __hash_code_base>>>::value,
|
|
"Cache the hash code or make functors involved in hash code"
|
|
" and bucket index computation default constructible");
|
|
|
|
// When hash codes are not cached local iterator inherits from
|
|
// __hash_code_base above to compute node bucket index so it has to be
|
|
// assignable.
|
|
static_assert(__if_hash_not_cached<
|
|
is_copy_assignable<__hash_code_base>>::value,
|
|
"Cache the hash code or make functors involved in hash code"
|
|
" and bucket index computation copy assignable");
|
|
|
|
public:
|
|
template<typename _Keya, typename _Valuea, typename _Alloca,
|
|
typename _ExtractKeya, typename _Equala,
|
|
typename _H1a, typename _H2a, typename _Hasha,
|
|
typename _RehashPolicya, typename _Traitsa,
|
|
bool _Unique_keysa>
|
|
friend struct __detail::_Map_base;
|
|
|
|
template<typename _Keya, typename _Valuea, typename _Alloca,
|
|
typename _ExtractKeya, typename _Equala,
|
|
typename _H1a, typename _H2a, typename _Hasha,
|
|
typename _RehashPolicya, typename _Traitsa>
|
|
friend struct __detail::_Insert_base;
|
|
|
|
template<typename _Keya, typename _Valuea, typename _Alloca,
|
|
typename _ExtractKeya, typename _Equala,
|
|
typename _H1a, typename _H2a, typename _Hasha,
|
|
typename _RehashPolicya, typename _Traitsa,
|
|
bool _Constant_iteratorsa, bool _Unique_keysa>
|
|
friend struct __detail::_Insert;
|
|
|
|
using size_type = typename __hashtable_base::size_type;
|
|
using difference_type = typename __hashtable_base::difference_type;
|
|
|
|
using iterator = typename __hashtable_base::iterator;
|
|
using const_iterator = typename __hashtable_base::const_iterator;
|
|
|
|
using local_iterator = typename __hashtable_base::local_iterator;
|
|
using const_local_iterator = typename __hashtable_base::
|
|
const_local_iterator;
|
|
|
|
private:
|
|
typedef typename _Alloc::template rebind<__node_type>::other
|
|
_Node_allocator_type;
|
|
typedef typename _Alloc::template rebind<__bucket_type>::other
|
|
_Bucket_allocator_type;
|
|
|
|
using __before_begin = __detail::_Before_begin<_Node_allocator_type>;
|
|
|
|
__bucket_type* _M_buckets;
|
|
size_type _M_bucket_count;
|
|
__before_begin _M_bbegin;
|
|
size_type _M_element_count;
|
|
_RehashPolicy _M_rehash_policy;
|
|
|
|
_Node_allocator_type&
|
|
_M_node_allocator()
|
|
{ return _M_bbegin; }
|
|
|
|
const _Node_allocator_type&
|
|
_M_node_allocator() const
|
|
{ return _M_bbegin; }
|
|
|
|
__node_base&
|
|
_M_before_begin()
|
|
{ return _M_bbegin._M_node; }
|
|
|
|
const __node_base&
|
|
_M_before_begin() const
|
|
{ return _M_bbegin._M_node; }
|
|
|
|
template<typename... _Args>
|
|
__node_type*
|
|
_M_allocate_node(_Args&&... __args);
|
|
|
|
void
|
|
_M_deallocate_node(__node_type* __n);
|
|
|
|
// Deallocate the linked list of nodes pointed to by __n
|
|
void
|
|
_M_deallocate_nodes(__node_type* __n);
|
|
|
|
__bucket_type*
|
|
_M_allocate_buckets(size_type __n);
|
|
|
|
void
|
|
_M_deallocate_buckets(__bucket_type*, size_type __n);
|
|
|
|
// Gets bucket begin, deals with the fact that non-empty buckets contain
|
|
// their before begin node.
|
|
__node_type*
|
|
_M_bucket_begin(size_type __bkt) const;
|
|
|
|
__node_type*
|
|
_M_begin() const
|
|
{ return static_cast<__node_type*>(_M_before_begin()._M_nxt); }
|
|
|
|
public:
|
|
// Constructor, destructor, assignment, swap
|
|
_Hashtable(size_type __bucket_hint,
|
|
const _H1&, const _H2&, const _Hash&,
|
|
const _Equal&, const _ExtractKey&,
|
|
const allocator_type&);
|
|
|
|
template<typename _InputIterator>
|
|
_Hashtable(_InputIterator __first, _InputIterator __last,
|
|
size_type __bucket_hint,
|
|
const _H1&, const _H2&, const _Hash&,
|
|
const _Equal&, const _ExtractKey&,
|
|
const allocator_type&);
|
|
|
|
_Hashtable(const _Hashtable&);
|
|
|
|
_Hashtable(_Hashtable&&);
|
|
|
|
// Use delegating constructors.
|
|
explicit
|
|
_Hashtable(size_type __n = 10,
|
|
const _H1& __hf = _H1(),
|
|
const key_equal& __eql = key_equal(),
|
|
const allocator_type& __a = allocator_type())
|
|
: _Hashtable(__n, __hf, __detail::_Mod_range_hashing(),
|
|
__detail::_Default_ranged_hash(), __eql,
|
|
__key_extract(), __a)
|
|
{ }
|
|
|
|
template<typename _InputIterator>
|
|
_Hashtable(_InputIterator __f, _InputIterator __l,
|
|
size_type __n = 0,
|
|
const _H1& __hf = _H1(),
|
|
const key_equal& __eql = key_equal(),
|
|
const allocator_type& __a = allocator_type())
|
|
: _Hashtable(__f, __l, __n, __hf, __detail::_Mod_range_hashing(),
|
|
__detail::_Default_ranged_hash(), __eql,
|
|
__key_extract(), __a)
|
|
{ }
|
|
|
|
_Hashtable(initializer_list<value_type> __l,
|
|
size_type __n = 0,
|
|
const _H1& __hf = _H1(),
|
|
const key_equal& __eql = key_equal(),
|
|
const allocator_type& __a = allocator_type())
|
|
: _Hashtable(__l.begin(), __l.end(), __n, __hf,
|
|
__detail::_Mod_range_hashing(),
|
|
__detail::_Default_ranged_hash(), __eql,
|
|
__key_extract(), __a)
|
|
{ }
|
|
|
|
_Hashtable&
|
|
operator=(const _Hashtable& __ht)
|
|
{
|
|
_Hashtable __tmp(__ht);
|
|
this->swap(__tmp);
|
|
return *this;
|
|
}
|
|
|
|
_Hashtable&
|
|
operator=(_Hashtable&& __ht)
|
|
{
|
|
// NB: DR 1204.
|
|
// NB: DR 675.
|
|
this->clear();
|
|
this->swap(__ht);
|
|
return *this;
|
|
}
|
|
|
|
_Hashtable&
|
|
operator=(initializer_list<value_type> __l)
|
|
{
|
|
this->clear();
|
|
this->insert(__l.begin(), __l.end());
|
|
return *this;
|
|
}
|
|
|
|
~_Hashtable() noexcept;
|
|
|
|
void swap(_Hashtable&);
|
|
|
|
// Basic container operations
|
|
iterator
|
|
begin() noexcept
|
|
{ return iterator(_M_begin()); }
|
|
|
|
const_iterator
|
|
begin() const noexcept
|
|
{ return const_iterator(_M_begin()); }
|
|
|
|
iterator
|
|
end() noexcept
|
|
{ return iterator(nullptr); }
|
|
|
|
const_iterator
|
|
end() const noexcept
|
|
{ return const_iterator(nullptr); }
|
|
|
|
const_iterator
|
|
cbegin() const noexcept
|
|
{ return const_iterator(_M_begin()); }
|
|
|
|
const_iterator
|
|
cend() const noexcept
|
|
{ return const_iterator(nullptr); }
|
|
|
|
size_type
|
|
size() const noexcept
|
|
{ return _M_element_count; }
|
|
|
|
bool
|
|
empty() const noexcept
|
|
{ return size() == 0; }
|
|
|
|
allocator_type
|
|
get_allocator() const noexcept
|
|
{ return allocator_type(_M_node_allocator()); }
|
|
|
|
size_type
|
|
max_size() const noexcept
|
|
{ return _M_node_allocator().max_size(); }
|
|
|
|
// Observers
|
|
key_equal
|
|
key_eq() const
|
|
{ return this->_M_eq(); }
|
|
|
|
// hash_function, if present, comes from _Hash_code_base.
|
|
|
|
// Bucket operations
|
|
size_type
|
|
bucket_count() const noexcept
|
|
{ return _M_bucket_count; }
|
|
|
|
size_type
|
|
max_bucket_count() const noexcept
|
|
{ return max_size(); }
|
|
|
|
size_type
|
|
bucket_size(size_type __n) const
|
|
{ return std::distance(begin(__n), end(__n)); }
|
|
|
|
size_type
|
|
bucket(const key_type& __k) const
|
|
{ return _M_bucket_index(__k, this->_M_hash_code(__k)); }
|
|
|
|
local_iterator
|
|
begin(size_type __n)
|
|
{
|
|
return local_iterator(*this, _M_bucket_begin(__n),
|
|
__n, _M_bucket_count);
|
|
}
|
|
|
|
local_iterator
|
|
end(size_type __n)
|
|
{ return local_iterator(*this, nullptr, __n, _M_bucket_count); }
|
|
|
|
const_local_iterator
|
|
begin(size_type __n) const
|
|
{
|
|
return const_local_iterator(*this, _M_bucket_begin(__n),
|
|
__n, _M_bucket_count);
|
|
}
|
|
|
|
const_local_iterator
|
|
end(size_type __n) const
|
|
{ return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
|
|
|
|
// DR 691.
|
|
const_local_iterator
|
|
cbegin(size_type __n) const
|
|
{
|
|
return const_local_iterator(*this, _M_bucket_begin(__n),
|
|
__n, _M_bucket_count);
|
|
}
|
|
|
|
const_local_iterator
|
|
cend(size_type __n) const
|
|
{ return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
|
|
|
|
float
|
|
load_factor() const noexcept
|
|
{
|
|
return static_cast<float>(size()) / static_cast<float>(bucket_count());
|
|
}
|
|
|
|
// max_load_factor, if present, comes from _Rehash_base.
|
|
|
|
// Generalization of max_load_factor. Extension, not found in
|
|
// TR1. Only useful if _RehashPolicy is something other than
|
|
// the default.
|
|
const _RehashPolicy&
|
|
__rehash_policy() const
|
|
{ return _M_rehash_policy; }
|
|
|
|
void
|
|
__rehash_policy(const _RehashPolicy&);
|
|
|
|
// Lookup.
|
|
iterator
|
|
find(const key_type& __k);
|
|
|
|
const_iterator
|
|
find(const key_type& __k) const;
|
|
|
|
size_type
|
|
count(const key_type& __k) const;
|
|
|
|
std::pair<iterator, iterator>
|
|
equal_range(const key_type& __k);
|
|
|
|
std::pair<const_iterator, const_iterator>
|
|
equal_range(const key_type& __k) const;
|
|
|
|
protected:
|
|
// Bucket index computation helpers.
|
|
size_type
|
|
_M_bucket_index(__node_type* __n) const
|
|
{ return __hash_code_base::_M_bucket_index(__n, _M_bucket_count); }
|
|
|
|
size_type
|
|
_M_bucket_index(const key_type& __k, __hash_code __c) const
|
|
{ return __hash_code_base::_M_bucket_index(__k, __c, _M_bucket_count); }
|
|
|
|
// Find and insert helper functions and types
|
|
// Find the node before the one matching the criteria.
|
|
__node_base*
|
|
_M_find_before_node(size_type, const key_type&, __hash_code) const;
|
|
|
|
__node_type*
|
|
_M_find_node(size_type __bkt, const key_type& __key,
|
|
__hash_code __c) const
|
|
{
|
|
__node_base* __before_n = _M_find_before_node(__bkt, __key, __c);
|
|
if (__before_n)
|
|
return static_cast<__node_type*>(__before_n->_M_nxt);
|
|
return nullptr;
|
|
}
|
|
|
|
// Insert a node at the beginning of a bucket.
|
|
void
|
|
_M_insert_bucket_begin(size_type, __node_type*);
|
|
|
|
// Remove the bucket first node
|
|
void
|
|
_M_remove_bucket_begin(size_type __bkt, __node_type* __next_n,
|
|
size_type __next_bkt);
|
|
|
|
// Get the node before __n in the bucket __bkt
|
|
__node_base*
|
|
_M_get_previous_node(size_type __bkt, __node_base* __n);
|
|
|
|
// Insert node with hash code __code, in bucket bkt if no rehash (assumes
|
|
// no element with its key already present). Take ownership of the node,
|
|
// deallocate it on exception.
|
|
iterator
|
|
_M_insert_unique_node(size_type __bkt, __hash_code __code,
|
|
__node_type* __n);
|
|
|
|
// Insert node with hash code __code. Take ownership of the node,
|
|
// deallocate it on exception.
|
|
iterator
|
|
_M_insert_multi_node(__hash_code __code, __node_type* __n);
|
|
|
|
template<typename... _Args>
|
|
std::pair<iterator, bool>
|
|
_M_emplace(std::true_type, _Args&&... __args);
|
|
|
|
template<typename... _Args>
|
|
iterator
|
|
_M_emplace(std::false_type, _Args&&... __args);
|
|
|
|
template<typename _Arg>
|
|
std::pair<iterator, bool>
|
|
_M_insert(_Arg&&, std::true_type);
|
|
|
|
template<typename _Arg>
|
|
iterator
|
|
_M_insert(_Arg&&, std::false_type);
|
|
|
|
size_type
|
|
_M_erase(std::true_type, const key_type&);
|
|
|
|
size_type
|
|
_M_erase(std::false_type, const key_type&);
|
|
|
|
iterator
|
|
_M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n);
|
|
|
|
public:
|
|
// Emplace
|
|
template<typename... _Args>
|
|
__ireturn_type
|
|
emplace(_Args&&... __args)
|
|
{ return _M_emplace(__unique_keys(), std::forward<_Args>(__args)...); }
|
|
|
|
template<typename... _Args>
|
|
iterator
|
|
emplace_hint(const_iterator, _Args&&... __args)
|
|
{ return __iconv_type()(emplace(std::forward<_Args>(__args)...)); }
|
|
|
|
// Insert member functions via inheritance.
|
|
|
|
// Erase
|
|
iterator
|
|
erase(const_iterator);
|
|
|
|
// LWG 2059.
|
|
iterator
|
|
erase(iterator __it)
|
|
{ return erase(const_iterator(__it)); }
|
|
|
|
size_type
|
|
erase(const key_type& __k)
|
|
{ return _M_erase(__unique_keys(), __k); }
|
|
|
|
iterator
|
|
erase(const_iterator, const_iterator);
|
|
|
|
void
|
|
clear() noexcept;
|
|
|
|
// Set number of buckets to be appropriate for container of n element.
|
|
void rehash(size_type __n);
|
|
|
|
// DR 1189.
|
|
// reserve, if present, comes from _Rehash_base.
|
|
|
|
private:
|
|
// Helper rehash method used when keys are unique.
|
|
void _M_rehash_aux(size_type __n, std::true_type);
|
|
|
|
// Helper rehash method used when keys can be non-unique.
|
|
void _M_rehash_aux(size_type __n, std::false_type);
|
|
|
|
// Unconditionally change size of bucket array to n, restore
|
|
// hash policy state to __state on exception.
|
|
void _M_rehash(size_type __n, const __rehash_state& __state);
|
|
};
|
|
|
|
|
|
// Definitions of class template _Hashtable's out-of-line member functions.
|
|
template<typename _Key, typename _Value,
|
|
typename _Alloc, typename _ExtractKey, typename _Equal,
|
|
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
|
|
typename _Traits>
|
|
template<typename... _Args>
|
|
typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>::__node_type*
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>::
|
|
_M_allocate_node(_Args&&... __args)
|
|
{
|
|
__node_type* __n = _M_node_allocator().allocate(1);
|
|
__try
|
|
{
|
|
_M_node_allocator().construct(__n, std::forward<_Args>(__args)...);
|
|
return __n;
|
|
}
|
|
__catch(...)
|
|
{
|
|
_M_node_allocator().deallocate(__n, 1);
|
|
__throw_exception_again;
|
|
}
|
|
}
|
|
|
|
template<typename _Key, typename _Value,
|
|
typename _Alloc, typename _ExtractKey, typename _Equal,
|
|
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
|
|
typename _Traits>
|
|
void
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>::
|
|
_M_deallocate_node(__node_type* __n)
|
|
{
|
|
_M_node_allocator().destroy(__n);
|
|
_M_node_allocator().deallocate(__n, 1);
|
|
}
|
|
|
|
template<typename _Key, typename _Value,
|
|
typename _Alloc, typename _ExtractKey, typename _Equal,
|
|
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
|
|
typename _Traits>
|
|
void
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>::
|
|
_M_deallocate_nodes(__node_type* __n)
|
|
{
|
|
while (__n)
|
|
{
|
|
__node_type* __tmp = __n;
|
|
__n = __n->_M_next();
|
|
_M_deallocate_node(__tmp);
|
|
}
|
|
}
|
|
|
|
template<typename _Key, typename _Value,
|
|
typename _Alloc, typename _ExtractKey, typename _Equal,
|
|
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
|
|
typename _Traits>
|
|
typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>::__bucket_type*
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>::
|
|
_M_allocate_buckets(size_type __n)
|
|
{
|
|
_Bucket_allocator_type __alloc(_M_node_allocator());
|
|
|
|
__bucket_type* __p = __alloc.allocate(__n);
|
|
__builtin_memset(__p, 0, __n * sizeof(__bucket_type));
|
|
return __p;
|
|
}
|
|
|
|
template<typename _Key, typename _Value,
|
|
typename _Alloc, typename _ExtractKey, typename _Equal,
|
|
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
|
|
typename _Traits>
|
|
void
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>::
|
|
_M_deallocate_buckets(__bucket_type* __p, size_type __n)
|
|
{
|
|
_Bucket_allocator_type __alloc(_M_node_allocator());
|
|
__alloc.deallocate(__p, __n);
|
|
}
|
|
|
|
template<typename _Key, typename _Value,
|
|
typename _Alloc, typename _ExtractKey, typename _Equal,
|
|
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
|
|
typename _Traits>
|
|
typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
|
|
_Equal, _H1, _H2, _Hash, _RehashPolicy,
|
|
_Traits>::__node_type*
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>::
|
|
_M_bucket_begin(size_type __bkt) const
|
|
{
|
|
__node_base* __n = _M_buckets[__bkt];
|
|
return __n ? static_cast<__node_type*>(__n->_M_nxt) : nullptr;
|
|
}
|
|
|
|
template<typename _Key, typename _Value,
|
|
typename _Alloc, typename _ExtractKey, typename _Equal,
|
|
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
|
|
typename _Traits>
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>::
|
|
_Hashtable(size_type __bucket_hint,
|
|
const _H1& __h1, const _H2& __h2, const _Hash& __h,
|
|
const _Equal& __eq, const _ExtractKey& __exk,
|
|
const allocator_type& __a)
|
|
: __hashtable_base(__exk, __h1, __h2, __h, __eq),
|
|
__map_base(),
|
|
__rehash_base(),
|
|
_M_bucket_count(0),
|
|
_M_bbegin(__a),
|
|
_M_element_count(0),
|
|
_M_rehash_policy()
|
|
{
|
|
_M_bucket_count = _M_rehash_policy._M_next_bkt(__bucket_hint);
|
|
_M_buckets = _M_allocate_buckets(_M_bucket_count);
|
|
}
|
|
|
|
template<typename _Key, typename _Value,
|
|
typename _Alloc, typename _ExtractKey, typename _Equal,
|
|
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
|
|
typename _Traits>
|
|
template<typename _InputIterator>
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>::
|
|
_Hashtable(_InputIterator __f, _InputIterator __l,
|
|
size_type __bucket_hint,
|
|
const _H1& __h1, const _H2& __h2, const _Hash& __h,
|
|
const _Equal& __eq, const _ExtractKey& __exk,
|
|
const allocator_type& __a)
|
|
: __hashtable_base(__exk, __h1, __h2, __h, __eq),
|
|
__map_base(),
|
|
__rehash_base(),
|
|
_M_bucket_count(0),
|
|
_M_bbegin(__a),
|
|
_M_element_count(0),
|
|
_M_rehash_policy()
|
|
{
|
|
auto __nb_elems = __detail::__distance_fw(__f, __l);
|
|
_M_bucket_count =
|
|
_M_rehash_policy._M_next_bkt(
|
|
std::max(_M_rehash_policy._M_bkt_for_elements(__nb_elems),
|
|
__bucket_hint));
|
|
|
|
_M_buckets = _M_allocate_buckets(_M_bucket_count);
|
|
__try
|
|
{
|
|
for (; __f != __l; ++__f)
|
|
this->insert(*__f);
|
|
}
|
|
__catch(...)
|
|
{
|
|
clear();
|
|
_M_deallocate_buckets(_M_buckets, _M_bucket_count);
|
|
__throw_exception_again;
|
|
}
|
|
}
|
|
|
|
template<typename _Key, typename _Value,
|
|
typename _Alloc, typename _ExtractKey, typename _Equal,
|
|
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
|
|
typename _Traits>
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>::
|
|
_Hashtable(const _Hashtable& __ht)
|
|
: __hashtable_base(__ht),
|
|
__map_base(__ht),
|
|
__rehash_base(__ht),
|
|
_M_bucket_count(__ht._M_bucket_count),
|
|
_M_bbegin(__ht._M_bbegin),
|
|
_M_element_count(__ht._M_element_count),
|
|
_M_rehash_policy(__ht._M_rehash_policy)
|
|
{
|
|
_M_buckets = _M_allocate_buckets(_M_bucket_count);
|
|
__try
|
|
{
|
|
if (!__ht._M_before_begin()._M_nxt)
|
|
return;
|
|
|
|
// First deal with the special first node pointed to by
|
|
// _M_before_begin.
|
|
const __node_type* __ht_n = __ht._M_begin();
|
|
__node_type* __this_n = _M_allocate_node(__ht_n->_M_v);
|
|
this->_M_copy_code(__this_n, __ht_n);
|
|
_M_before_begin()._M_nxt = __this_n;
|
|
_M_buckets[_M_bucket_index(__this_n)] = &_M_before_begin();
|
|
|
|
// Then deal with other nodes.
|
|
__node_base* __prev_n = __this_n;
|
|
for (__ht_n = __ht_n->_M_next(); __ht_n; __ht_n = __ht_n->_M_next())
|
|
{
|
|
__this_n = _M_allocate_node(__ht_n->_M_v);
|
|
__prev_n->_M_nxt = __this_n;
|
|
this->_M_copy_code(__this_n, __ht_n);
|
|
size_type __bkt = _M_bucket_index(__this_n);
|
|
if (!_M_buckets[__bkt])
|
|
_M_buckets[__bkt] = __prev_n;
|
|
__prev_n = __this_n;
|
|
}
|
|
}
|
|
__catch(...)
|
|
{
|
|
clear();
|
|
_M_deallocate_buckets(_M_buckets, _M_bucket_count);
|
|
__throw_exception_again;
|
|
}
|
|
}
|
|
|
|
template<typename _Key, typename _Value,
|
|
typename _Alloc, typename _ExtractKey, typename _Equal,
|
|
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
|
|
typename _Traits>
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>::
|
|
_Hashtable(_Hashtable&& __ht)
|
|
: __hashtable_base(__ht),
|
|
__map_base(__ht),
|
|
__rehash_base(__ht),
|
|
_M_buckets(__ht._M_buckets),
|
|
_M_bucket_count(__ht._M_bucket_count),
|
|
_M_bbegin(std::move(__ht._M_bbegin)),
|
|
_M_element_count(__ht._M_element_count),
|
|
_M_rehash_policy(__ht._M_rehash_policy)
|
|
{
|
|
// Update, if necessary, bucket pointing to before begin that hasn't moved.
|
|
if (_M_begin())
|
|
_M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin();
|
|
__ht._M_rehash_policy = _RehashPolicy();
|
|
__ht._M_bucket_count = __ht._M_rehash_policy._M_next_bkt(0);
|
|
__ht._M_buckets = __ht._M_allocate_buckets(__ht._M_bucket_count);
|
|
__ht._M_before_begin()._M_nxt = nullptr;
|
|
__ht._M_element_count = 0;
|
|
}
|
|
|
|
template<typename _Key, typename _Value,
|
|
typename _Alloc, typename _ExtractKey, typename _Equal,
|
|
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
|
|
typename _Traits>
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>::
|
|
~_Hashtable() noexcept
|
|
{
|
|
clear();
|
|
_M_deallocate_buckets(_M_buckets, _M_bucket_count);
|
|
}
|
|
|
|
template<typename _Key, typename _Value,
|
|
typename _Alloc, typename _ExtractKey, typename _Equal,
|
|
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
|
|
typename _Traits>
|
|
void
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>::
|
|
swap(_Hashtable& __x)
|
|
{
|
|
// The only base class with member variables is hash_code_base.
|
|
// We define _Hash_code_base::_M_swap because different
|
|
// specializations have different members.
|
|
this->_M_swap(__x);
|
|
|
|
// _GLIBCXX_RESOLVE_LIB_DEFECTS
|
|
// 431. Swapping containers with unequal allocators.
|
|
std::__alloc_swap<_Node_allocator_type>::_S_do_it(_M_node_allocator(),
|
|
__x._M_node_allocator());
|
|
|
|
std::swap(_M_rehash_policy, __x._M_rehash_policy);
|
|
std::swap(_M_buckets, __x._M_buckets);
|
|
std::swap(_M_bucket_count, __x._M_bucket_count);
|
|
std::swap(_M_before_begin()._M_nxt, __x._M_before_begin()._M_nxt);
|
|
std::swap(_M_element_count, __x._M_element_count);
|
|
|
|
// Fix buckets containing the _M_before_begin pointers that
|
|
// can't be swapped.
|
|
if (_M_begin())
|
|
_M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin();
|
|
if (__x._M_begin())
|
|
__x._M_buckets[__x._M_bucket_index(__x._M_begin())]
|
|
= &(__x._M_before_begin());
|
|
}
|
|
|
|
template<typename _Key, typename _Value,
|
|
typename _Alloc, typename _ExtractKey, typename _Equal,
|
|
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
|
|
typename _Traits>
|
|
void
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>::
|
|
__rehash_policy(const _RehashPolicy& __pol)
|
|
{
|
|
size_type __n_bkt = __pol._M_bkt_for_elements(_M_element_count);
|
|
__n_bkt = __pol._M_next_bkt(__n_bkt);
|
|
if (__n_bkt != _M_bucket_count)
|
|
_M_rehash(__n_bkt, _M_rehash_policy._M_state());
|
|
_M_rehash_policy = __pol;
|
|
}
|
|
|
|
template<typename _Key, typename _Value,
|
|
typename _Alloc, typename _ExtractKey, typename _Equal,
|
|
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
|
|
typename _Traits>
|
|
typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy,
|
|
_Traits>::iterator
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>::
|
|
find(const key_type& __k)
|
|
{
|
|
__hash_code __code = this->_M_hash_code(__k);
|
|
std::size_t __n = _M_bucket_index(__k, __code);
|
|
__node_type* __p = _M_find_node(__n, __k, __code);
|
|
return __p ? iterator(__p) : this->end();
|
|
}
|
|
|
|
template<typename _Key, typename _Value,
|
|
typename _Alloc, typename _ExtractKey, typename _Equal,
|
|
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
|
|
typename _Traits>
|
|
typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy,
|
|
_Traits>::const_iterator
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>::
|
|
find(const key_type& __k) const
|
|
{
|
|
__hash_code __code = this->_M_hash_code(__k);
|
|
std::size_t __n = _M_bucket_index(__k, __code);
|
|
__node_type* __p = _M_find_node(__n, __k, __code);
|
|
return __p ? const_iterator(__p) : this->end();
|
|
}
|
|
|
|
template<typename _Key, typename _Value,
|
|
typename _Alloc, typename _ExtractKey, typename _Equal,
|
|
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
|
|
typename _Traits>
|
|
typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy,
|
|
_Traits>::size_type
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>::
|
|
count(const key_type& __k) const
|
|
{
|
|
__hash_code __code = this->_M_hash_code(__k);
|
|
std::size_t __n = _M_bucket_index(__k, __code);
|
|
__node_type* __p = _M_bucket_begin(__n);
|
|
if (!__p)
|
|
return 0;
|
|
|
|
std::size_t __result = 0;
|
|
for (;; __p = __p->_M_next())
|
|
{
|
|
if (this->_M_equals(__k, __code, __p))
|
|
++__result;
|
|
else if (__result)
|
|
// All equivalent values are next to each other, if we
|
|
// found a non-equivalent value after an equivalent one it
|
|
// means that we won't find any more equivalent values.
|
|
break;
|
|
if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
|
|
break;
|
|
}
|
|
return __result;
|
|
}
|
|
|
|
template<typename _Key, typename _Value,
|
|
typename _Alloc, typename _ExtractKey, typename _Equal,
|
|
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
|
|
typename _Traits>
|
|
std::pair<typename _Hashtable<_Key, _Value, _Alloc,
|
|
_ExtractKey, _Equal, _H1,
|
|
_H2, _Hash, _RehashPolicy,
|
|
_Traits>::iterator,
|
|
typename _Hashtable<_Key, _Value, _Alloc,
|
|
_ExtractKey, _Equal, _H1,
|
|
_H2, _Hash, _RehashPolicy,
|
|
_Traits>::iterator>
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>::
|
|
equal_range(const key_type& __k)
|
|
{
|
|
__hash_code __code = this->_M_hash_code(__k);
|
|
std::size_t __n = _M_bucket_index(__k, __code);
|
|
__node_type* __p = _M_find_node(__n, __k, __code);
|
|
|
|
if (__p)
|
|
{
|
|
__node_type* __p1 = __p->_M_next();
|
|
while (__p1 && _M_bucket_index(__p1) == __n
|
|
&& this->_M_equals(__k, __code, __p1))
|
|
__p1 = __p1->_M_next();
|
|
|
|
return std::make_pair(iterator(__p), iterator(__p1));
|
|
}
|
|
else
|
|
return std::make_pair(this->end(), this->end());
|
|
}
|
|
|
|
template<typename _Key, typename _Value,
|
|
typename _Alloc, typename _ExtractKey, typename _Equal,
|
|
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
|
|
typename _Traits>
|
|
std::pair<typename _Hashtable<_Key, _Value, _Alloc,
|
|
_ExtractKey, _Equal, _H1,
|
|
_H2, _Hash, _RehashPolicy,
|
|
_Traits>::const_iterator,
|
|
typename _Hashtable<_Key, _Value, _Alloc,
|
|
_ExtractKey, _Equal, _H1,
|
|
_H2, _Hash, _RehashPolicy,
|
|
_Traits>::const_iterator>
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>::
|
|
equal_range(const key_type& __k) const
|
|
{
|
|
__hash_code __code = this->_M_hash_code(__k);
|
|
std::size_t __n = _M_bucket_index(__k, __code);
|
|
__node_type* __p = _M_find_node(__n, __k, __code);
|
|
|
|
if (__p)
|
|
{
|
|
__node_type* __p1 = __p->_M_next();
|
|
while (__p1 && _M_bucket_index(__p1) == __n
|
|
&& this->_M_equals(__k, __code, __p1))
|
|
__p1 = __p1->_M_next();
|
|
|
|
return std::make_pair(const_iterator(__p), const_iterator(__p1));
|
|
}
|
|
else
|
|
return std::make_pair(this->end(), this->end());
|
|
}
|
|
|
|
// Find the node whose key compares equal to k in the bucket n.
|
|
// Return nullptr if no node is found.
|
|
template<typename _Key, typename _Value,
|
|
typename _Alloc, typename _ExtractKey, typename _Equal,
|
|
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
|
|
typename _Traits>
|
|
typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
|
|
_Equal, _H1, _H2, _Hash, _RehashPolicy,
|
|
_Traits>::__node_base*
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>::
|
|
_M_find_before_node(size_type __n, const key_type& __k,
|
|
__hash_code __code) const
|
|
{
|
|
__node_base* __prev_p = _M_buckets[__n];
|
|
if (!__prev_p)
|
|
return nullptr;
|
|
__node_type* __p = static_cast<__node_type*>(__prev_p->_M_nxt);
|
|
for (;; __p = __p->_M_next())
|
|
{
|
|
if (this->_M_equals(__k, __code, __p))
|
|
return __prev_p;
|
|
if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
|
|
break;
|
|
__prev_p = __p;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
template<typename _Key, typename _Value,
|
|
typename _Alloc, typename _ExtractKey, typename _Equal,
|
|
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
|
|
typename _Traits>
|
|
void
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>::
|
|
_M_insert_bucket_begin(size_type __bkt, __node_type* __node)
|
|
{
|
|
if (_M_buckets[__bkt])
|
|
{
|
|
// Bucket is not empty, we just need to insert the new node
|
|
// after the bucket before begin.
|
|
__node->_M_nxt = _M_buckets[__bkt]->_M_nxt;
|
|
_M_buckets[__bkt]->_M_nxt = __node;
|
|
}
|
|
else
|
|
{
|
|
// The bucket is empty, the new node is inserted at the
|
|
// beginning of the singly-linked list and the bucket will
|
|
// contain _M_before_begin pointer.
|
|
__node->_M_nxt = _M_before_begin()._M_nxt;
|
|
_M_before_begin()._M_nxt = __node;
|
|
if (__node->_M_nxt)
|
|
// We must update former begin bucket that is pointing to
|
|
// _M_before_begin.
|
|
_M_buckets[_M_bucket_index(__node->_M_next())] = __node;
|
|
_M_buckets[__bkt] = &_M_before_begin();
|
|
}
|
|
}
|
|
|
|
template<typename _Key, typename _Value,
|
|
typename _Alloc, typename _ExtractKey, typename _Equal,
|
|
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
|
|
typename _Traits>
|
|
void
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>::
|
|
_M_remove_bucket_begin(size_type __bkt, __node_type* __next,
|
|
size_type __next_bkt)
|
|
{
|
|
if (!__next || __next_bkt != __bkt)
|
|
{
|
|
// Bucket is now empty
|
|
// First update next bucket if any
|
|
if (__next)
|
|
_M_buckets[__next_bkt] = _M_buckets[__bkt];
|
|
|
|
// Second update before begin node if necessary
|
|
if (&_M_before_begin() == _M_buckets[__bkt])
|
|
_M_before_begin()._M_nxt = __next;
|
|
_M_buckets[__bkt] = nullptr;
|
|
}
|
|
}
|
|
|
|
template<typename _Key, typename _Value,
|
|
typename _Alloc, typename _ExtractKey, typename _Equal,
|
|
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
|
|
typename _Traits>
|
|
typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
|
|
_Equal, _H1, _H2, _Hash, _RehashPolicy,
|
|
_Traits>::__node_base*
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>::
|
|
_M_get_previous_node(size_type __bkt, __node_base* __n)
|
|
{
|
|
__node_base* __prev_n = _M_buckets[__bkt];
|
|
while (__prev_n->_M_nxt != __n)
|
|
__prev_n = __prev_n->_M_nxt;
|
|
return __prev_n;
|
|
}
|
|
|
|
template<typename _Key, typename _Value,
|
|
typename _Alloc, typename _ExtractKey, typename _Equal,
|
|
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
|
|
typename _Traits>
|
|
template<typename... _Args>
|
|
std::pair<typename _Hashtable<_Key, _Value, _Alloc,
|
|
_ExtractKey, _Equal, _H1,
|
|
_H2, _Hash, _RehashPolicy,
|
|
_Traits>::iterator, bool>
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>::
|
|
_M_emplace(std::true_type, _Args&&... __args)
|
|
{
|
|
// First build the node to get access to the hash code
|
|
__node_type* __node = _M_allocate_node(std::forward<_Args>(__args)...);
|
|
const key_type& __k = this->_M_extract()(__node->_M_v);
|
|
__hash_code __code;
|
|
__try
|
|
{
|
|
__code = this->_M_hash_code(__k);
|
|
}
|
|
__catch(...)
|
|
{
|
|
_M_deallocate_node(__node);
|
|
__throw_exception_again;
|
|
}
|
|
|
|
size_type __bkt = _M_bucket_index(__k, __code);
|
|
if (__node_type* __p = _M_find_node(__bkt, __k, __code))
|
|
{
|
|
// There is already an equivalent node, no insertion
|
|
_M_deallocate_node(__node);
|
|
return std::make_pair(iterator(__p), false);
|
|
}
|
|
|
|
// Insert the node
|
|
return std::make_pair(_M_insert_unique_node(__bkt, __code, __node),
|
|
true);
|
|
}
|
|
|
|
template<typename _Key, typename _Value,
|
|
typename _Alloc, typename _ExtractKey, typename _Equal,
|
|
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
|
|
typename _Traits>
|
|
template<typename... _Args>
|
|
typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy,
|
|
_Traits>::iterator
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>::
|
|
_M_emplace(std::false_type, _Args&&... __args)
|
|
{
|
|
// First build the node to get its hash code.
|
|
__node_type* __node = _M_allocate_node(std::forward<_Args>(__args)...);
|
|
|
|
__hash_code __code;
|
|
__try
|
|
{
|
|
__code = this->_M_hash_code(this->_M_extract()(__node->_M_v));
|
|
}
|
|
__catch(...)
|
|
{
|
|
_M_deallocate_node(__node);
|
|
__throw_exception_again;
|
|
}
|
|
|
|
return _M_insert_multi_node(__code, __node);
|
|
}
|
|
|
|
template<typename _Key, typename _Value,
|
|
typename _Alloc, typename _ExtractKey, typename _Equal,
|
|
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
|
|
typename _Traits>
|
|
typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy,
|
|
_Traits>::iterator
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>::
|
|
_M_insert_unique_node(size_type __bkt, __hash_code __code,
|
|
__node_type* __node)
|
|
{
|
|
const __rehash_state& __saved_state = _M_rehash_policy._M_state();
|
|
std::pair<bool, std::size_t> __do_rehash
|
|
= _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
|
|
|
|
__try
|
|
{
|
|
if (__do_rehash.first)
|
|
{
|
|
_M_rehash(__do_rehash.second, __saved_state);
|
|
__bkt = _M_bucket_index(this->_M_extract()(__node->_M_v), __code);
|
|
}
|
|
|
|
this->_M_store_code(__node, __code);
|
|
|
|
// Always insert at the begining of the bucket.
|
|
_M_insert_bucket_begin(__bkt, __node);
|
|
++_M_element_count;
|
|
return iterator(__node);
|
|
}
|
|
__catch(...)
|
|
{
|
|
_M_deallocate_node(__node);
|
|
__throw_exception_again;
|
|
}
|
|
}
|
|
|
|
// Insert node, in bucket bkt if no rehash (assumes no element with its key
|
|
// already present). Take ownership of the node, deallocate it on exception.
|
|
template<typename _Key, typename _Value,
|
|
typename _Alloc, typename _ExtractKey, typename _Equal,
|
|
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
|
|
typename _Traits>
|
|
typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy,
|
|
_Traits>::iterator
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>::
|
|
_M_insert_multi_node(__hash_code __code, __node_type* __node)
|
|
{
|
|
const __rehash_state& __saved_state = _M_rehash_policy._M_state();
|
|
std::pair<bool, std::size_t> __do_rehash
|
|
= _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
|
|
|
|
__try
|
|
{
|
|
if (__do_rehash.first)
|
|
_M_rehash(__do_rehash.second, __saved_state);
|
|
|
|
this->_M_store_code(__node, __code);
|
|
const key_type& __k = this->_M_extract()(__node->_M_v);
|
|
size_type __bkt = _M_bucket_index(__k, __code);
|
|
|
|
// Find the node before an equivalent one.
|
|
__node_base* __prev = _M_find_before_node(__bkt, __k, __code);
|
|
if (__prev)
|
|
{
|
|
// Insert after the node before the equivalent one.
|
|
__node->_M_nxt = __prev->_M_nxt;
|
|
__prev->_M_nxt = __node;
|
|
}
|
|
else
|
|
// The inserted node has no equivalent in the
|
|
// hashtable. We must insert the new node at the
|
|
// beginning of the bucket to preserve equivalent
|
|
// elements' relative positions.
|
|
_M_insert_bucket_begin(__bkt, __node);
|
|
++_M_element_count;
|
|
return iterator(__node);
|
|
}
|
|
__catch(...)
|
|
{
|
|
_M_deallocate_node(__node);
|
|
__throw_exception_again;
|
|
}
|
|
}
|
|
|
|
// Insert v if no element with its key is already present.
|
|
template<typename _Key, typename _Value,
|
|
typename _Alloc, typename _ExtractKey, typename _Equal,
|
|
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
|
|
typename _Traits>
|
|
template<typename _Arg>
|
|
std::pair<typename _Hashtable<_Key, _Value, _Alloc,
|
|
_ExtractKey, _Equal, _H1,
|
|
_H2, _Hash, _RehashPolicy,
|
|
_Traits>::iterator, bool>
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>::
|
|
_M_insert(_Arg&& __v, std::true_type)
|
|
{
|
|
const key_type& __k = this->_M_extract()(__v);
|
|
__hash_code __code = this->_M_hash_code(__k);
|
|
size_type __bkt = _M_bucket_index(__k, __code);
|
|
|
|
__node_type* __n = _M_find_node(__bkt, __k, __code);
|
|
if (__n)
|
|
return std::make_pair(iterator(__n), false);
|
|
|
|
__n = _M_allocate_node(std::forward<_Arg>(__v));
|
|
return std::make_pair(_M_insert_unique_node(__bkt, __code, __n), true);
|
|
}
|
|
|
|
// Insert v unconditionally.
|
|
template<typename _Key, typename _Value,
|
|
typename _Alloc, typename _ExtractKey, typename _Equal,
|
|
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
|
|
typename _Traits>
|
|
template<typename _Arg>
|
|
typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy,
|
|
_Traits>::iterator
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>::
|
|
_M_insert(_Arg&& __v, std::false_type)
|
|
{
|
|
// First compute the hash code so that we don't do anything if it
|
|
// throws.
|
|
__hash_code __code = this->_M_hash_code(this->_M_extract()(__v));
|
|
|
|
// Second allocate new node so that we don't rehash if it throws.
|
|
__node_type* __node = _M_allocate_node(std::forward<_Arg>(__v));
|
|
|
|
return _M_insert_multi_node(__code, __node);
|
|
}
|
|
|
|
template<typename _Key, typename _Value,
|
|
typename _Alloc, typename _ExtractKey, typename _Equal,
|
|
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
|
|
typename _Traits>
|
|
typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy,
|
|
_Traits>::iterator
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>::
|
|
erase(const_iterator __it)
|
|
{
|
|
__node_type* __n = __it._M_cur;
|
|
std::size_t __bkt = _M_bucket_index(__n);
|
|
|
|
// Look for previous node to unlink it from the erased one, this
|
|
// is why we need buckets to contain the before begin to make
|
|
// this search fast.
|
|
__node_base* __prev_n = _M_get_previous_node(__bkt, __n);
|
|
return _M_erase(__bkt, __prev_n, __n);
|
|
}
|
|
|
|
template<typename _Key, typename _Value,
|
|
typename _Alloc, typename _ExtractKey, typename _Equal,
|
|
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
|
|
typename _Traits>
|
|
typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy,
|
|
_Traits>::iterator
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>::
|
|
_M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n)
|
|
{
|
|
if (__prev_n == _M_buckets[__bkt])
|
|
_M_remove_bucket_begin(__bkt, __n->_M_next(),
|
|
__n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0);
|
|
else if (__n->_M_nxt)
|
|
{
|
|
size_type __next_bkt = _M_bucket_index(__n->_M_next());
|
|
if (__next_bkt != __bkt)
|
|
_M_buckets[__next_bkt] = __prev_n;
|
|
}
|
|
|
|
__prev_n->_M_nxt = __n->_M_nxt;
|
|
iterator __result(__n->_M_next());
|
|
_M_deallocate_node(__n);
|
|
--_M_element_count;
|
|
|
|
return __result;
|
|
}
|
|
|
|
template<typename _Key, typename _Value,
|
|
typename _Alloc, typename _ExtractKey, typename _Equal,
|
|
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
|
|
typename _Traits>
|
|
typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy,
|
|
_Traits>::size_type
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>::
|
|
_M_erase(std::true_type, const key_type& __k)
|
|
{
|
|
__hash_code __code = this->_M_hash_code(__k);
|
|
std::size_t __bkt = _M_bucket_index(__k, __code);
|
|
|
|
// Look for the node before the first matching node.
|
|
__node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
|
|
if (!__prev_n)
|
|
return 0;
|
|
|
|
// We found a matching node, erase it.
|
|
__node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
|
|
_M_erase(__bkt, __prev_n, __n);
|
|
return 1;
|
|
}
|
|
|
|
template<typename _Key, typename _Value,
|
|
typename _Alloc, typename _ExtractKey, typename _Equal,
|
|
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
|
|
typename _Traits>
|
|
typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy,
|
|
_Traits>::size_type
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>::
|
|
_M_erase(std::false_type, const key_type& __k)
|
|
{
|
|
__hash_code __code = this->_M_hash_code(__k);
|
|
std::size_t __bkt = _M_bucket_index(__k, __code);
|
|
|
|
// Look for the node before the first matching node.
|
|
__node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
|
|
if (!__prev_n)
|
|
return 0;
|
|
|
|
// _GLIBCXX_RESOLVE_LIB_DEFECTS
|
|
// 526. Is it undefined if a function in the standard changes
|
|
// in parameters?
|
|
// We use one loop to find all matching nodes and another to deallocate
|
|
// them so that the key stays valid during the first loop. It might be
|
|
// invalidated indirectly when destroying nodes.
|
|
__node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
|
|
__node_type* __n_last = __n;
|
|
std::size_t __n_last_bkt = __bkt;
|
|
do
|
|
{
|
|
__n_last = __n_last->_M_next();
|
|
if (!__n_last)
|
|
break;
|
|
__n_last_bkt = _M_bucket_index(__n_last);
|
|
}
|
|
while (__n_last_bkt == __bkt && this->_M_equals(__k, __code, __n_last));
|
|
|
|
// Deallocate nodes.
|
|
size_type __result = 0;
|
|
do
|
|
{
|
|
__node_type* __p = __n->_M_next();
|
|
_M_deallocate_node(__n);
|
|
__n = __p;
|
|
++__result;
|
|
--_M_element_count;
|
|
}
|
|
while (__n != __n_last);
|
|
|
|
if (__prev_n == _M_buckets[__bkt])
|
|
_M_remove_bucket_begin(__bkt, __n_last, __n_last_bkt);
|
|
else if (__n_last && __n_last_bkt != __bkt)
|
|
_M_buckets[__n_last_bkt] = __prev_n;
|
|
__prev_n->_M_nxt = __n_last;
|
|
return __result;
|
|
}
|
|
|
|
template<typename _Key, typename _Value,
|
|
typename _Alloc, typename _ExtractKey, typename _Equal,
|
|
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
|
|
typename _Traits>
|
|
typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy,
|
|
_Traits>::iterator
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>::
|
|
erase(const_iterator __first, const_iterator __last)
|
|
{
|
|
__node_type* __n = __first._M_cur;
|
|
__node_type* __last_n = __last._M_cur;
|
|
if (__n == __last_n)
|
|
return iterator(__n);
|
|
|
|
std::size_t __bkt = _M_bucket_index(__n);
|
|
|
|
__node_base* __prev_n = _M_get_previous_node(__bkt, __n);
|
|
bool __is_bucket_begin = __n == _M_bucket_begin(__bkt);
|
|
std::size_t __n_bkt = __bkt;
|
|
for (;;)
|
|
{
|
|
do
|
|
{
|
|
__node_type* __tmp = __n;
|
|
__n = __n->_M_next();
|
|
_M_deallocate_node(__tmp);
|
|
--_M_element_count;
|
|
if (!__n)
|
|
break;
|
|
__n_bkt = _M_bucket_index(__n);
|
|
}
|
|
while (__n != __last_n && __n_bkt == __bkt);
|
|
if (__is_bucket_begin)
|
|
_M_remove_bucket_begin(__bkt, __n, __n_bkt);
|
|
if (__n == __last_n)
|
|
break;
|
|
__is_bucket_begin = true;
|
|
__bkt = __n_bkt;
|
|
}
|
|
|
|
if (__n && (__n_bkt != __bkt || __is_bucket_begin))
|
|
_M_buckets[__n_bkt] = __prev_n;
|
|
__prev_n->_M_nxt = __n;
|
|
return iterator(__n);
|
|
}
|
|
|
|
template<typename _Key, typename _Value,
|
|
typename _Alloc, typename _ExtractKey, typename _Equal,
|
|
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
|
|
typename _Traits>
|
|
void
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>::
|
|
clear() noexcept
|
|
{
|
|
_M_deallocate_nodes(_M_begin());
|
|
__builtin_memset(_M_buckets, 0, _M_bucket_count * sizeof(__bucket_type));
|
|
_M_element_count = 0;
|
|
_M_before_begin()._M_nxt = nullptr;
|
|
}
|
|
|
|
template<typename _Key, typename _Value,
|
|
typename _Alloc, typename _ExtractKey, typename _Equal,
|
|
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
|
|
typename _Traits>
|
|
void
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>::
|
|
rehash(size_type __n)
|
|
{
|
|
const __rehash_state& __saved_state = _M_rehash_policy._M_state();
|
|
std::size_t __buckets
|
|
= std::max(_M_rehash_policy._M_bkt_for_elements(_M_element_count + 1),
|
|
__n);
|
|
__buckets = _M_rehash_policy._M_next_bkt(__buckets);
|
|
|
|
if (__buckets != _M_bucket_count)
|
|
_M_rehash(__buckets, __saved_state);
|
|
else
|
|
// No rehash, restore previous state to keep a consistent state.
|
|
_M_rehash_policy._M_reset(__saved_state);
|
|
}
|
|
|
|
template<typename _Key, typename _Value,
|
|
typename _Alloc, typename _ExtractKey, typename _Equal,
|
|
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
|
|
typename _Traits>
|
|
void
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>::
|
|
_M_rehash(size_type __n, const __rehash_state& __state)
|
|
{
|
|
__try
|
|
{
|
|
_M_rehash_aux(__n, __unique_keys());
|
|
}
|
|
__catch(...)
|
|
{
|
|
// A failure here means that buckets allocation failed. We only
|
|
// have to restore hash policy previous state.
|
|
_M_rehash_policy._M_reset(__state);
|
|
__throw_exception_again;
|
|
}
|
|
}
|
|
|
|
// Rehash when there is no equivalent elements.
|
|
template<typename _Key, typename _Value,
|
|
typename _Alloc, typename _ExtractKey, typename _Equal,
|
|
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
|
|
typename _Traits>
|
|
void
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>::
|
|
_M_rehash_aux(size_type __n, std::true_type)
|
|
{
|
|
__bucket_type* __new_buckets = _M_allocate_buckets(__n);
|
|
__node_type* __p = _M_begin();
|
|
_M_before_begin()._M_nxt = nullptr;
|
|
std::size_t __bbegin_bkt = 0;
|
|
while (__p)
|
|
{
|
|
__node_type* __next = __p->_M_next();
|
|
std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
|
|
if (!__new_buckets[__bkt])
|
|
{
|
|
__p->_M_nxt = _M_before_begin()._M_nxt;
|
|
_M_before_begin()._M_nxt = __p;
|
|
__new_buckets[__bkt] = &_M_before_begin();
|
|
if (__p->_M_nxt)
|
|
__new_buckets[__bbegin_bkt] = __p;
|
|
__bbegin_bkt = __bkt;
|
|
}
|
|
else
|
|
{
|
|
__p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
|
|
__new_buckets[__bkt]->_M_nxt = __p;
|
|
}
|
|
__p = __next;
|
|
}
|
|
_M_deallocate_buckets(_M_buckets, _M_bucket_count);
|
|
_M_bucket_count = __n;
|
|
_M_buckets = __new_buckets;
|
|
}
|
|
|
|
// Rehash when there can be equivalent elements, preserve their relative
|
|
// order.
|
|
template<typename _Key, typename _Value,
|
|
typename _Alloc, typename _ExtractKey, typename _Equal,
|
|
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
|
|
typename _Traits>
|
|
void
|
|
_Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
|
|
_H1, _H2, _Hash, _RehashPolicy, _Traits>::
|
|
_M_rehash_aux(size_type __n, std::false_type)
|
|
{
|
|
__bucket_type* __new_buckets = _M_allocate_buckets(__n);
|
|
|
|
__node_type* __p = _M_begin();
|
|
_M_before_begin()._M_nxt = nullptr;
|
|
std::size_t __bbegin_bkt = 0;
|
|
std::size_t __prev_bkt = 0;
|
|
__node_type* __prev_p = nullptr;
|
|
bool __check_bucket = false;
|
|
|
|
while (__p)
|
|
{
|
|
__node_type* __next = __p->_M_next();
|
|
std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
|
|
|
|
if (__prev_p && __prev_bkt == __bkt)
|
|
{
|
|
// Previous insert was already in this bucket, we insert after
|
|
// the previously inserted one to preserve equivalent elements
|
|
// relative order.
|
|
__p->_M_nxt = __prev_p->_M_nxt;
|
|
__prev_p->_M_nxt = __p;
|
|
|
|
// Inserting after a node in a bucket require to check that we
|
|
// haven't change the bucket last node, in this case next
|
|
// bucket containing its before begin node must be updated. We
|
|
// schedule a check as soon as we move out of the sequence of
|
|
// equivalent nodes to limit the number of checks.
|
|
__check_bucket = true;
|
|
}
|
|
else
|
|
{
|
|
if (__check_bucket)
|
|
{
|
|
// Check if we shall update the next bucket because of
|
|
// insertions into __prev_bkt bucket.
|
|
if (__prev_p->_M_nxt)
|
|
{
|
|
std::size_t __next_bkt
|
|
= __hash_code_base::_M_bucket_index(__prev_p->_M_next(),
|
|
__n);
|
|
if (__next_bkt != __prev_bkt)
|
|
__new_buckets[__next_bkt] = __prev_p;
|
|
}
|
|
__check_bucket = false;
|
|
}
|
|
|
|
if (!__new_buckets[__bkt])
|
|
{
|
|
__p->_M_nxt = _M_before_begin()._M_nxt;
|
|
_M_before_begin()._M_nxt = __p;
|
|
__new_buckets[__bkt] = &_M_before_begin();
|
|
if (__p->_M_nxt)
|
|
__new_buckets[__bbegin_bkt] = __p;
|
|
__bbegin_bkt = __bkt;
|
|
}
|
|
else
|
|
{
|
|
__p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
|
|
__new_buckets[__bkt]->_M_nxt = __p;
|
|
}
|
|
}
|
|
__prev_p = __p;
|
|
__prev_bkt = __bkt;
|
|
__p = __next;
|
|
}
|
|
|
|
if (__check_bucket && __prev_p->_M_nxt)
|
|
{
|
|
std::size_t __next_bkt
|
|
= __hash_code_base::_M_bucket_index(__prev_p->_M_next(), __n);
|
|
if (__next_bkt != __prev_bkt)
|
|
__new_buckets[__next_bkt] = __prev_p;
|
|
}
|
|
|
|
_M_deallocate_buckets(_M_buckets, _M_bucket_count);
|
|
_M_bucket_count = __n;
|
|
_M_buckets = __new_buckets;
|
|
}
|
|
|
|
_GLIBCXX_END_NAMESPACE_VERSION
|
|
} // namespace std
|
|
|
|
#endif // _HASHTABLE_H
|