mirror of
https://github.com/KolibriOS/kolibrios.git
synced 2024-11-25 18:29:36 +03:00
c2fbdf929c
git-svn-id: svn://kolibrios.org@1805 a494cfbc-eb01-0410-851d-a64ba20cac60
332 lines
11 KiB
C
332 lines
11 KiB
C
static void shortsort(char *lo, char *hi, unsigned width,
|
|
int (*comp)(const void *, const void *));
|
|
|
|
static void swap(char *p, char *q, unsigned width);
|
|
|
|
/* this parameter defines the cutoff between using quick sort and
|
|
insertion sort for arrays; arrays with lengths shorter or equal to the
|
|
below value use insertion sort */
|
|
|
|
#define CUTOFF 8 /* testing shows that this is good value */
|
|
|
|
#define STKSIZ (8*sizeof(void*) - 2)
|
|
|
|
/***
|
|
*qsort(base, num, wid, comp) - quicksort function for sorting arrays
|
|
*
|
|
*Purpose:
|
|
* quicksort the array of elements
|
|
* side effects: sorts in place
|
|
* maximum array size is number of elements times size of elements,
|
|
* but is limited by the virtual address space of the processor
|
|
*
|
|
*Entry:
|
|
* char *base = pointer to base of array
|
|
* unsigned num = number of elements in the array
|
|
* unsigned width = width in bytes of each array element
|
|
* int (*comp)() = pointer to function returning analog of strcmp for
|
|
* strings, but supplied by user for comparing the array elements.
|
|
* it accepts 2 pointers to elements.
|
|
* Returns neg if 1<2, 0 if 1=2, pos if 1>2.
|
|
*
|
|
*Exit:
|
|
* returns void
|
|
*
|
|
*******************************************************************************/
|
|
|
|
void qsort (
|
|
void *base,
|
|
unsigned num,
|
|
unsigned width,
|
|
int (*comp)(const void *, const void *)
|
|
)
|
|
{
|
|
/* Note: the number of stack entries required is no more than
|
|
1 + log2(num), so 30 is sufficient for any array */
|
|
char *lo, *hi; /* ends of sub-array currently sorting */
|
|
char *mid; /* points to middle of subarray */
|
|
char *loguy, *higuy; /* traveling pointers for partition step */
|
|
unsigned size; /* size of the sub-array */
|
|
char *lostk[STKSIZ], *histk[STKSIZ];
|
|
int stkptr; /* stack for saving sub-array to be processed */
|
|
|
|
if (num < 2)
|
|
return; /* nothing to do */
|
|
|
|
stkptr = 0; /* initialize stack */
|
|
|
|
lo = (char *)base;
|
|
hi = (char *)base + width * (num-1); /* initialize limits */
|
|
|
|
/* this entry point is for pseudo-recursion calling: setting
|
|
lo and hi and jumping to here is like recursion, but stkptr is
|
|
preserved, locals aren't, so we preserve stuff on the stack */
|
|
recurse:
|
|
|
|
size = (hi - lo) / width + 1; /* number of el's to sort */
|
|
|
|
/* below a certain size, it is faster to use a O(n^2) sorting method */
|
|
if (size <= CUTOFF) {
|
|
shortsort(lo, hi, width, comp);
|
|
}
|
|
else {
|
|
/* First we pick a partitioning element. The efficiency of the
|
|
algorithm demands that we find one that is approximately the median
|
|
of the values, but also that we select one fast. We choose the
|
|
median of the first, middle, and last elements, to avoid bad
|
|
performance in the face of already sorted data, or data that is made
|
|
up of multiple sorted runs appended together. Testing shows that a
|
|
median-of-three algorithm provides better performance than simply
|
|
picking the middle element for the latter case. */
|
|
|
|
mid = lo + (size / 2) * width; /* find middle element */
|
|
|
|
/* Sort the first, middle, last elements into order */
|
|
if (comp(lo, mid) > 0) {
|
|
swap(lo, mid, width);
|
|
}
|
|
if (comp(lo, hi) > 0) {
|
|
swap(lo, hi, width);
|
|
}
|
|
if (comp(mid, hi) > 0) {
|
|
swap(mid, hi, width);
|
|
}
|
|
|
|
/* We now wish to partition the array into three pieces, one consisting
|
|
of elements <= partition element, one of elements equal to the
|
|
partition element, and one of elements > than it. This is done
|
|
below; comments indicate conditions established at every step. */
|
|
|
|
loguy = lo;
|
|
higuy = hi;
|
|
|
|
/* Note that higuy decreases and loguy increases on every iteration,
|
|
so loop must terminate. */
|
|
for (;;) {
|
|
/* lo <= loguy < hi, lo < higuy <= hi,
|
|
A[i] <= A[mid] for lo <= i <= loguy,
|
|
A[i] > A[mid] for higuy <= i < hi,
|
|
A[hi] >= A[mid] */
|
|
|
|
/* The doubled loop is to avoid calling comp(mid,mid), since some
|
|
existing comparison funcs don't work when passed the same
|
|
value for both pointers. */
|
|
|
|
if (mid > loguy) {
|
|
do {
|
|
loguy += width;
|
|
} while (loguy < mid && comp(loguy, mid) <= 0);
|
|
}
|
|
if (mid <= loguy) {
|
|
do {
|
|
loguy += width;
|
|
} while (loguy <= hi && comp(loguy, mid) <= 0);
|
|
}
|
|
|
|
/* lo < loguy <= hi+1, A[i] <= A[mid] for lo <= i < loguy,
|
|
either loguy > hi or A[loguy] > A[mid] */
|
|
|
|
do {
|
|
higuy -= width;
|
|
} while (higuy > mid && comp(higuy, mid) > 0);
|
|
|
|
/* lo <= higuy < hi, A[i] > A[mid] for higuy < i < hi,
|
|
either higuy == lo or A[higuy] <= A[mid] */
|
|
|
|
if (higuy < loguy)
|
|
break;
|
|
|
|
/* if loguy > hi or higuy == lo, then we would have exited, so
|
|
A[loguy] > A[mid], A[higuy] <= A[mid],
|
|
loguy <= hi, higuy > lo */
|
|
|
|
swap(loguy, higuy, width);
|
|
|
|
/* If the partition element was moved, follow it. Only need
|
|
to check for mid == higuy, since before the swap,
|
|
A[loguy] > A[mid] implies loguy != mid. */
|
|
|
|
if (mid == higuy)
|
|
mid = loguy;
|
|
|
|
/* A[loguy] <= A[mid], A[higuy] > A[mid]; so condition at top
|
|
of loop is re-established */
|
|
}
|
|
|
|
/* A[i] <= A[mid] for lo <= i < loguy,
|
|
A[i] > A[mid] for higuy < i < hi,
|
|
A[hi] >= A[mid]
|
|
higuy < loguy
|
|
implying:
|
|
higuy == loguy-1
|
|
or higuy == hi - 1, loguy == hi + 1, A[hi] == A[mid] */
|
|
|
|
/* Find adjacent elements equal to the partition element. The
|
|
doubled loop is to avoid calling comp(mid,mid), since some
|
|
existing comparison funcs don't work when passed the same value
|
|
for both pointers. */
|
|
|
|
higuy += width;
|
|
if (mid < higuy) {
|
|
do {
|
|
higuy -= width;
|
|
} while (higuy > mid && comp(higuy, mid) == 0);
|
|
}
|
|
if (mid >= higuy) {
|
|
do {
|
|
higuy -= width;
|
|
} while (higuy > lo && comp(higuy, mid) == 0);
|
|
}
|
|
|
|
/* OK, now we have the following:
|
|
higuy < loguy
|
|
lo <= higuy <= hi
|
|
A[i] <= A[mid] for lo <= i <= higuy
|
|
A[i] == A[mid] for higuy < i < loguy
|
|
A[i] > A[mid] for loguy <= i < hi
|
|
A[hi] >= A[mid] */
|
|
|
|
/* We've finished the partition, now we want to sort the subarrays
|
|
[lo, higuy] and [loguy, hi].
|
|
We do the smaller one first to minimize stack usage.
|
|
We only sort arrays of length 2 or more.*/
|
|
|
|
if ( higuy - lo >= hi - loguy ) {
|
|
if (lo < higuy) {
|
|
lostk[stkptr] = lo;
|
|
histk[stkptr] = higuy;
|
|
++stkptr;
|
|
} /* save big recursion for later */
|
|
|
|
if (loguy < hi) {
|
|
lo = loguy;
|
|
goto recurse; /* do small recursion */
|
|
}
|
|
}
|
|
else {
|
|
if (loguy < hi) {
|
|
lostk[stkptr] = loguy;
|
|
histk[stkptr] = hi;
|
|
++stkptr; /* save big recursion for later */
|
|
}
|
|
|
|
if (lo < higuy) {
|
|
hi = higuy;
|
|
goto recurse; /* do small recursion */
|
|
}
|
|
}
|
|
}
|
|
|
|
/* We have sorted the array, except for any pending sorts on the stack.
|
|
Check if there are any, and do them. */
|
|
|
|
--stkptr;
|
|
if (stkptr >= 0) {
|
|
lo = lostk[stkptr];
|
|
hi = histk[stkptr];
|
|
goto recurse; /* pop subarray from stack */
|
|
}
|
|
else
|
|
return; /* all subarrays done */
|
|
}
|
|
|
|
|
|
/***
|
|
*shortsort(hi, lo, width, comp) - insertion sort for sorting short arrays
|
|
*shortsort_s(hi, lo, width, comp, context) - insertion sort for sorting short arrays
|
|
*
|
|
*Purpose:
|
|
* sorts the sub-array of elements between lo and hi (inclusive)
|
|
* side effects: sorts in place
|
|
* assumes that lo < hi
|
|
*
|
|
*Entry:
|
|
* char *lo = pointer to low element to sort
|
|
* char *hi = pointer to high element to sort
|
|
* unsigned width = width in bytes of each array element
|
|
* int (*comp)() = pointer to function returning analog of strcmp for
|
|
* strings, but supplied by user for comparing the array elements.
|
|
* it accepts 2 pointers to elements, together with a pointer to a context
|
|
* (if present). Returns neg if 1<2, 0 if 1=2, pos if 1>2.
|
|
* void *context - pointer to the context in which the function is
|
|
* called. This context is passed to the comparison function.
|
|
*
|
|
*Exit:
|
|
* returns void
|
|
*
|
|
*Exceptions:
|
|
*
|
|
*******************************************************************************/
|
|
|
|
static void shortsort (
|
|
char *lo,
|
|
char *hi,
|
|
unsigned width,
|
|
int (*comp)(const void *, const void *)
|
|
)
|
|
{
|
|
char *p, *max;
|
|
|
|
/* Note: in assertions below, i and j are alway inside original bound of
|
|
array to sort. */
|
|
|
|
while (hi > lo) {
|
|
/* A[i] <= A[j] for i <= j, j > hi */
|
|
max = lo;
|
|
for (p = lo+width; p <= hi; p += width) {
|
|
/* A[i] <= A[max] for lo <= i < p */
|
|
if (comp(p, max) > 0) {
|
|
max = p;
|
|
}
|
|
/* A[i] <= A[max] for lo <= i <= p */
|
|
}
|
|
|
|
/* A[i] <= A[max] for lo <= i <= hi */
|
|
|
|
swap(max, hi, width);
|
|
|
|
/* A[i] <= A[hi] for i <= hi, so A[i] <= A[j] for i <= j, j >= hi */
|
|
|
|
hi -= width;
|
|
|
|
/* A[i] <= A[j] for i <= j, j > hi, loop top condition established */
|
|
}
|
|
/* A[i] <= A[j] for i <= j, j > lo, which implies A[i] <= A[j] for i < j,
|
|
so array is sorted */
|
|
}
|
|
|
|
/***
|
|
*swap(a, b, width) - swap two elements
|
|
*
|
|
*Purpose:
|
|
* swaps the two array elements of size width
|
|
*
|
|
*Entry:
|
|
* char *a, *b = pointer to two elements to swap
|
|
* unsigned width = width in bytes of each array element
|
|
*
|
|
*Exit:
|
|
* returns void
|
|
*
|
|
*Exceptions:
|
|
*
|
|
*******************************************************************************/
|
|
|
|
static void swap (
|
|
char *a,
|
|
char *b,
|
|
unsigned width
|
|
)
|
|
{
|
|
char tmp;
|
|
|
|
if ( a != b )
|
|
/* Do the swap one character at a time to avoid potential alignment
|
|
problems. */
|
|
while ( width-- ) {
|
|
tmp = *a;
|
|
*a++ = *b;
|
|
*b++ = tmp;
|
|
}
|
|
}
|