mirror of
https://github.com/KolibriOS/kolibrios.git
synced 2024-12-04 22:32:05 +03:00
a316fa7c9d
git-svn-id: svn://kolibrios.org@1905 a494cfbc-eb01-0410-851d-a64ba20cac60
2057 lines
50 KiB
C
2057 lines
50 KiB
C
/*
|
|
leyer3.c: the layer 3 decoder
|
|
|
|
copyright 1995-2008 by the mpg123 project - free software under the terms of the LGPL 2.1
|
|
see COPYING and AUTHORS files in distribution or http://mpg123.org
|
|
initially written by Michael Hipp
|
|
|
|
Dear visitor:
|
|
If you feel you don't understand fully the works of this file, your feeling might be correct.
|
|
|
|
Optimize-TODO: put short bands into the band-field without the stride of 3 reals
|
|
Length-optimze: unify long and short band code where it is possible
|
|
|
|
The int-vs-pointer situation has to be cleaned up.
|
|
*/
|
|
|
|
#include "mpg123lib_intern.h"
|
|
#include "huffman.h"
|
|
#include "getbits.h"
|
|
#include "debug.h"
|
|
|
|
/* define CUT_SFB21 if you want to cut-off the frequency above 16kHz */
|
|
#if 0
|
|
#define CUT_SFB21
|
|
#endif
|
|
|
|
#ifdef REAL_IS_FIXED
|
|
#define NEW_DCT9
|
|
#include "l3_integer_tables.h"
|
|
#else
|
|
/* static one-time calculated tables... or so */
|
|
static real ispow[8207];
|
|
static real aa_ca[8],aa_cs[8];
|
|
static real win[4][36];
|
|
static real win1[4][36];
|
|
real COS9[9]; /* dct36_3dnow wants to use that */
|
|
static real COS6_1,COS6_2;
|
|
real tfcos36[9]; /* dct36_3dnow wants to use that */
|
|
static real tfcos12[3];
|
|
#define NEW_DCT9
|
|
#ifdef NEW_DCT9
|
|
static real cos9[3],cos18[3];
|
|
static real tan1_1[16],tan2_1[16],tan1_2[16],tan2_2[16];
|
|
static real pow1_1[2][16],pow2_1[2][16],pow1_2[2][16],pow2_2[2][16];
|
|
#endif
|
|
#endif
|
|
|
|
/* Decoder state data, living on the stack of do_layer3. */
|
|
|
|
struct gr_info_s
|
|
{
|
|
int scfsi;
|
|
unsigned part2_3_length;
|
|
unsigned big_values;
|
|
unsigned scalefac_compress;
|
|
unsigned block_type;
|
|
unsigned mixed_block_flag;
|
|
unsigned table_select[3];
|
|
unsigned subblock_gain[3];
|
|
unsigned maxband[3];
|
|
unsigned maxbandl;
|
|
unsigned maxb;
|
|
unsigned region1start;
|
|
unsigned region2start;
|
|
unsigned preflag;
|
|
unsigned scalefac_scale;
|
|
unsigned count1table_select;
|
|
real *full_gain[3];
|
|
real *pow2gain;
|
|
};
|
|
|
|
struct III_sideinfo
|
|
{
|
|
unsigned main_data_begin;
|
|
unsigned private_bits;
|
|
/* Hm, funny... struct inside struct... */
|
|
struct { struct gr_info_s gr[2]; } ch[2];
|
|
};
|
|
|
|
struct bandInfoStruct
|
|
{
|
|
int longIdx[23];
|
|
int longDiff[22];
|
|
int shortIdx[14];
|
|
int shortDiff[13];
|
|
};
|
|
|
|
/* Techy details about our friendly MPEG data. Fairly constant over the years;-) */
|
|
const struct bandInfoStruct bandInfo[9] =
|
|
{
|
|
{ /* MPEG 1.0 */
|
|
{0,4,8,12,16,20,24,30,36,44,52,62,74, 90,110,134,162,196,238,288,342,418,576},
|
|
{4,4,4,4,4,4,6,6,8, 8,10,12,16,20,24,28,34,42,50,54, 76,158},
|
|
{0,4*3,8*3,12*3,16*3,22*3,30*3,40*3,52*3,66*3, 84*3,106*3,136*3,192*3},
|
|
{4,4,4,4,6,8,10,12,14,18,22,30,56}
|
|
},
|
|
{
|
|
{0,4,8,12,16,20,24,30,36,42,50,60,72, 88,106,128,156,190,230,276,330,384,576},
|
|
{4,4,4,4,4,4,6,6,6, 8,10,12,16,18,22,28,34,40,46,54, 54,192},
|
|
{0,4*3,8*3,12*3,16*3,22*3,28*3,38*3,50*3,64*3, 80*3,100*3,126*3,192*3},
|
|
{4,4,4,4,6,6,10,12,14,16,20,26,66}
|
|
},
|
|
{
|
|
{0,4,8,12,16,20,24,30,36,44,54,66,82,102,126,156,194,240,296,364,448,550,576},
|
|
{4,4,4,4,4,4,6,6,8,10,12,16,20,24,30,38,46,56,68,84,102, 26},
|
|
{0,4*3,8*3,12*3,16*3,22*3,30*3,42*3,58*3,78*3,104*3,138*3,180*3,192*3},
|
|
{4,4,4,4,6,8,12,16,20,26,34,42,12}
|
|
},
|
|
{ /* MPEG 2.0 */
|
|
{0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576},
|
|
{6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54 } ,
|
|
{0,4*3,8*3,12*3,18*3,24*3,32*3,42*3,56*3,74*3,100*3,132*3,174*3,192*3} ,
|
|
{4,4,4,6,6,8,10,14,18,26,32,42,18 }
|
|
},
|
|
{ /* Twiddling 3 values here (not just 330->332!) fixed bug 1895025. */
|
|
{0,6,12,18,24,30,36,44,54,66,80,96,114,136,162,194,232,278,332,394,464,540,576},
|
|
{6,6,6,6,6,6,8,10,12,14,16,18,22,26,32,38,46,54,62,70,76,36 },
|
|
{0,4*3,8*3,12*3,18*3,26*3,36*3,48*3,62*3,80*3,104*3,136*3,180*3,192*3},
|
|
{4,4,4,6,8,10,12,14,18,24,32,44,12 }
|
|
},
|
|
{
|
|
{0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576},
|
|
{6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54 },
|
|
{0,4*3,8*3,12*3,18*3,26*3,36*3,48*3,62*3,80*3,104*3,134*3,174*3,192*3},
|
|
{4,4,4,6,8,10,12,14,18,24,30,40,18 }
|
|
},
|
|
{ /* MPEG 2.5 */
|
|
{0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576},
|
|
{6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54},
|
|
{0,12,24,36,54,78,108,144,186,240,312,402,522,576},
|
|
{4,4,4,6,8,10,12,14,18,24,30,40,18}
|
|
},
|
|
{
|
|
{0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576},
|
|
{6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54},
|
|
{0,12,24,36,54,78,108,144,186,240,312,402,522,576},
|
|
{4,4,4,6,8,10,12,14,18,24,30,40,18}
|
|
},
|
|
{
|
|
{0,12,24,36,48,60,72,88,108,132,160,192,232,280,336,400,476,566,568,570,572,574,576},
|
|
{12,12,12,12,12,12,16,20,24,28,32,40,48,56,64,76,90,2,2,2,2,2},
|
|
{0, 24, 48, 72,108,156,216,288,372,480,486,492,498,576},
|
|
{8,8,8,12,16,20,24,28,36,2,2,2,26}
|
|
}
|
|
};
|
|
|
|
static int mapbuf0[9][152];
|
|
static int mapbuf1[9][156];
|
|
static int mapbuf2[9][44];
|
|
static int *map[9][3];
|
|
static int *mapend[9][3];
|
|
|
|
static unsigned int n_slen2[512]; /* MPEG 2.0 slen for 'normal' mode */
|
|
static unsigned int i_slen2[256]; /* MPEG 2.0 slen for intensity stereo */
|
|
|
|
/* Some helpers used in init_layer3 */
|
|
|
|
#ifdef OPT_MMXORSSE
|
|
real init_layer3_gainpow2_mmx(mpg123_handle *fr, int i)
|
|
{
|
|
if(!fr->p.down_sample) return DOUBLE_TO_REAL(16384.0 * pow((double)2.0,-0.25 * (double) (i+210) ));
|
|
else return DOUBLE_TO_REAL(pow((double)2.0,-0.25 * (double) (i+210)));
|
|
}
|
|
#endif
|
|
|
|
real init_layer3_gainpow2(mpg123_handle *fr, int i)
|
|
{
|
|
#if defined(REAL_IS_FIXED) && defined(PRECALC_TABLES)
|
|
return gainpow2[i+256];
|
|
#else
|
|
return DOUBLE_TO_REAL_SCALE_LAYER3(pow((double)2.0,-0.25 * (double) (i+210)),i+256);
|
|
#endif
|
|
}
|
|
|
|
|
|
/* init tables for layer-3 ... specific with the downsampling... */
|
|
void init_layer3(void)
|
|
{
|
|
int i,j,k,l;
|
|
|
|
#if !defined(REAL_IS_FIXED) || !defined(PRECALC_TABLES)
|
|
for(i=0;i<8207;i++)
|
|
ispow[i] = DOUBLE_TO_REAL_POW43(pow((double)i,(double)4.0/3.0));
|
|
|
|
for(i=0;i<8;i++)
|
|
{
|
|
const double Ci[8] = {-0.6,-0.535,-0.33,-0.185,-0.095,-0.041,-0.0142,-0.0037};
|
|
double sq = sqrt(1.0+Ci[i]*Ci[i]);
|
|
aa_cs[i] = DOUBLE_TO_REAL(1.0/sq);
|
|
aa_ca[i] = DOUBLE_TO_REAL(Ci[i]/sq);
|
|
}
|
|
|
|
for(i=0;i<18;i++)
|
|
{
|
|
win[0][i] = win[1][i] =
|
|
DOUBLE_TO_REAL( 0.5*sin(M_PI/72.0 * (double)(2*(i+0) +1)) / cos(M_PI * (double)(2*(i+0) +19) / 72.0) );
|
|
win[0][i+18] = win[3][i+18] =
|
|
DOUBLE_TO_REAL( 0.5*sin(M_PI/72.0 * (double)(2*(i+18)+1)) / cos(M_PI * (double)(2*(i+18)+19) / 72.0) );
|
|
}
|
|
for(i=0;i<6;i++)
|
|
{
|
|
win[1][i+18] = DOUBLE_TO_REAL(0.5 / cos ( M_PI * (double) (2*(i+18)+19) / 72.0 ));
|
|
win[3][i+12] = DOUBLE_TO_REAL(0.5 / cos ( M_PI * (double) (2*(i+12)+19) / 72.0 ));
|
|
win[1][i+24] = DOUBLE_TO_REAL(0.5 * sin( M_PI / 24.0 * (double) (2*i+13) ) / cos ( M_PI * (double) (2*(i+24)+19) / 72.0 ));
|
|
win[1][i+30] = win[3][i] = DOUBLE_TO_REAL(0.0);
|
|
win[3][i+6 ] = DOUBLE_TO_REAL(0.5 * sin( M_PI / 24.0 * (double) (2*i+1 ) ) / cos ( M_PI * (double) (2*(i+6 )+19) / 72.0 ));
|
|
}
|
|
|
|
for(i=0;i<9;i++)
|
|
COS9[i] = DOUBLE_TO_REAL(cos( M_PI / 18.0 * (double) i));
|
|
|
|
for(i=0;i<9;i++)
|
|
tfcos36[i] = DOUBLE_TO_REAL(0.5 / cos ( M_PI * (double) (i*2+1) / 36.0 ));
|
|
|
|
for(i=0;i<3;i++)
|
|
tfcos12[i] = DOUBLE_TO_REAL(0.5 / cos ( M_PI * (double) (i*2+1) / 12.0 ));
|
|
|
|
COS6_1 = DOUBLE_TO_REAL(cos( M_PI / 6.0 * (double) 1));
|
|
COS6_2 = DOUBLE_TO_REAL(cos( M_PI / 6.0 * (double) 2));
|
|
|
|
#ifdef NEW_DCT9
|
|
cos9[0] = DOUBLE_TO_REAL(cos(1.0*M_PI/9.0));
|
|
cos9[1] = DOUBLE_TO_REAL(cos(5.0*M_PI/9.0));
|
|
cos9[2] = DOUBLE_TO_REAL(cos(7.0*M_PI/9.0));
|
|
cos18[0] = DOUBLE_TO_REAL(cos(1.0*M_PI/18.0));
|
|
cos18[1] = DOUBLE_TO_REAL(cos(11.0*M_PI/18.0));
|
|
cos18[2] = DOUBLE_TO_REAL(cos(13.0*M_PI/18.0));
|
|
#endif
|
|
|
|
for(i=0;i<12;i++)
|
|
{
|
|
win[2][i] = DOUBLE_TO_REAL(0.5 * sin( M_PI / 24.0 * (double) (2*i+1) ) / cos ( M_PI * (double) (2*i+7) / 24.0 ));
|
|
}
|
|
|
|
for(i=0;i<16;i++)
|
|
{
|
|
double t = tan( (double) i * M_PI / 12.0 );
|
|
tan1_1[i] = DOUBLE_TO_REAL_15(t / (1.0+t));
|
|
tan2_1[i] = DOUBLE_TO_REAL_15(1.0 / (1.0 + t));
|
|
tan1_2[i] = DOUBLE_TO_REAL_15(M_SQRT2 * t / (1.0+t));
|
|
tan2_2[i] = DOUBLE_TO_REAL_15(M_SQRT2 / (1.0 + t));
|
|
|
|
for(j=0;j<2;j++)
|
|
{
|
|
double base = pow(2.0,-0.25*(j+1.0));
|
|
double p1=1.0,p2=1.0;
|
|
if(i > 0)
|
|
{
|
|
if( i & 1 ) p1 = pow(base,(i+1.0)*0.5);
|
|
else p2 = pow(base,i*0.5);
|
|
}
|
|
pow1_1[j][i] = DOUBLE_TO_REAL_15(p1);
|
|
pow2_1[j][i] = DOUBLE_TO_REAL_15(p2);
|
|
pow1_2[j][i] = DOUBLE_TO_REAL_15(M_SQRT2 * p1);
|
|
pow2_2[j][i] = DOUBLE_TO_REAL_15(M_SQRT2 * p2);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for(j=0;j<4;j++)
|
|
{
|
|
const int len[4] = { 36,36,12,36 };
|
|
for(i=0;i<len[j];i+=2) win1[j][i] = + win[j][i];
|
|
|
|
for(i=1;i<len[j];i+=2) win1[j][i] = - win[j][i];
|
|
}
|
|
|
|
for(j=0;j<9;j++)
|
|
{
|
|
const struct bandInfoStruct *bi = &bandInfo[j];
|
|
int *mp;
|
|
int cb,lwin;
|
|
const int *bdf;
|
|
|
|
mp = map[j][0] = mapbuf0[j];
|
|
bdf = bi->longDiff;
|
|
for(i=0,cb = 0; cb < 8 ; cb++,i+=*bdf++)
|
|
{
|
|
*mp++ = (*bdf) >> 1;
|
|
*mp++ = i;
|
|
*mp++ = 3;
|
|
*mp++ = cb;
|
|
}
|
|
bdf = bi->shortDiff+3;
|
|
for(cb=3;cb<13;cb++)
|
|
{
|
|
int l = (*bdf++) >> 1;
|
|
for(lwin=0;lwin<3;lwin++)
|
|
{
|
|
*mp++ = l;
|
|
*mp++ = i + lwin;
|
|
*mp++ = lwin;
|
|
*mp++ = cb;
|
|
}
|
|
i += 6*l;
|
|
}
|
|
mapend[j][0] = mp;
|
|
|
|
mp = map[j][1] = mapbuf1[j];
|
|
bdf = bi->shortDiff+0;
|
|
for(i=0,cb=0;cb<13;cb++)
|
|
{
|
|
int l = (*bdf++) >> 1;
|
|
for(lwin=0;lwin<3;lwin++)
|
|
{
|
|
*mp++ = l;
|
|
*mp++ = i + lwin;
|
|
*mp++ = lwin;
|
|
*mp++ = cb;
|
|
}
|
|
i += 6*l;
|
|
}
|
|
mapend[j][1] = mp;
|
|
|
|
mp = map[j][2] = mapbuf2[j];
|
|
bdf = bi->longDiff;
|
|
for(cb = 0; cb < 22 ; cb++)
|
|
{
|
|
*mp++ = (*bdf++) >> 1;
|
|
*mp++ = cb;
|
|
}
|
|
mapend[j][2] = mp;
|
|
}
|
|
|
|
/* Now for some serious loopings! */
|
|
for(i=0;i<5;i++)
|
|
for(j=0;j<6;j++)
|
|
for(k=0;k<6;k++)
|
|
{
|
|
int n = k + j * 6 + i * 36;
|
|
i_slen2[n] = i|(j<<3)|(k<<6)|(3<<12);
|
|
}
|
|
for(i=0;i<4;i++)
|
|
for(j=0;j<4;j++)
|
|
for(k=0;k<4;k++)
|
|
{
|
|
int n = k + j * 4 + i * 16;
|
|
i_slen2[n+180] = i|(j<<3)|(k<<6)|(4<<12);
|
|
}
|
|
for(i=0;i<4;i++)
|
|
for(j=0;j<3;j++)
|
|
{
|
|
int n = j + i * 3;
|
|
i_slen2[n+244] = i|(j<<3) | (5<<12);
|
|
n_slen2[n+500] = i|(j<<3) | (2<<12) | (1<<15);
|
|
}
|
|
for(i=0;i<5;i++)
|
|
for(j=0;j<5;j++)
|
|
for(k=0;k<4;k++)
|
|
for(l=0;l<4;l++)
|
|
{
|
|
int n = l + k * 4 + j * 16 + i * 80;
|
|
n_slen2[n] = i|(j<<3)|(k<<6)|(l<<9)|(0<<12);
|
|
}
|
|
for(i=0;i<5;i++)
|
|
for(j=0;j<5;j++)
|
|
for(k=0;k<4;k++)
|
|
{
|
|
int n = k + j * 4 + i * 20;
|
|
n_slen2[n+400] = i|(j<<3)|(k<<6)|(1<<12);
|
|
}
|
|
}
|
|
|
|
|
|
void init_layer3_stuff(mpg123_handle *fr, real (*gainpow2)(mpg123_handle *fr, int i))
|
|
{
|
|
int i,j;
|
|
|
|
for(i=-256;i<118+4;i++) fr->gainpow2[i+256] = gainpow2(fr,i);
|
|
|
|
for(j=0;j<9;j++)
|
|
{
|
|
for(i=0;i<23;i++)
|
|
{
|
|
fr->longLimit[j][i] = (bandInfo[j].longIdx[i] - 1 + 8) / 18 + 1;
|
|
if(fr->longLimit[j][i] > (fr->down_sample_sblimit) )
|
|
fr->longLimit[j][i] = fr->down_sample_sblimit;
|
|
}
|
|
for(i=0;i<14;i++)
|
|
{
|
|
fr->shortLimit[j][i] = (bandInfo[j].shortIdx[i] - 1) / 18 + 1;
|
|
if(fr->shortLimit[j][i] > (fr->down_sample_sblimit) )
|
|
fr->shortLimit[j][i] = fr->down_sample_sblimit;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
Observe!
|
|
Now come the actualy decoding routines.
|
|
*/
|
|
|
|
/* read additional side information (for MPEG 1 and MPEG 2) */
|
|
static int III_get_side_info(mpg123_handle *fr, struct III_sideinfo *si,int stereo, int ms_stereo,long sfreq,int single)
|
|
{
|
|
int ch, gr;
|
|
int powdiff = (single == SINGLE_MIX) ? 4 : 0;
|
|
|
|
const int tabs[2][5] = { { 2,9,5,3,4 } , { 1,8,1,2,9 } };
|
|
const int *tab = tabs[fr->lsf];
|
|
|
|
si->main_data_begin = getbits(fr, tab[1]);
|
|
|
|
if(si->main_data_begin > fr->bitreservoir)
|
|
{
|
|
if(VERBOSE2) fprintf(stderr, "Note: missing %d bytes in bit reservoir for frame %li\n", (int)(si->main_data_begin - fr->bitreservoir), (long)fr->num);
|
|
|
|
/* overwrite main_data_begin for the really available bit reservoir */
|
|
backbits(fr, tab[1]);
|
|
if(fr->lsf == 0)
|
|
{
|
|
fr->wordpointer[0] = (unsigned char) (fr->bitreservoir >> 1);
|
|
fr->wordpointer[1] = (unsigned char) ((fr->bitreservoir & 1) << 7);
|
|
}
|
|
else fr->wordpointer[0] = (unsigned char) fr->bitreservoir;
|
|
|
|
/* zero "side-info" data for a silence-frame
|
|
without touching audio data used as bit reservoir for following frame */
|
|
memset(fr->wordpointer+2, 0, fr->ssize-2);
|
|
|
|
/* reread the new bit reservoir offset */
|
|
si->main_data_begin = getbits(fr, tab[1]);
|
|
}
|
|
|
|
/* Keep track of the available data bytes for the bit reservoir.
|
|
Think: Substract the 2 crc bytes in parser already? */
|
|
fr->bitreservoir = fr->bitreservoir + fr->framesize - fr->ssize - (fr->error_protection ? 2 : 0);
|
|
/* Limit the reservoir to the max for MPEG 1.0 or 2.x . */
|
|
if(fr->bitreservoir > (unsigned int) (fr->lsf == 0 ? 511 : 255))
|
|
fr->bitreservoir = (fr->lsf == 0 ? 511 : 255);
|
|
|
|
/* Now back into less commented territory. It's code. It works. */
|
|
|
|
if (stereo == 1)
|
|
si->private_bits = getbits_fast(fr, tab[2]);
|
|
else
|
|
si->private_bits = getbits_fast(fr, tab[3]);
|
|
|
|
if(!fr->lsf) for(ch=0; ch<stereo; ch++)
|
|
{
|
|
si->ch[ch].gr[0].scfsi = -1;
|
|
si->ch[ch].gr[1].scfsi = getbits_fast(fr, 4);
|
|
}
|
|
|
|
for (gr=0; gr<tab[0]; gr++)
|
|
for (ch=0; ch<stereo; ch++)
|
|
{
|
|
register struct gr_info_s *gr_info = &(si->ch[ch].gr[gr]);
|
|
|
|
gr_info->part2_3_length = getbits(fr, 12);
|
|
gr_info->big_values = getbits(fr, 9);
|
|
if(gr_info->big_values > 288)
|
|
{
|
|
error("big_values too large!");
|
|
gr_info->big_values = 288;
|
|
}
|
|
gr_info->pow2gain = fr->gainpow2+256 - getbits_fast(fr, 8) + powdiff;
|
|
if(ms_stereo) gr_info->pow2gain += 2;
|
|
|
|
gr_info->scalefac_compress = getbits(fr, tab[4]);
|
|
|
|
if(get1bit(fr))
|
|
{ /* window switch flag */
|
|
int i;
|
|
gr_info->block_type = getbits_fast(fr, 2);
|
|
gr_info->mixed_block_flag = get1bit(fr);
|
|
gr_info->table_select[0] = getbits_fast(fr, 5);
|
|
gr_info->table_select[1] = getbits_fast(fr, 5);
|
|
/*
|
|
table_select[2] not needed, because there is no region2,
|
|
but to satisfy some verification tools we set it either.
|
|
*/
|
|
gr_info->table_select[2] = 0;
|
|
for(i=0;i<3;i++)
|
|
gr_info->full_gain[i] = gr_info->pow2gain + (getbits_fast(fr, 3)<<3);
|
|
|
|
if(gr_info->block_type == 0)
|
|
{
|
|
error("Blocktype == 0 and window-switching == 1 not allowed.");
|
|
return 1;
|
|
}
|
|
|
|
/* region_count/start parameters are implicit in this case. */
|
|
if( (!fr->lsf || (gr_info->block_type == 2)) && !fr->mpeg25)
|
|
{
|
|
gr_info->region1start = 36>>1;
|
|
gr_info->region2start = 576>>1;
|
|
}
|
|
else
|
|
{
|
|
if(fr->mpeg25)
|
|
{
|
|
int r0c,r1c;
|
|
if((gr_info->block_type == 2) && (!gr_info->mixed_block_flag) ) r0c = 5;
|
|
else r0c = 7;
|
|
|
|
r1c = 20 - r0c;
|
|
gr_info->region1start = bandInfo[sfreq].longIdx[r0c+1] >> 1 ;
|
|
gr_info->region2start = bandInfo[sfreq].longIdx[r0c+1+r1c+1] >> 1;
|
|
}
|
|
else
|
|
{
|
|
gr_info->region1start = 54>>1;
|
|
gr_info->region2start = 576>>1;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
int i,r0c,r1c;
|
|
for (i=0; i<3; i++)
|
|
gr_info->table_select[i] = getbits_fast(fr, 5);
|
|
|
|
r0c = getbits_fast(fr, 4);
|
|
r1c = getbits_fast(fr, 3);
|
|
gr_info->region1start = bandInfo[sfreq].longIdx[r0c+1] >> 1 ;
|
|
gr_info->region2start = bandInfo[sfreq].longIdx[r0c+1+r1c+1] >> 1;
|
|
|
|
if(r0c + r1c + 2 > 22) gr_info->region2start = 576>>1;
|
|
else gr_info->region2start = bandInfo[sfreq].longIdx[r0c+1+r1c+1] >> 1;
|
|
|
|
gr_info->block_type = 0;
|
|
gr_info->mixed_block_flag = 0;
|
|
}
|
|
if(!fr->lsf) gr_info->preflag = get1bit(fr);
|
|
|
|
gr_info->scalefac_scale = get1bit(fr);
|
|
gr_info->count1table_select = get1bit(fr);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* read scalefactors */
|
|
static int III_get_scale_factors_1(mpg123_handle *fr, int *scf,struct gr_info_s *gr_info,int ch,int gr)
|
|
{
|
|
const unsigned char slen[2][16] =
|
|
{
|
|
{0, 0, 0, 0, 3, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4},
|
|
{0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 1, 2, 3, 2, 3}
|
|
};
|
|
int numbits;
|
|
int num0 = slen[0][gr_info->scalefac_compress];
|
|
int num1 = slen[1][gr_info->scalefac_compress];
|
|
|
|
if(gr_info->block_type == 2)
|
|
{
|
|
int i=18;
|
|
numbits = (num0 + num1) * 18;
|
|
|
|
if(gr_info->mixed_block_flag)
|
|
{
|
|
for (i=8;i;i--)
|
|
*scf++ = getbits_fast(fr, num0);
|
|
|
|
i = 9;
|
|
numbits -= num0; /* num0 * 17 + num1 * 18 */
|
|
}
|
|
|
|
for(;i;i--) *scf++ = getbits_fast(fr, num0);
|
|
|
|
for(i = 18; i; i--) *scf++ = getbits_fast(fr, num1);
|
|
|
|
*scf++ = 0; *scf++ = 0; *scf++ = 0; /* short[13][0..2] = 0 */
|
|
}
|
|
else
|
|
{
|
|
int i;
|
|
int scfsi = gr_info->scfsi;
|
|
|
|
if(scfsi < 0)
|
|
{ /* scfsi < 0 => granule == 0 */
|
|
for(i=11;i;i--) *scf++ = getbits_fast(fr, num0);
|
|
|
|
for(i=10;i;i--) *scf++ = getbits_fast(fr, num1);
|
|
|
|
numbits = (num0 + num1) * 10 + num0;
|
|
*scf++ = 0;
|
|
}
|
|
else
|
|
{
|
|
numbits = 0;
|
|
if(!(scfsi & 0x8))
|
|
{
|
|
for (i=0;i<6;i++) *scf++ = getbits_fast(fr, num0);
|
|
|
|
numbits += num0 * 6;
|
|
}
|
|
else scf += 6;
|
|
|
|
if(!(scfsi & 0x4))
|
|
{
|
|
for (i=0;i<5;i++) *scf++ = getbits_fast(fr, num0);
|
|
|
|
numbits += num0 * 5;
|
|
}
|
|
else scf += 5;
|
|
|
|
if(!(scfsi & 0x2))
|
|
{
|
|
for(i=0;i<5;i++) *scf++ = getbits_fast(fr, num1);
|
|
|
|
numbits += num1 * 5;
|
|
}
|
|
else scf += 5;
|
|
|
|
if(!(scfsi & 0x1))
|
|
{
|
|
for (i=0;i<5;i++) *scf++ = getbits_fast(fr, num1);
|
|
|
|
numbits += num1 * 5;
|
|
}
|
|
else scf += 5;
|
|
|
|
*scf++ = 0; /* no l[21] in original sources */
|
|
}
|
|
}
|
|
return numbits;
|
|
}
|
|
|
|
|
|
static int III_get_scale_factors_2(mpg123_handle *fr, int *scf,struct gr_info_s *gr_info,int i_stereo)
|
|
{
|
|
const unsigned char *pnt;
|
|
int i,j,n=0,numbits=0;
|
|
unsigned int slen;
|
|
|
|
const unsigned char stab[3][6][4] =
|
|
{
|
|
{
|
|
{ 6, 5, 5,5 } , { 6, 5, 7,3 } , { 11,10,0,0},
|
|
{ 7, 7, 7,0 } , { 6, 6, 6,3 } , { 8, 8,5,0}
|
|
},
|
|
{
|
|
{ 9, 9, 9,9 } , { 9, 9,12,6 } , { 18,18,0,0},
|
|
{12,12,12,0 } , {12, 9, 9,6 } , { 15,12,9,0}
|
|
},
|
|
{
|
|
{ 6, 9, 9,9 } , { 6, 9,12,6 } , { 15,18,0,0},
|
|
{ 6,15,12,0 } , { 6,12, 9,6 } , { 6,18,9,0}
|
|
}
|
|
};
|
|
|
|
if(i_stereo) /* i_stereo AND second channel -> do_layer3() checks this */
|
|
slen = i_slen2[gr_info->scalefac_compress>>1];
|
|
else
|
|
slen = n_slen2[gr_info->scalefac_compress];
|
|
|
|
gr_info->preflag = (slen>>15) & 0x1;
|
|
|
|
n = 0;
|
|
if( gr_info->block_type == 2 )
|
|
{
|
|
n++;
|
|
if(gr_info->mixed_block_flag) n++;
|
|
}
|
|
|
|
pnt = stab[n][(slen>>12)&0x7];
|
|
|
|
for(i=0;i<4;i++)
|
|
{
|
|
int num = slen & 0x7;
|
|
slen >>= 3;
|
|
if(num)
|
|
{
|
|
for(j=0;j<(int)(pnt[i]);j++) *scf++ = getbits_fast(fr, num);
|
|
|
|
numbits += pnt[i] * num;
|
|
}
|
|
else
|
|
for(j=0;j<(int)(pnt[i]);j++) *scf++ = 0;
|
|
}
|
|
|
|
n = (n << 1) + 1;
|
|
for(i=0;i<n;i++) *scf++ = 0;
|
|
|
|
return numbits;
|
|
}
|
|
|
|
static const int pretab1[22] = {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,3,3,3,2,0};
|
|
static const int pretab2[22] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
|
|
|
|
/*
|
|
Dequantize samples
|
|
...includes Huffman decoding
|
|
*/
|
|
|
|
/* 24 is enough because tab13 has max. a 19 bit huffvector */
|
|
#define BITSHIFT ((sizeof(long)-1)*8)
|
|
#define REFRESH_MASK \
|
|
while(num < BITSHIFT) { \
|
|
mask |= ((unsigned long)getbyte(fr))<<(BITSHIFT-num); \
|
|
num += 8; \
|
|
part2remain -= 8; }
|
|
|
|
static int III_dequantize_sample(mpg123_handle *fr, real xr[SBLIMIT][SSLIMIT],int *scf, struct gr_info_s *gr_info,int sfreq,int part2bits)
|
|
{
|
|
int shift = 1 + gr_info->scalefac_scale;
|
|
real *xrpnt = (real *) xr;
|
|
int l[3],l3;
|
|
int part2remain = gr_info->part2_3_length - part2bits;
|
|
int *me;
|
|
#ifdef REAL_IS_FIXED
|
|
int gainpow2_scale_idx = 378;
|
|
#endif
|
|
|
|
/* mhipp tree has this split up a bit... */
|
|
int num=getbitoffset(fr);
|
|
long mask;
|
|
/* We must split this, because for num==0 the shift is undefined if you do it in one step. */
|
|
mask = ((unsigned long) getbits(fr, num))<<BITSHIFT;
|
|
mask <<= 8-num;
|
|
part2remain -= num;
|
|
|
|
{
|
|
int bv = gr_info->big_values;
|
|
int region1 = gr_info->region1start;
|
|
int region2 = gr_info->region2start;
|
|
if(region1 > region2)
|
|
{
|
|
/*
|
|
That's not optimal: it fixes a segfault with fuzzed data, but also apparently triggers where it shouldn't, see bug 1641196.
|
|
The benefit of not crashing / having this security risk is bigger than these few frames of a lame-3.70 file that aren't audible anyway.
|
|
But still, I want to know if indeed this check or the old lame is at fault.
|
|
*/
|
|
error("You got some really nasty file there... region1>region2!");
|
|
return 1;
|
|
}
|
|
l3 = ((576>>1)-bv)>>1;
|
|
|
|
/* we may lose the 'odd' bit here !! check this later again */
|
|
if(bv <= region1)
|
|
{
|
|
l[0] = bv;
|
|
l[1] = 0;
|
|
l[2] = 0;
|
|
}
|
|
else
|
|
{
|
|
l[0] = region1;
|
|
if(bv <= region2)
|
|
{
|
|
l[1] = bv - l[0];
|
|
l[2] = 0;
|
|
}
|
|
else
|
|
{
|
|
l[1] = region2 - l[0];
|
|
l[2] = bv - region2;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(gr_info->block_type == 2)
|
|
{
|
|
/* decoding with short or mixed mode BandIndex table */
|
|
int i,max[4];
|
|
int step=0,lwin=3,cb=0;
|
|
register real v = 0.0;
|
|
register int *m,mc;
|
|
|
|
if(gr_info->mixed_block_flag)
|
|
{
|
|
max[3] = -1;
|
|
max[0] = max[1] = max[2] = 2;
|
|
m = map[sfreq][0];
|
|
me = mapend[sfreq][0];
|
|
}
|
|
else
|
|
{
|
|
max[0] = max[1] = max[2] = max[3] = -1;
|
|
/* max[3] not really needed in this case */
|
|
m = map[sfreq][1];
|
|
me = mapend[sfreq][1];
|
|
}
|
|
|
|
mc = 0;
|
|
for(i=0;i<2;i++)
|
|
{
|
|
int lp = l[i];
|
|
struct newhuff *h = ht+gr_info->table_select[i];
|
|
for(;lp;lp--,mc--)
|
|
{
|
|
register int x,y;
|
|
if( (!mc) )
|
|
{
|
|
mc = *m++;
|
|
xrpnt = ((real *) xr) + (*m++);
|
|
lwin = *m++;
|
|
cb = *m++;
|
|
if(lwin == 3)
|
|
{
|
|
#ifdef REAL_IS_FIXED
|
|
gainpow2_scale_idx = (int)(gr_info->pow2gain + (*scf << shift) - fr->gainpow2);
|
|
#endif
|
|
v = gr_info->pow2gain[(*scf++) << shift];
|
|
step = 1;
|
|
}
|
|
else
|
|
{
|
|
#ifdef REAL_IS_FIXED
|
|
gainpow2_scale_idx = (int)(gr_info->full_gain[lwin] + (*scf << shift) - fr->gainpow2);
|
|
#endif
|
|
v = gr_info->full_gain[lwin][(*scf++) << shift];
|
|
step = 3;
|
|
}
|
|
}
|
|
{
|
|
register short *val = h->table;
|
|
REFRESH_MASK;
|
|
while((y=*val++)<0)
|
|
{
|
|
if (mask < 0) val -= y;
|
|
|
|
num--;
|
|
mask <<= 1;
|
|
}
|
|
x = y >> 4;
|
|
y &= 0xf;
|
|
}
|
|
if(x == 15 && h->linbits)
|
|
{
|
|
max[lwin] = cb;
|
|
REFRESH_MASK;
|
|
x += ((unsigned long) mask) >> (BITSHIFT+8-h->linbits);
|
|
num -= h->linbits+1;
|
|
mask <<= h->linbits;
|
|
if(mask < 0) *xrpnt = REAL_MUL_SCALE_LAYER3(-ispow[x], v, gainpow2_scale_idx);
|
|
else *xrpnt = REAL_MUL_SCALE_LAYER3( ispow[x], v, gainpow2_scale_idx);
|
|
|
|
mask <<= 1;
|
|
}
|
|
else if(x)
|
|
{
|
|
max[lwin] = cb;
|
|
if(mask < 0) *xrpnt = REAL_MUL_SCALE_LAYER3(-ispow[x], v, gainpow2_scale_idx);
|
|
else *xrpnt = REAL_MUL_SCALE_LAYER3( ispow[x], v, gainpow2_scale_idx);
|
|
|
|
num--;
|
|
mask <<= 1;
|
|
}
|
|
else *xrpnt = DOUBLE_TO_REAL(0.0);
|
|
|
|
xrpnt += step;
|
|
if(y == 15 && h->linbits)
|
|
{
|
|
max[lwin] = cb;
|
|
REFRESH_MASK;
|
|
y += ((unsigned long) mask) >> (BITSHIFT+8-h->linbits);
|
|
num -= h->linbits+1;
|
|
mask <<= h->linbits;
|
|
if(mask < 0) *xrpnt = REAL_MUL_SCALE_LAYER3(-ispow[y], v, gainpow2_scale_idx);
|
|
else *xrpnt = REAL_MUL_SCALE_LAYER3( ispow[y], v, gainpow2_scale_idx);
|
|
|
|
mask <<= 1;
|
|
}
|
|
else if(y)
|
|
{
|
|
max[lwin] = cb;
|
|
if(mask < 0) *xrpnt = REAL_MUL_SCALE_LAYER3(-ispow[y], v, gainpow2_scale_idx);
|
|
else *xrpnt = REAL_MUL_SCALE_LAYER3( ispow[y], v, gainpow2_scale_idx);
|
|
|
|
num--;
|
|
mask <<= 1;
|
|
}
|
|
else *xrpnt = DOUBLE_TO_REAL(0.0);
|
|
|
|
xrpnt += step;
|
|
}
|
|
}
|
|
|
|
for(;l3 && (part2remain+num > 0);l3--)
|
|
{
|
|
struct newhuff* h;
|
|
register short* val;
|
|
register short a;
|
|
/*
|
|
This is only a humble hack to prevent a special segfault.
|
|
More insight into the real workings is still needed.
|
|
Especially why there are (valid?) files that make xrpnt exceed the array with 4 bytes without segfaulting, more seems to be really bad, though.
|
|
*/
|
|
#ifdef DEBUG
|
|
if(!(xrpnt < &xr[SBLIMIT][0]))
|
|
{
|
|
if(VERBOSE) debug2("attempted soft xrpnt overflow (%p !< %p) ?", (void*) xrpnt, (void*) &xr[SBLIMIT][0]);
|
|
}
|
|
#endif
|
|
if(!(xrpnt < &xr[SBLIMIT][0]+5))
|
|
{
|
|
if(NOQUIET) error2("attempted xrpnt overflow (%p !< %p)", (void*) xrpnt, (void*) &xr[SBLIMIT][0]);
|
|
return 2;
|
|
}
|
|
h = htc+gr_info->count1table_select;
|
|
val = h->table;
|
|
|
|
REFRESH_MASK;
|
|
while((a=*val++)<0)
|
|
{
|
|
if(mask < 0) val -= a;
|
|
|
|
num--;
|
|
mask <<= 1;
|
|
}
|
|
if(part2remain+num <= 0)
|
|
{
|
|
num -= part2remain+num;
|
|
break;
|
|
}
|
|
|
|
for(i=0;i<4;i++)
|
|
{
|
|
if(!(i & 1))
|
|
{
|
|
if(!mc)
|
|
{
|
|
mc = *m++;
|
|
xrpnt = ((real *) xr) + (*m++);
|
|
lwin = *m++;
|
|
cb = *m++;
|
|
if(lwin == 3)
|
|
{
|
|
#ifdef REAL_IS_FIXED
|
|
gainpow2_scale_idx = (int)(gr_info->pow2gain + (*scf << shift) - fr->gainpow2);
|
|
#endif
|
|
v = gr_info->pow2gain[(*scf++) << shift];
|
|
step = 1;
|
|
}
|
|
else
|
|
{
|
|
#ifdef REAL_IS_FIXED
|
|
gainpow2_scale_idx = (int)(gr_info->full_gain[lwin] + (*scf << shift) - fr->gainpow2);
|
|
#endif
|
|
v = gr_info->full_gain[lwin][(*scf++) << shift];
|
|
step = 3;
|
|
}
|
|
}
|
|
mc--;
|
|
}
|
|
if( (a & (0x8>>i)) )
|
|
{
|
|
max[lwin] = cb;
|
|
if(part2remain+num <= 0)
|
|
break;
|
|
|
|
if(mask < 0) *xrpnt = -REAL_SCALE_LAYER3(v, gainpow2_scale_idx);
|
|
else *xrpnt = REAL_SCALE_LAYER3(v, gainpow2_scale_idx);
|
|
|
|
num--;
|
|
mask <<= 1;
|
|
}
|
|
else *xrpnt = DOUBLE_TO_REAL(0.0);
|
|
|
|
xrpnt += step;
|
|
}
|
|
}
|
|
|
|
if(lwin < 3)
|
|
{ /* short band? */
|
|
while(1)
|
|
{
|
|
for(;mc > 0;mc--)
|
|
{
|
|
*xrpnt = DOUBLE_TO_REAL(0.0); xrpnt += 3; /* short band -> step=3 */
|
|
*xrpnt = DOUBLE_TO_REAL(0.0); xrpnt += 3;
|
|
}
|
|
if(m >= me)
|
|
break;
|
|
|
|
mc = *m++;
|
|
xrpnt = ((real *) xr) + *m++;
|
|
if(*m++ == 0)
|
|
break; /* optimize: field will be set to zero at the end of the function */
|
|
|
|
m++; /* cb */
|
|
}
|
|
}
|
|
|
|
gr_info->maxband[0] = max[0]+1;
|
|
gr_info->maxband[1] = max[1]+1;
|
|
gr_info->maxband[2] = max[2]+1;
|
|
gr_info->maxbandl = max[3]+1;
|
|
|
|
{
|
|
int rmax = max[0] > max[1] ? max[0] : max[1];
|
|
rmax = (rmax > max[2] ? rmax : max[2]) + 1;
|
|
gr_info->maxb = rmax ? fr->shortLimit[sfreq][rmax] : fr->longLimit[sfreq][max[3]+1];
|
|
}
|
|
|
|
}
|
|
else
|
|
{
|
|
/* decoding with 'long' BandIndex table (block_type != 2) */
|
|
const int *pretab = gr_info->preflag ? pretab1 : pretab2;
|
|
int i,max = -1;
|
|
int cb = 0;
|
|
int *m = map[sfreq][2];
|
|
register real v = 0.0;
|
|
int mc = 0;
|
|
|
|
/* long hash table values */
|
|
for(i=0;i<3;i++)
|
|
{
|
|
int lp = l[i];
|
|
struct newhuff *h = ht+gr_info->table_select[i];
|
|
|
|
for(;lp;lp--,mc--)
|
|
{
|
|
int x,y;
|
|
if(!mc)
|
|
{
|
|
mc = *m++;
|
|
cb = *m++;
|
|
#ifdef CUT_SFB21
|
|
if(cb == 21)
|
|
v = 0.0;
|
|
else
|
|
#endif
|
|
{
|
|
#ifdef REAL_IS_FIXED
|
|
gainpow2_scale_idx = (int)(gr_info->pow2gain + (*scf << shift) - fr->gainpow2);
|
|
#endif
|
|
v = gr_info->pow2gain[(*(scf++) + (*pretab++)) << shift];
|
|
}
|
|
}
|
|
{
|
|
register short *val = h->table;
|
|
REFRESH_MASK;
|
|
while((y=*val++)<0)
|
|
{
|
|
if (mask < 0) val -= y;
|
|
|
|
num--;
|
|
mask <<= 1;
|
|
}
|
|
x = y >> 4;
|
|
y &= 0xf;
|
|
}
|
|
|
|
if(x == 15 && h->linbits)
|
|
{
|
|
max = cb;
|
|
REFRESH_MASK;
|
|
x += ((unsigned long) mask) >> (BITSHIFT+8-h->linbits);
|
|
num -= h->linbits+1;
|
|
mask <<= h->linbits;
|
|
if(mask < 0) *xrpnt++ = REAL_MUL_SCALE_LAYER3(-ispow[x], v, gainpow2_scale_idx);
|
|
else *xrpnt++ = REAL_MUL_SCALE_LAYER3( ispow[x], v, gainpow2_scale_idx);
|
|
|
|
mask <<= 1;
|
|
}
|
|
else if(x)
|
|
{
|
|
max = cb;
|
|
if(mask < 0) *xrpnt++ = REAL_MUL_SCALE_LAYER3(-ispow[x], v, gainpow2_scale_idx);
|
|
else *xrpnt++ = REAL_MUL_SCALE_LAYER3( ispow[x], v, gainpow2_scale_idx);
|
|
num--;
|
|
|
|
mask <<= 1;
|
|
}
|
|
else *xrpnt++ = DOUBLE_TO_REAL(0.0);
|
|
|
|
if(y == 15 && h->linbits)
|
|
{
|
|
max = cb;
|
|
REFRESH_MASK;
|
|
y += ((unsigned long) mask) >> (BITSHIFT+8-h->linbits);
|
|
num -= h->linbits+1;
|
|
mask <<= h->linbits;
|
|
if(mask < 0) *xrpnt++ = REAL_MUL_SCALE_LAYER3(-ispow[y], v, gainpow2_scale_idx);
|
|
else *xrpnt++ = REAL_MUL_SCALE_LAYER3( ispow[y], v, gainpow2_scale_idx);
|
|
|
|
mask <<= 1;
|
|
}
|
|
else if(y)
|
|
{
|
|
max = cb;
|
|
if(mask < 0) *xrpnt++ = REAL_MUL_SCALE_LAYER3(-ispow[y], v, gainpow2_scale_idx);
|
|
else *xrpnt++ = REAL_MUL_SCALE_LAYER3( ispow[y], v, gainpow2_scale_idx);
|
|
|
|
num--;
|
|
mask <<= 1;
|
|
}
|
|
else *xrpnt++ = DOUBLE_TO_REAL(0.0);
|
|
}
|
|
}
|
|
|
|
/* short (count1table) values */
|
|
for(;l3 && (part2remain+num > 0);l3--)
|
|
{
|
|
struct newhuff *h = htc+gr_info->count1table_select;
|
|
register short *val = h->table,a;
|
|
|
|
REFRESH_MASK;
|
|
while((a=*val++)<0)
|
|
{
|
|
if (mask < 0) val -= a;
|
|
|
|
num--;
|
|
mask <<= 1;
|
|
}
|
|
if(part2remain+num <= 0)
|
|
{
|
|
num -= part2remain+num;
|
|
break;
|
|
}
|
|
|
|
for(i=0;i<4;i++)
|
|
{
|
|
if(!(i & 1))
|
|
{
|
|
if(!mc)
|
|
{
|
|
mc = *m++;
|
|
cb = *m++;
|
|
#ifdef CUT_SFB21
|
|
if(cb == 21)
|
|
v = 0.0;
|
|
else
|
|
#endif
|
|
{
|
|
#ifdef REAL_IS_FIXED
|
|
gainpow2_scale_idx = (int)(gr_info->pow2gain + (*scf << shift) - fr->gainpow2);
|
|
#endif
|
|
v = gr_info->pow2gain[((*scf++) + (*pretab++)) << shift];
|
|
}
|
|
}
|
|
mc--;
|
|
}
|
|
if( (a & (0x8>>i)) )
|
|
{
|
|
max = cb;
|
|
if(part2remain+num <= 0)
|
|
break;
|
|
|
|
if(mask < 0) *xrpnt++ = -REAL_SCALE_LAYER3(v, gainpow2_scale_idx);
|
|
else *xrpnt++ = REAL_SCALE_LAYER3(v, gainpow2_scale_idx);
|
|
|
|
num--;
|
|
mask <<= 1;
|
|
}
|
|
else *xrpnt++ = DOUBLE_TO_REAL(0.0);
|
|
}
|
|
}
|
|
|
|
gr_info->maxbandl = max+1;
|
|
gr_info->maxb = fr->longLimit[sfreq][gr_info->maxbandl];
|
|
}
|
|
|
|
part2remain += num;
|
|
backbits(fr, num);
|
|
num = 0;
|
|
|
|
while(xrpnt < &xr[SBLIMIT][0])
|
|
*xrpnt++ = DOUBLE_TO_REAL(0.0);
|
|
|
|
while( part2remain > 16 )
|
|
{
|
|
skipbits(fr, 16); /* Dismiss stuffing Bits */
|
|
part2remain -= 16;
|
|
}
|
|
if(part2remain > 0) skipbits(fr, part2remain);
|
|
else if(part2remain < 0)
|
|
{
|
|
debug1("Can't rewind stream by %d bits!",-part2remain);
|
|
return 1; /* -> error */
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* calculate real channel values for Joint-I-Stereo-mode */
|
|
static void III_i_stereo(real xr_buf[2][SBLIMIT][SSLIMIT],int *scalefac, struct gr_info_s *gr_info,int sfreq,int ms_stereo,int lsf)
|
|
{
|
|
real (*xr)[SBLIMIT*SSLIMIT] = (real (*)[SBLIMIT*SSLIMIT] ) xr_buf;
|
|
const struct bandInfoStruct *bi = &bandInfo[sfreq];
|
|
|
|
const real *tab1,*tab2;
|
|
|
|
#if 1
|
|
int tab;
|
|
/* TODO: optimize as static */
|
|
const real *tabs[3][2][2] =
|
|
{
|
|
{ { tan1_1,tan2_1 } , { tan1_2,tan2_2 } },
|
|
{ { pow1_1[0],pow2_1[0] } , { pow1_2[0],pow2_2[0] } },
|
|
{ { pow1_1[1],pow2_1[1] } , { pow1_2[1],pow2_2[1] } }
|
|
};
|
|
|
|
tab = lsf + (gr_info->scalefac_compress & lsf);
|
|
tab1 = tabs[tab][ms_stereo][0];
|
|
tab2 = tabs[tab][ms_stereo][1];
|
|
#else
|
|
if(lsf)
|
|
{
|
|
int p = gr_info->scalefac_compress & 0x1;
|
|
if(ms_stereo)
|
|
{
|
|
tab1 = pow1_2[p];
|
|
tab2 = pow2_2[p];
|
|
}
|
|
else
|
|
{
|
|
tab1 = pow1_1[p];
|
|
tab2 = pow2_1[p];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if(ms_stereo)
|
|
{
|
|
tab1 = tan1_2;
|
|
tab2 = tan2_2;
|
|
}
|
|
else
|
|
{
|
|
tab1 = tan1_1;
|
|
tab2 = tan2_1;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if(gr_info->block_type == 2)
|
|
{
|
|
int lwin,do_l = 0;
|
|
if( gr_info->mixed_block_flag ) do_l = 1;
|
|
|
|
for(lwin=0;lwin<3;lwin++)
|
|
{ /* process each window */
|
|
/* get first band with zero values */
|
|
int is_p,sb,idx,sfb = gr_info->maxband[lwin]; /* sfb is minimal 3 for mixed mode */
|
|
if(sfb > 3) do_l = 0;
|
|
|
|
for(;sfb<12;sfb++)
|
|
{
|
|
is_p = scalefac[sfb*3+lwin-gr_info->mixed_block_flag]; /* scale: 0-15 */
|
|
if(is_p != 7)
|
|
{
|
|
real t1,t2;
|
|
sb = bi->shortDiff[sfb];
|
|
idx = bi->shortIdx[sfb] + lwin;
|
|
t1 = tab1[is_p]; t2 = tab2[is_p];
|
|
for (; sb > 0; sb--,idx+=3)
|
|
{
|
|
real v = xr[0][idx];
|
|
xr[0][idx] = REAL_MUL_15(v, t1);
|
|
xr[1][idx] = REAL_MUL_15(v, t2);
|
|
}
|
|
}
|
|
}
|
|
|
|
#if 1
|
|
/* in the original: copy 10 to 11 , here: copy 11 to 12
|
|
maybe still wrong??? (copy 12 to 13?) */
|
|
is_p = scalefac[11*3+lwin-gr_info->mixed_block_flag]; /* scale: 0-15 */
|
|
sb = bi->shortDiff[12];
|
|
idx = bi->shortIdx[12] + lwin;
|
|
#else
|
|
is_p = scalefac[10*3+lwin-gr_info->mixed_block_flag]; /* scale: 0-15 */
|
|
sb = bi->shortDiff[11];
|
|
idx = bi->shortIdx[11] + lwin;
|
|
#endif
|
|
if(is_p != 7)
|
|
{
|
|
real t1,t2;
|
|
t1 = tab1[is_p]; t2 = tab2[is_p];
|
|
for( ; sb > 0; sb--,idx+=3 )
|
|
{
|
|
real v = xr[0][idx];
|
|
xr[0][idx] = REAL_MUL_15(v, t1);
|
|
xr[1][idx] = REAL_MUL_15(v, t2);
|
|
}
|
|
}
|
|
} /* end for(lwin; .. ; . ) */
|
|
|
|
/* also check l-part, if ALL bands in the three windows are 'empty' and mode = mixed_mode */
|
|
if(do_l)
|
|
{
|
|
int sfb = gr_info->maxbandl;
|
|
int idx;
|
|
if(sfb > 21) return; /* similarity fix related to CVE-2006-1655 */
|
|
|
|
idx = bi->longIdx[sfb];
|
|
for( ; sfb<8; sfb++ )
|
|
{
|
|
int sb = bi->longDiff[sfb];
|
|
int is_p = scalefac[sfb]; /* scale: 0-15 */
|
|
if(is_p != 7)
|
|
{
|
|
real t1,t2;
|
|
t1 = tab1[is_p]; t2 = tab2[is_p];
|
|
for( ; sb > 0; sb--,idx++)
|
|
{
|
|
real v = xr[0][idx];
|
|
xr[0][idx] = REAL_MUL_15(v, t1);
|
|
xr[1][idx] = REAL_MUL_15(v, t2);
|
|
}
|
|
}
|
|
else idx += sb;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{ /* ((gr_info->block_type != 2)) */
|
|
int sfb = gr_info->maxbandl;
|
|
int is_p,idx;
|
|
if(sfb > 21) return; /* tightened fix for CVE-2006-1655 */
|
|
|
|
idx = bi->longIdx[sfb];
|
|
for ( ; sfb<21; sfb++)
|
|
{
|
|
int sb = bi->longDiff[sfb];
|
|
is_p = scalefac[sfb]; /* scale: 0-15 */
|
|
if(is_p != 7)
|
|
{
|
|
real t1,t2;
|
|
t1 = tab1[is_p]; t2 = tab2[is_p];
|
|
for( ; sb > 0; sb--,idx++)
|
|
{
|
|
real v = xr[0][idx];
|
|
xr[0][idx] = REAL_MUL_15(v, t1);
|
|
xr[1][idx] = REAL_MUL_15(v, t2);
|
|
}
|
|
}
|
|
else idx += sb;
|
|
}
|
|
|
|
is_p = scalefac[20];
|
|
if(is_p != 7)
|
|
{ /* copy l-band 20 to l-band 21 */
|
|
int sb;
|
|
real t1 = tab1[is_p],t2 = tab2[is_p];
|
|
|
|
for( sb = bi->longDiff[21]; sb > 0; sb--,idx++ )
|
|
{
|
|
real v = xr[0][idx];
|
|
xr[0][idx] = REAL_MUL_15(v, t1);
|
|
xr[1][idx] = REAL_MUL_15(v, t2);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void III_antialias(real xr[SBLIMIT][SSLIMIT],struct gr_info_s *gr_info)
|
|
{
|
|
int sblim;
|
|
|
|
if(gr_info->block_type == 2)
|
|
{
|
|
if(!gr_info->mixed_block_flag) return;
|
|
|
|
sblim = 1;
|
|
}
|
|
else sblim = gr_info->maxb-1;
|
|
|
|
/* 31 alias-reduction operations between each pair of sub-bands */
|
|
/* with 8 butterflies between each pair */
|
|
|
|
{
|
|
int sb;
|
|
real *xr1=(real *) xr[1];
|
|
|
|
for(sb=sblim; sb; sb--,xr1+=10)
|
|
{
|
|
int ss;
|
|
real *cs=aa_cs,*ca=aa_ca;
|
|
real *xr2 = xr1;
|
|
|
|
for(ss=7;ss>=0;ss--)
|
|
{ /* upper and lower butterfly inputs */
|
|
register real bu = *--xr2,bd = *xr1;
|
|
*xr2 = REAL_MUL(bu, *cs) - REAL_MUL(bd, *ca);
|
|
*xr1++ = REAL_MUL(bd, *cs++) + REAL_MUL(bu, *ca++);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
This is an optimized DCT from Jeff Tsay's maplay 1.2+ package.
|
|
Saved one multiplication by doing the 'twiddle factor' stuff
|
|
together with the window mul. (MH)
|
|
|
|
This uses Byeong Gi Lee's Fast Cosine Transform algorithm, but the
|
|
9 point IDCT needs to be reduced further. Unfortunately, I don't
|
|
know how to do that, because 9 is not an even number. - Jeff.
|
|
|
|
Original Message:
|
|
|
|
9 Point Inverse Discrete Cosine Transform
|
|
|
|
This piece of code is Copyright 1997 Mikko Tommila and is freely usable
|
|
by anybody. The algorithm itself is of course in the public domain.
|
|
|
|
Again derived heuristically from the 9-point WFTA.
|
|
|
|
The algorithm is optimized (?) for speed, not for small rounding errors or
|
|
good readability.
|
|
|
|
36 additions, 11 multiplications
|
|
|
|
Again this is very likely sub-optimal.
|
|
|
|
The code is optimized to use a minimum number of temporary variables,
|
|
so it should compile quite well even on 8-register Intel x86 processors.
|
|
This makes the code quite obfuscated and very difficult to understand.
|
|
|
|
References:
|
|
[1] S. Winograd: "On Computing the Discrete Fourier Transform",
|
|
Mathematics of Computation, Volume 32, Number 141, January 1978,
|
|
Pages 175-199
|
|
*/
|
|
|
|
/* Calculation of the inverse MDCT
|
|
used to be static without 3dnow - does that really matter? */
|
|
void dct36(real *inbuf,real *o1,real *o2,real *wintab,real *tsbuf)
|
|
{
|
|
#ifdef NEW_DCT9
|
|
real tmp[18];
|
|
#endif
|
|
|
|
{
|
|
register real *in = inbuf;
|
|
|
|
in[17]+=in[16]; in[16]+=in[15]; in[15]+=in[14];
|
|
in[14]+=in[13]; in[13]+=in[12]; in[12]+=in[11];
|
|
in[11]+=in[10]; in[10]+=in[9]; in[9] +=in[8];
|
|
in[8] +=in[7]; in[7] +=in[6]; in[6] +=in[5];
|
|
in[5] +=in[4]; in[4] +=in[3]; in[3] +=in[2];
|
|
in[2] +=in[1]; in[1] +=in[0];
|
|
|
|
in[17]+=in[15]; in[15]+=in[13]; in[13]+=in[11]; in[11]+=in[9];
|
|
in[9] +=in[7]; in[7] +=in[5]; in[5] +=in[3]; in[3] +=in[1];
|
|
|
|
|
|
#ifdef NEW_DCT9
|
|
#if 1
|
|
{
|
|
real t3;
|
|
{
|
|
real t0, t1, t2;
|
|
|
|
t0 = REAL_MUL(COS6_2, (in[8] + in[16] - in[4]));
|
|
t1 = REAL_MUL(COS6_2, in[12]);
|
|
|
|
t3 = in[0];
|
|
t2 = t3 - t1 - t1;
|
|
tmp[1] = tmp[7] = t2 - t0;
|
|
tmp[4] = t2 + t0 + t0;
|
|
t3 += t1;
|
|
|
|
t2 = REAL_MUL(COS6_1, (in[10] + in[14] - in[2]));
|
|
tmp[1] -= t2;
|
|
tmp[7] += t2;
|
|
}
|
|
{
|
|
real t0, t1, t2;
|
|
|
|
t0 = REAL_MUL(cos9[0], (in[4] + in[8] ));
|
|
t1 = REAL_MUL(cos9[1], (in[8] - in[16]));
|
|
t2 = REAL_MUL(cos9[2], (in[4] + in[16]));
|
|
|
|
tmp[2] = tmp[6] = t3 - t0 - t2;
|
|
tmp[0] = tmp[8] = t3 + t0 + t1;
|
|
tmp[3] = tmp[5] = t3 - t1 + t2;
|
|
}
|
|
}
|
|
{
|
|
real t1, t2, t3;
|
|
|
|
t1 = REAL_MUL(cos18[0], (in[2] + in[10]));
|
|
t2 = REAL_MUL(cos18[1], (in[10] - in[14]));
|
|
t3 = REAL_MUL(COS6_1, in[6]);
|
|
|
|
{
|
|
real t0 = t1 + t2 + t3;
|
|
tmp[0] += t0;
|
|
tmp[8] -= t0;
|
|
}
|
|
|
|
t2 -= t3;
|
|
t1 -= t3;
|
|
|
|
t3 = REAL_MUL(cos18[2], (in[2] + in[14]));
|
|
|
|
t1 += t3;
|
|
tmp[3] += t1;
|
|
tmp[5] -= t1;
|
|
|
|
t2 -= t3;
|
|
tmp[2] += t2;
|
|
tmp[6] -= t2;
|
|
}
|
|
|
|
#else
|
|
{
|
|
real t0, t1, t2, t3, t4, t5, t6, t7;
|
|
|
|
t1 = REAL_MUL(COS6_2, in[12]);
|
|
t2 = REAL_MUL(COS6_2, (in[8] + in[16] - in[4]));
|
|
|
|
t3 = in[0] + t1;
|
|
t4 = in[0] - t1 - t1;
|
|
t5 = t4 - t2;
|
|
tmp[4] = t4 + t2 + t2;
|
|
|
|
t0 = REAL_MUL(cos9[0], (in[4] + in[8]));
|
|
t1 = REAL_MUL(cos9[1], (in[8] - in[16]));
|
|
|
|
t2 = REAL_MUL(cos9[2], (in[4] + in[16]));
|
|
|
|
t6 = t3 - t0 - t2;
|
|
t0 += t3 + t1;
|
|
t3 += t2 - t1;
|
|
|
|
t2 = REAL_MUL(cos18[0], (in[2] + in[10]));
|
|
t4 = REAL_MUL(cos18[1], (in[10] - in[14]));
|
|
t7 = REAL_MUL(COS6_1, in[6]);
|
|
|
|
t1 = t2 + t4 + t7;
|
|
tmp[0] = t0 + t1;
|
|
tmp[8] = t0 - t1;
|
|
t1 = REAL_MUL(cos18[2], (in[2] + in[14]));
|
|
t2 += t1 - t7;
|
|
|
|
tmp[3] = t3 + t2;
|
|
t0 = REAL_MUL(COS6_1, (in[10] + in[14] - in[2]));
|
|
tmp[5] = t3 - t2;
|
|
|
|
t4 -= t1 + t7;
|
|
|
|
tmp[1] = t5 - t0;
|
|
tmp[7] = t5 + t0;
|
|
tmp[2] = t6 + t4;
|
|
tmp[6] = t6 - t4;
|
|
}
|
|
#endif
|
|
|
|
{
|
|
real t0, t1, t2, t3, t4, t5, t6, t7;
|
|
|
|
t1 = REAL_MUL(COS6_2, in[13]);
|
|
t2 = REAL_MUL(COS6_2, (in[9] + in[17] - in[5]));
|
|
|
|
t3 = in[1] + t1;
|
|
t4 = in[1] - t1 - t1;
|
|
t5 = t4 - t2;
|
|
|
|
t0 = REAL_MUL(cos9[0], (in[5] + in[9]));
|
|
t1 = REAL_MUL(cos9[1], (in[9] - in[17]));
|
|
|
|
tmp[13] = REAL_MUL((t4 + t2 + t2), tfcos36[17-13]);
|
|
t2 = REAL_MUL(cos9[2], (in[5] + in[17]));
|
|
|
|
t6 = t3 - t0 - t2;
|
|
t0 += t3 + t1;
|
|
t3 += t2 - t1;
|
|
|
|
t2 = REAL_MUL(cos18[0], (in[3] + in[11]));
|
|
t4 = REAL_MUL(cos18[1], (in[11] - in[15]));
|
|
t7 = REAL_MUL(COS6_1, in[7]);
|
|
|
|
t1 = t2 + t4 + t7;
|
|
tmp[17] = REAL_MUL((t0 + t1), tfcos36[17-17]);
|
|
tmp[9] = REAL_MUL((t0 - t1), tfcos36[17-9]);
|
|
t1 = REAL_MUL(cos18[2], (in[3] + in[15]));
|
|
t2 += t1 - t7;
|
|
|
|
tmp[14] = REAL_MUL((t3 + t2), tfcos36[17-14]);
|
|
t0 = REAL_MUL(COS6_1, (in[11] + in[15] - in[3]));
|
|
tmp[12] = REAL_MUL((t3 - t2), tfcos36[17-12]);
|
|
|
|
t4 -= t1 + t7;
|
|
|
|
tmp[16] = REAL_MUL((t5 - t0), tfcos36[17-16]);
|
|
tmp[10] = REAL_MUL((t5 + t0), tfcos36[17-10]);
|
|
tmp[15] = REAL_MUL((t6 + t4), tfcos36[17-15]);
|
|
tmp[11] = REAL_MUL((t6 - t4), tfcos36[17-11]);
|
|
}
|
|
|
|
#define MACRO(v) { \
|
|
real tmpval; \
|
|
tmpval = tmp[(v)] + tmp[17-(v)]; \
|
|
out2[9+(v)] = REAL_MUL(tmpval, w[27+(v)]); \
|
|
out2[8-(v)] = REAL_MUL(tmpval, w[26-(v)]); \
|
|
tmpval = tmp[(v)] - tmp[17-(v)]; \
|
|
ts[SBLIMIT*(8-(v))] = out1[8-(v)] + REAL_MUL(tmpval, w[8-(v)]); \
|
|
ts[SBLIMIT*(9+(v))] = out1[9+(v)] + REAL_MUL(tmpval, w[9+(v)]); }
|
|
|
|
{
|
|
register real *out2 = o2;
|
|
register real *w = wintab;
|
|
register real *out1 = o1;
|
|
register real *ts = tsbuf;
|
|
|
|
MACRO(0);
|
|
MACRO(1);
|
|
MACRO(2);
|
|
MACRO(3);
|
|
MACRO(4);
|
|
MACRO(5);
|
|
MACRO(6);
|
|
MACRO(7);
|
|
MACRO(8);
|
|
}
|
|
|
|
#else
|
|
|
|
{
|
|
|
|
#define MACRO0(v) { \
|
|
real tmp; \
|
|
out2[9+(v)] = REAL_MUL((tmp = sum0 + sum1), w[27+(v)]); \
|
|
out2[8-(v)] = REAL_MUL(tmp, w[26-(v)]); } \
|
|
sum0 -= sum1; \
|
|
ts[SBLIMIT*(8-(v))] = out1[8-(v)] + REAL_MUL(sum0, w[8-(v)]); \
|
|
ts[SBLIMIT*(9+(v))] = out1[9+(v)] + REAL_MUL(sum0, w[9+(v)]);
|
|
#define MACRO1(v) { \
|
|
real sum0,sum1; \
|
|
sum0 = tmp1a + tmp2a; \
|
|
sum1 = REAL_MUL((tmp1b + tmp2b), tfcos36[(v)]); \
|
|
MACRO0(v); }
|
|
#define MACRO2(v) { \
|
|
real sum0,sum1; \
|
|
sum0 = tmp2a - tmp1a; \
|
|
sum1 = REAL_MUL((tmp2b - tmp1b), tfcos36[(v)]); \
|
|
MACRO0(v); }
|
|
|
|
register const real *c = COS9;
|
|
register real *out2 = o2;
|
|
register real *w = wintab;
|
|
register real *out1 = o1;
|
|
register real *ts = tsbuf;
|
|
|
|
real ta33,ta66,tb33,tb66;
|
|
|
|
ta33 = REAL_MUL(in[2*3+0], c[3]);
|
|
ta66 = REAL_MUL(in[2*6+0], c[6]);
|
|
tb33 = REAL_MUL(in[2*3+1], c[3]);
|
|
tb66 = REAL_MUL(in[2*6+1], c[6]);
|
|
|
|
{
|
|
real tmp1a,tmp2a,tmp1b,tmp2b;
|
|
tmp1a = REAL_MUL(in[2*1+0], c[1]) + ta33 + REAL_MUL(in[2*5+0], c[5]) + REAL_MUL(in[2*7+0], c[7]);
|
|
tmp1b = REAL_MUL(in[2*1+1], c[1]) + tb33 + REAL_MUL(in[2*5+1], c[5]) + REAL_MUL(in[2*7+1], c[7]);
|
|
tmp2a = REAL_MUL(in[2*2+0], c[2]) + REAL_MUL(in[2*4+0], c[4]) + ta66 + REAL_MUL(in[2*8+0], c[8]);
|
|
tmp2b = REAL_MUL(in[2*2+1], c[2]) + REAL_MUL(in[2*4+1], c[4]) + tb66 + REAL_MUL(in[2*8+1], c[8]);
|
|
|
|
MACRO1(0);
|
|
MACRO2(8);
|
|
}
|
|
|
|
{
|
|
real tmp1a,tmp2a,tmp1b,tmp2b;
|
|
tmp1a = REAL_MUL(( in[2*1+0] - in[2*5+0] - in[2*7+0] ), c[3]);
|
|
tmp1b = REAL_MUL(( in[2*1+1] - in[2*5+1] - in[2*7+1] ), c[3]);
|
|
tmp2a = REAL_MUL(( in[2*2+0] - in[2*4+0] - in[2*8+0] ), c[6]) - in[2*6+0] + in[2*0+0];
|
|
tmp2b = REAL_MUL(( in[2*2+1] - in[2*4+1] - in[2*8+1] ), c[6]) - in[2*6+1] + in[2*0+1];
|
|
|
|
MACRO1(1);
|
|
MACRO2(7);
|
|
}
|
|
|
|
{
|
|
real tmp1a,tmp2a,tmp1b,tmp2b;
|
|
tmp1a = REAL_MUL(in[2*1+0], c[5]) - ta33 - REAL_MUL(in[2*5+0], c[7]) + REAL_MUL(in[2*7+0], c[1]);
|
|
tmp1b = REAL_MUL(in[2*1+1], c[5]) - tb33 - REAL_MUL(in[2*5+1], c[7]) + REAL_MUL(in[2*7+1], c[1]);
|
|
tmp2a = - REAL_MUL(in[2*2+0], c[8]) - REAL_MUL(in[2*4+0], c[2]) + ta66 + REAL_MUL(in[2*8+0], c[4]);
|
|
tmp2b = - REAL_MUL(in[2*2+1], c[8]) - REAL_MUL(in[2*4+1], c[2]) + tb66 + REAL_MUL(in[2*8+1], c[4]);
|
|
|
|
MACRO1(2);
|
|
MACRO2(6);
|
|
}
|
|
|
|
{
|
|
real tmp1a,tmp2a,tmp1b,tmp2b;
|
|
tmp1a = REAL_MUL(in[2*1+0], c[7]) - ta33 + REAL_MUL(in[2*5+0], c[1]) - REAL_MUL(in[2*7+0], c[5]);
|
|
tmp1b = REAL_MUL(in[2*1+1], c[7]) - tb33 + REAL_MUL(in[2*5+1], c[1]) - REAL_MUL(in[2*7+1], c[5]);
|
|
tmp2a = - REAL_MUL(in[2*2+0], c[4]) + REAL_MUL(in[2*4+0], c[8]) + ta66 - REAL_MUL(in[2*8+0], c[2]);
|
|
tmp2b = - REAL_MUL(in[2*2+1], c[4]) + REAL_MUL(in[2*4+1], c[8]) + tb66 - REAL_MUL(in[2*8+1], c[2]);
|
|
|
|
MACRO1(3);
|
|
MACRO2(5);
|
|
}
|
|
|
|
{
|
|
real sum0,sum1;
|
|
sum0 = in[2*0+0] - in[2*2+0] + in[2*4+0] - in[2*6+0] + in[2*8+0];
|
|
sum1 = REAL_MUL((in[2*0+1] - in[2*2+1] + in[2*4+1] - in[2*6+1] + in[2*8+1] ), tfcos36[4]);
|
|
MACRO0(4);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
}
|
|
}
|
|
|
|
|
|
/* new DCT12 */
|
|
static void dct12(real *in,real *rawout1,real *rawout2,register real *wi,register real *ts)
|
|
{
|
|
#define DCT12_PART1 \
|
|
in5 = in[5*3]; \
|
|
in5 += (in4 = in[4*3]); \
|
|
in4 += (in3 = in[3*3]); \
|
|
in3 += (in2 = in[2*3]); \
|
|
in2 += (in1 = in[1*3]); \
|
|
in1 += (in0 = in[0*3]); \
|
|
\
|
|
in5 += in3; in3 += in1; \
|
|
\
|
|
in2 = REAL_MUL(in2, COS6_1); \
|
|
in3 = REAL_MUL(in3, COS6_1);
|
|
|
|
#define DCT12_PART2 \
|
|
in0 += REAL_MUL(in4, COS6_2); \
|
|
\
|
|
in4 = in0 + in2; \
|
|
in0 -= in2; \
|
|
\
|
|
in1 += REAL_MUL(in5, COS6_2); \
|
|
\
|
|
in5 = REAL_MUL((in1 + in3), tfcos12[0]); \
|
|
in1 = REAL_MUL((in1 - in3), tfcos12[2]); \
|
|
\
|
|
in3 = in4 + in5; \
|
|
in4 -= in5; \
|
|
\
|
|
in2 = in0 + in1; \
|
|
in0 -= in1;
|
|
|
|
{
|
|
real in0,in1,in2,in3,in4,in5;
|
|
register real *out1 = rawout1;
|
|
ts[SBLIMIT*0] = out1[0]; ts[SBLIMIT*1] = out1[1]; ts[SBLIMIT*2] = out1[2];
|
|
ts[SBLIMIT*3] = out1[3]; ts[SBLIMIT*4] = out1[4]; ts[SBLIMIT*5] = out1[5];
|
|
|
|
DCT12_PART1
|
|
|
|
{
|
|
real tmp0,tmp1 = (in0 - in4);
|
|
{
|
|
real tmp2 = REAL_MUL((in1 - in5), tfcos12[1]);
|
|
tmp0 = tmp1 + tmp2;
|
|
tmp1 -= tmp2;
|
|
}
|
|
ts[(17-1)*SBLIMIT] = out1[17-1] + REAL_MUL(tmp0, wi[11-1]);
|
|
ts[(12+1)*SBLIMIT] = out1[12+1] + REAL_MUL(tmp0, wi[6+1]);
|
|
ts[(6 +1)*SBLIMIT] = out1[6 +1] + REAL_MUL(tmp1, wi[1]);
|
|
ts[(11-1)*SBLIMIT] = out1[11-1] + REAL_MUL(tmp1, wi[5-1]);
|
|
}
|
|
|
|
DCT12_PART2
|
|
|
|
ts[(17-0)*SBLIMIT] = out1[17-0] + REAL_MUL(in2, wi[11-0]);
|
|
ts[(12+0)*SBLIMIT] = out1[12+0] + REAL_MUL(in2, wi[6+0]);
|
|
ts[(12+2)*SBLIMIT] = out1[12+2] + REAL_MUL(in3, wi[6+2]);
|
|
ts[(17-2)*SBLIMIT] = out1[17-2] + REAL_MUL(in3, wi[11-2]);
|
|
|
|
ts[(6 +0)*SBLIMIT] = out1[6+0] + REAL_MUL(in0, wi[0]);
|
|
ts[(11-0)*SBLIMIT] = out1[11-0] + REAL_MUL(in0, wi[5-0]);
|
|
ts[(6 +2)*SBLIMIT] = out1[6+2] + REAL_MUL(in4, wi[2]);
|
|
ts[(11-2)*SBLIMIT] = out1[11-2] + REAL_MUL(in4, wi[5-2]);
|
|
}
|
|
|
|
in++;
|
|
|
|
{
|
|
real in0,in1,in2,in3,in4,in5;
|
|
register real *out2 = rawout2;
|
|
|
|
DCT12_PART1
|
|
|
|
{
|
|
real tmp0,tmp1 = (in0 - in4);
|
|
{
|
|
real tmp2 = REAL_MUL((in1 - in5), tfcos12[1]);
|
|
tmp0 = tmp1 + tmp2;
|
|
tmp1 -= tmp2;
|
|
}
|
|
out2[5-1] = REAL_MUL(tmp0, wi[11-1]);
|
|
out2[0+1] = REAL_MUL(tmp0, wi[6+1]);
|
|
ts[(12+1)*SBLIMIT] += REAL_MUL(tmp1, wi[1]);
|
|
ts[(17-1)*SBLIMIT] += REAL_MUL(tmp1, wi[5-1]);
|
|
}
|
|
|
|
DCT12_PART2
|
|
|
|
out2[5-0] = REAL_MUL(in2, wi[11-0]);
|
|
out2[0+0] = REAL_MUL(in2, wi[6+0]);
|
|
out2[0+2] = REAL_MUL(in3, wi[6+2]);
|
|
out2[5-2] = REAL_MUL(in3, wi[11-2]);
|
|
|
|
ts[(12+0)*SBLIMIT] += REAL_MUL(in0, wi[0]);
|
|
ts[(17-0)*SBLIMIT] += REAL_MUL(in0, wi[5-0]);
|
|
ts[(12+2)*SBLIMIT] += REAL_MUL(in4, wi[2]);
|
|
ts[(17-2)*SBLIMIT] += REAL_MUL(in4, wi[5-2]);
|
|
}
|
|
|
|
in++;
|
|
|
|
{
|
|
real in0,in1,in2,in3,in4,in5;
|
|
register real *out2 = rawout2;
|
|
out2[12]=out2[13]=out2[14]=out2[15]=out2[16]=out2[17]=0.0;
|
|
|
|
DCT12_PART1
|
|
|
|
{
|
|
real tmp0,tmp1 = (in0 - in4);
|
|
{
|
|
real tmp2 = REAL_MUL((in1 - in5), tfcos12[1]);
|
|
tmp0 = tmp1 + tmp2;
|
|
tmp1 -= tmp2;
|
|
}
|
|
out2[11-1] = REAL_MUL(tmp0, wi[11-1]);
|
|
out2[6 +1] = REAL_MUL(tmp0, wi[6+1]);
|
|
out2[0+1] += REAL_MUL(tmp1, wi[1]);
|
|
out2[5-1] += REAL_MUL(tmp1, wi[5-1]);
|
|
}
|
|
|
|
DCT12_PART2
|
|
|
|
out2[11-0] = REAL_MUL(in2, wi[11-0]);
|
|
out2[6 +0] = REAL_MUL(in2, wi[6+0]);
|
|
out2[6 +2] = REAL_MUL(in3, wi[6+2]);
|
|
out2[11-2] = REAL_MUL(in3, wi[11-2]);
|
|
|
|
out2[0+0] += REAL_MUL(in0, wi[0]);
|
|
out2[5-0] += REAL_MUL(in0, wi[5-0]);
|
|
out2[0+2] += REAL_MUL(in4, wi[2]);
|
|
out2[5-2] += REAL_MUL(in4, wi[5-2]);
|
|
}
|
|
}
|
|
|
|
|
|
static void III_hybrid(real fsIn[SBLIMIT][SSLIMIT], real tsOut[SSLIMIT][SBLIMIT], int ch,struct gr_info_s *gr_info, mpg123_handle *fr)
|
|
{
|
|
real (*block)[2][SBLIMIT*SSLIMIT] = fr->hybrid_block;
|
|
int *blc = fr->hybrid_blc;
|
|
|
|
real *tspnt = (real *) tsOut;
|
|
real *rawout1,*rawout2;
|
|
int bt = 0;
|
|
size_t sb = 0;
|
|
|
|
{
|
|
int b = blc[ch];
|
|
rawout1=block[b][ch];
|
|
b=-b+1;
|
|
rawout2=block[b][ch];
|
|
blc[ch] = b;
|
|
}
|
|
|
|
if(gr_info->mixed_block_flag)
|
|
{
|
|
sb = 2;
|
|
opt_dct36(fr)(fsIn[0],rawout1,rawout2,win[0],tspnt);
|
|
opt_dct36(fr)(fsIn[1],rawout1+18,rawout2+18,win1[0],tspnt+1);
|
|
rawout1 += 36; rawout2 += 36; tspnt += 2;
|
|
}
|
|
|
|
bt = gr_info->block_type;
|
|
if(bt == 2)
|
|
{
|
|
for(; sb<gr_info->maxb; sb+=2,tspnt+=2,rawout1+=36,rawout2+=36)
|
|
{
|
|
dct12(fsIn[sb] ,rawout1 ,rawout2 ,win[2] ,tspnt);
|
|
dct12(fsIn[sb+1],rawout1+18,rawout2+18,win1[2],tspnt+1);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for(; sb<gr_info->maxb; sb+=2,tspnt+=2,rawout1+=36,rawout2+=36)
|
|
{
|
|
opt_dct36(fr)(fsIn[sb],rawout1,rawout2,win[bt],tspnt);
|
|
opt_dct36(fr)(fsIn[sb+1],rawout1+18,rawout2+18,win1[bt],tspnt+1);
|
|
}
|
|
}
|
|
|
|
for(;sb<SBLIMIT;sb++,tspnt++)
|
|
{
|
|
int i;
|
|
for(i=0;i<SSLIMIT;i++)
|
|
{
|
|
tspnt[i*SBLIMIT] = *rawout1++;
|
|
*rawout2++ = DOUBLE_TO_REAL(0.0);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* And at the end... the main layer3 handler */
|
|
int do_layer3(mpg123_handle *fr)
|
|
{
|
|
int gr, ch, ss,clip=0;
|
|
int scalefacs[2][39]; /* max 39 for short[13][3] mode, mixed: 38, long: 22 */
|
|
struct III_sideinfo sideinfo;
|
|
int stereo = fr->stereo;
|
|
int single = fr->single;
|
|
int ms_stereo,i_stereo;
|
|
int sfreq = fr->sampling_frequency;
|
|
int stereo1,granules;
|
|
|
|
if(stereo == 1)
|
|
{ /* stream is mono */
|
|
stereo1 = 1;
|
|
single = SINGLE_LEFT;
|
|
}
|
|
else if(single != SINGLE_STEREO) /* stream is stereo, but force to mono */
|
|
stereo1 = 1;
|
|
else
|
|
stereo1 = 2;
|
|
|
|
if(fr->mode == MPG_MD_JOINT_STEREO)
|
|
{
|
|
ms_stereo = (fr->mode_ext & 0x2)>>1;
|
|
i_stereo = fr->mode_ext & 0x1;
|
|
}
|
|
else ms_stereo = i_stereo = 0;
|
|
|
|
granules = fr->lsf ? 1 : 2;
|
|
|
|
/* quick hack to keep the music playing */
|
|
/* after having seen this nasty test file... */
|
|
if(III_get_side_info(fr, &sideinfo,stereo,ms_stereo,sfreq,single))
|
|
{
|
|
if(NOQUIET) error("bad frame - unable to get valid sideinfo");
|
|
return clip;
|
|
}
|
|
|
|
set_pointer(fr,sideinfo.main_data_begin);
|
|
|
|
for(gr=0;gr<granules;gr++)
|
|
{
|
|
ALIGNED(16) real hybridIn[2][SBLIMIT][SSLIMIT];
|
|
ALIGNED(16) real hybridOut[2][SSLIMIT][SBLIMIT];
|
|
|
|
{
|
|
struct gr_info_s *gr_info = &(sideinfo.ch[0].gr[gr]);
|
|
long part2bits;
|
|
if(fr->lsf)
|
|
part2bits = III_get_scale_factors_2(fr, scalefacs[0],gr_info,0);
|
|
else
|
|
part2bits = III_get_scale_factors_1(fr, scalefacs[0],gr_info,0,gr);
|
|
|
|
if(III_dequantize_sample(fr, hybridIn[0], scalefacs[0],gr_info,sfreq,part2bits))
|
|
{
|
|
if(VERBOSE2) error("dequantization failed!");
|
|
return clip;
|
|
}
|
|
}
|
|
|
|
if(stereo == 2)
|
|
{
|
|
struct gr_info_s *gr_info = &(sideinfo.ch[1].gr[gr]);
|
|
long part2bits;
|
|
if(fr->lsf)
|
|
part2bits = III_get_scale_factors_2(fr, scalefacs[1],gr_info,i_stereo);
|
|
else
|
|
part2bits = III_get_scale_factors_1(fr, scalefacs[1],gr_info,1,gr);
|
|
|
|
if(III_dequantize_sample(fr, hybridIn[1],scalefacs[1],gr_info,sfreq,part2bits))
|
|
{
|
|
if(VERBOSE2) error("dequantization failed!");
|
|
return clip;
|
|
}
|
|
|
|
if(ms_stereo)
|
|
{
|
|
int i;
|
|
unsigned int maxb = sideinfo.ch[0].gr[gr].maxb;
|
|
if(sideinfo.ch[1].gr[gr].maxb > maxb) maxb = sideinfo.ch[1].gr[gr].maxb;
|
|
|
|
for(i=0;i<SSLIMIT*(int)maxb;i++)
|
|
{
|
|
real tmp0 = ((real *)hybridIn[0])[i];
|
|
real tmp1 = ((real *)hybridIn[1])[i];
|
|
((real *)hybridIn[0])[i] = tmp0 + tmp1;
|
|
((real *)hybridIn[1])[i] = tmp0 - tmp1;
|
|
}
|
|
}
|
|
|
|
if(i_stereo) III_i_stereo(hybridIn,scalefacs[1],gr_info,sfreq,ms_stereo,fr->lsf);
|
|
|
|
if(ms_stereo || i_stereo || (single == SINGLE_MIX) )
|
|
{
|
|
if(gr_info->maxb > sideinfo.ch[0].gr[gr].maxb)
|
|
sideinfo.ch[0].gr[gr].maxb = gr_info->maxb;
|
|
else
|
|
gr_info->maxb = sideinfo.ch[0].gr[gr].maxb;
|
|
}
|
|
|
|
switch(single)
|
|
{
|
|
case SINGLE_MIX:
|
|
{
|
|
register int i;
|
|
register real *in0 = (real *) hybridIn[0],*in1 = (real *) hybridIn[1];
|
|
for(i=0;i<SSLIMIT*(int)gr_info->maxb;i++,in0++)
|
|
*in0 = (*in0 + *in1++); /* *0.5 done by pow-scale */
|
|
}
|
|
break;
|
|
case SINGLE_RIGHT:
|
|
{
|
|
register int i;
|
|
register real *in0 = (real *) hybridIn[0],*in1 = (real *) hybridIn[1];
|
|
for(i=0;i<SSLIMIT*(int)gr_info->maxb;i++)
|
|
*in0++ = *in1++;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
for(ch=0;ch<stereo1;ch++)
|
|
{
|
|
struct gr_info_s *gr_info = &(sideinfo.ch[ch].gr[gr]);
|
|
III_antialias(hybridIn[ch],gr_info);
|
|
III_hybrid(hybridIn[ch], hybridOut[ch], ch,gr_info, fr);
|
|
}
|
|
|
|
#ifdef OPT_I486
|
|
if(single != SINGLE_STEREO || fr->af.encoding != MPG123_ENC_SIGNED_16 || fr->down_sample != 0)
|
|
{
|
|
#endif
|
|
for(ss=0;ss<SSLIMIT;ss++)
|
|
{
|
|
if(single != SINGLE_STEREO)
|
|
clip += (fr->synth_mono)(hybridOut[0][ss], fr);
|
|
else
|
|
clip += (fr->synth_stereo)(hybridOut[0][ss], hybridOut[1][ss], fr);
|
|
|
|
}
|
|
#ifdef OPT_I486
|
|
} else
|
|
{
|
|
/* Only stereo, 16 bits benefit from the 486 optimization. */
|
|
ss=0;
|
|
while(ss < SSLIMIT)
|
|
{
|
|
int n;
|
|
n=(fr->buffer.size - fr->buffer.fill) / (2*2*32);
|
|
if(n > (SSLIMIT-ss)) n=SSLIMIT-ss;
|
|
|
|
/* Clip counting makes no sense with this function. */
|
|
absynth_1to1_i486(hybridOut[0][ss], 0, fr, n);
|
|
absynth_1to1_i486(hybridOut[1][ss], 1, fr, n);
|
|
ss+=n;
|
|
fr->buffer.fill+=(2*2*32)*n;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
return clip;
|
|
}
|