mirror of
https://github.com/KolibriOS/kolibrios.git
synced 2024-12-17 12:22:35 +03:00
9a54fc6aed
libimg: small optimize git-svn-id: svn://kolibrios.org@8408 a494cfbc-eb01-0410-851d-a64ba20cac60
4717 lines
149 KiB
NASM
4717 lines
149 KiB
NASM
|
|
; png.asm - location for general purpose libpng functions
|
|
|
|
; Last changed in libpng 1.6.25 [September 1, 2016]
|
|
; Copyright (c) 1998-2002,2004,2006-2016 Glenn Randers-Pehrson
|
|
; (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
|
|
; (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
|
|
|
|
; This code is released under the libpng license.
|
|
; For conditions of distribution and use, see the disclaimer
|
|
; and license in png.inc
|
|
|
|
DEBUG equ 0
|
|
|
|
include '../../../../../../KOSfuncs.inc'
|
|
include '../../../../../../fs/kfar/trunk/zlib/deflate.inc'
|
|
include 'pngtokos.inc' ;integrate png to kos
|
|
|
|
;files from libpng
|
|
include 'pnglibconf.inc'
|
|
include 'pngpriv.inc'
|
|
include 'png.inc'
|
|
include 'pngstruct.inc'
|
|
include 'pnginfo.inc'
|
|
include 'pngerror.asm'
|
|
include 'pngtrans.asm'
|
|
include 'pngget.asm'
|
|
include 'pngwrite.asm'
|
|
include 'pngmem.asm'
|
|
include 'pngset.asm'
|
|
include 'pngwutil.asm'
|
|
include 'pngwio.asm'
|
|
include 'pngwtran.asm'
|
|
|
|
; Generate a compiler error if there is an old png.inc in the search path.
|
|
;typedef png_libpng_version_1_6_25 Your_png_h_is_not_version_1_6_25;
|
|
|
|
; Tells libpng that we have already handled the first "num_bytes" bytes
|
|
; of the PNG file signature. If the PNG data is embedded into another
|
|
; stream we can set num_bytes = 8 so that libpng will not attempt to read
|
|
; or write any of the magic bytes before it starts on the IHDR.
|
|
|
|
|
|
;if PNG_READ_SUPPORTED
|
|
;void (png_structrp png_ptr, int num_bytes)
|
|
align 4
|
|
proc png_set_sig_bytes uses eax edi, png_ptr:dword, num_bytes:dword
|
|
png_debug 1, 'in png_set_sig_bytes'
|
|
|
|
mov edi,[png_ptr]
|
|
or edi,edi
|
|
jz .end_f ;if (..==0) return
|
|
|
|
mov eax,[num_bytes]
|
|
cmp eax,0
|
|
jge @f
|
|
xor eax,eax
|
|
@@:
|
|
cmp eax,8
|
|
jle @f ;if (..>8)
|
|
png_error edi, 'Too many bytes for PNG signature'
|
|
@@:
|
|
mov byte[edi+png_struct.sig_bytes],al
|
|
.end_f:
|
|
ret
|
|
endp
|
|
|
|
; Checks whether the supplied bytes match the PNG signature. We allow
|
|
; checking less than the full 8-byte signature so that those apps that
|
|
; already read the first few bytes of a file to determine the file type
|
|
; can simply check the remaining bytes for extra assurance. Returns
|
|
; an integer less than, equal to, or greater than zero if sig is found,
|
|
; respectively, to be less than, to match, or be greater than the correct
|
|
; PNG signature (this is the same behavior as strcmp, memcmp, etc).
|
|
|
|
;int (bytep sig, png_size_t start, png_size_t num_to_check)
|
|
align 4
|
|
proc png_sig_cmp, sig:dword, start:dword, num_to_check:dword
|
|
; byte png_signature[8] = {137, 80, 78, 71, 13, 10, 26, 10};
|
|
|
|
; if (num_to_check > 8)
|
|
; num_to_check = 8;
|
|
|
|
; else if (num_to_check < 1)
|
|
; return (-1);
|
|
|
|
; if (start > 7)
|
|
; return (-1);
|
|
|
|
; if (start + num_to_check > 8)
|
|
; num_to_check = 8 - start;
|
|
|
|
; return ((int)(memcmp(&sig[start], &png_signature[start], num_to_check)));
|
|
ret
|
|
endp
|
|
|
|
;end if /* READ */
|
|
|
|
; Function to allocate memory for zlib
|
|
;voidpf (voidpf png_ptr, uInt items, uInt size)
|
|
align 4
|
|
proc png_zalloc uses edx ecx, png_ptr:dword, items:dword, size:dword
|
|
|
|
xor eax,eax
|
|
cmp dword[png_ptr],eax
|
|
je .end_f ;if (..==0) return 0
|
|
|
|
not eax
|
|
xor edx,edx
|
|
mov ecx,[size]
|
|
div ecx
|
|
cmp [items],eax
|
|
jl @f ;if (..>=..)
|
|
png_warning [png_ptr], 'Potential overflow in png_zalloc()'
|
|
xor eax,eax
|
|
jmp .end_f
|
|
@@:
|
|
|
|
mov ecx,[size]
|
|
imul ecx,[items]
|
|
stdcall png_malloc_warn, [png_ptr], ecx
|
|
.end_f:
|
|
ret
|
|
endp
|
|
|
|
; Function to free memory for zlib
|
|
;void (voidpf png_ptr, voidpf ptr)
|
|
align 4
|
|
proc png_zfree, png_ptr:dword, p2ptr:dword
|
|
stdcall png_free, [png_ptr], [p2ptr]
|
|
ret
|
|
endp
|
|
|
|
; Reset the CRC variable to 32 bits of 1's. Care must be taken
|
|
; in case CRC is > 32 bits to leave the top bits 0.
|
|
|
|
;void (png_structrp png_ptr)
|
|
align 4
|
|
proc png_reset_crc uses eax edi, png_ptr:dword
|
|
; The cast is safe because the crc is a 32-bit value.
|
|
mov edi,[png_ptr]
|
|
stdcall [calc_crc32], 0, Z_NULL, 0
|
|
mov dword[edi+png_struct.crc],eax
|
|
ret
|
|
endp
|
|
|
|
; Calculate the CRC over a section of data. We can only pass as
|
|
; much data to this routine as the largest single buffer size. We
|
|
; also check that this data will actually be used before going to the
|
|
; trouble of calculating it.
|
|
|
|
;void (png_structrp png_ptr, bytep ptr, png_size_t length)
|
|
align 4
|
|
proc png_calculate_crc uses eax ebx edi, png_ptr:dword, ptr:dword, length:dword
|
|
locals
|
|
need_crc dd 1
|
|
safe_length dd ?
|
|
endl
|
|
mov edi,[png_ptr]
|
|
PNG_CHUNK_ANCILLARY [edi+png_struct.chunk_name]
|
|
or eax,eax ;if (..!=0)
|
|
jz @f
|
|
mov eax,[edi+png_struct.flags]
|
|
and eax,PNG_FLAG_CRC_ANCILLARY_MASK
|
|
cmp eax,PNG_FLAG_CRC_ANCILLARY_USE or PNG_FLAG_CRC_ANCILLARY_NOWARN
|
|
jne .end0 ;if (..==..)
|
|
mov dword[need_crc],0
|
|
jmp .end0
|
|
@@: ;else ;critical
|
|
mov eax,[edi+png_struct.flags]
|
|
and eax,PNG_FLAG_CRC_CRITICAL_IGNORE
|
|
jz .end0 ;if (..!=0)
|
|
mov dword[need_crc],0
|
|
.end0:
|
|
|
|
; 'uLong' is defined in zlib.inc as unsigned long; this means that on some
|
|
; systems it is a 64-bit value. crc32, however, returns 32 bits so the
|
|
; following cast is safe. 'uInt' may be no more than 16 bits, so it is
|
|
; necessary to perform a loop here.
|
|
|
|
cmp dword[need_crc],0
|
|
je .end_f
|
|
cmp dword[length],0
|
|
jle .end_f ;if (..!=0 && ..>0)
|
|
mov eax,[edi+png_struct.crc] ;Should never issue a warning
|
|
|
|
.cycle0: ;do
|
|
mov ebx,[length]
|
|
mov [safe_length],ebx
|
|
;#ifndef __COVERITY__
|
|
; if (safe_length == 0)
|
|
; safe_length = (uInt)-1 ;evil, but safe
|
|
;end if
|
|
stdcall [calc_crc32], eax, [ptr], [safe_length]
|
|
|
|
; The following should never issue compiler warnings; if they do the
|
|
; target system has characteristics that will probably violate other
|
|
; assumptions within the libpng code.
|
|
|
|
mov ebx,[safe_length]
|
|
add [ptr],ebx
|
|
sub [length],ebx
|
|
cmp dword[length],0
|
|
jg .cycle0 ;while (..>0)
|
|
|
|
; And the following is always safe because the crc is only 32 bits.
|
|
mov [edi+png_struct.crc],eax
|
|
.end_f:
|
|
ret
|
|
endp
|
|
|
|
; Check a user supplied version number, called from both read and write
|
|
; functions that create a png_struct.
|
|
|
|
;int (png_structrp png_ptr, charp user_png_ver)
|
|
align 4
|
|
proc png_user_version_check, png_ptr:dword, user_png_ver:dword
|
|
; Libpng versions 1.0.0 and later are binary compatible if the version
|
|
; string matches through the second '.'; we must recompile any
|
|
; applications that use any older library version.
|
|
|
|
; if (user_png_ver != NULL)
|
|
; {
|
|
; int i = -1;
|
|
; int found_dots = 0;
|
|
|
|
; do
|
|
; {
|
|
; i++;
|
|
; if (user_png_ver[i] != PNG_LIBPNG_VER_STRING[i])
|
|
; png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;
|
|
; if (user_png_ver[i] == '.')
|
|
; found_dots++;
|
|
; } while (found_dots < 2 && user_png_ver[i] != 0 &&
|
|
; PNG_LIBPNG_VER_STRING[i] != 0);
|
|
; }
|
|
|
|
; else
|
|
; png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;
|
|
|
|
; if ((png_ptr->flags & PNG_FLAG_LIBRARY_MISMATCH) != 0)
|
|
; {
|
|
if PNG_WARNINGS_SUPPORTED eq 1
|
|
; size_t pos = 0;
|
|
; char m[128];
|
|
|
|
; pos = png_safecat(m, (sizeof m), pos,
|
|
; "Application built with libpng-");
|
|
; pos = png_safecat(m, (sizeof m), pos, user_png_ver);
|
|
; pos = png_safecat(m, (sizeof m), pos, " but running with ");
|
|
; pos = png_safecat(m, (sizeof m), pos, PNG_LIBPNG_VER_STRING);
|
|
|
|
; png_warning(png_ptr, m);
|
|
end if
|
|
|
|
if PNG_ERROR_NUMBERS_SUPPORTED eq 1
|
|
; png_ptr->flags = 0;
|
|
end if
|
|
|
|
; return 0;
|
|
; }
|
|
|
|
; Success return.
|
|
xor eax,eax
|
|
inc eax
|
|
.end_f:
|
|
ret
|
|
endp
|
|
|
|
; Generic function to create a png_struct for either read or write - this
|
|
; contains the common initialization.
|
|
|
|
;png_structp (charp user_png_ver, voidp error_ptr,
|
|
; png_error_ptr error_fn, png_error_ptr warn_fn, voidp mem_ptr,
|
|
; png_malloc_ptr malloc_fn, png_free_ptr free_fn)
|
|
align 4
|
|
proc png_create_png_struct uses ebx ecx edi esi, user_png_ver:dword, error_ptr:dword, error_fn:dword, warn_fn:dword, mem_ptr:dword, malloc_fn:dword, free_fn:dword
|
|
locals
|
|
if PNG_SETJMP_SUPPORTED eq 1
|
|
create_jmp_buf dd ? ;jmp_buf
|
|
end if
|
|
create_struct png_struct
|
|
endl
|
|
; This temporary stack-allocated structure is used to provide a place to
|
|
; build enough context to allow the user provided memory allocator (if any)
|
|
; to be called.
|
|
|
|
xor eax,eax
|
|
mov ecx,sizeof.png_struct
|
|
mov edi,ebp
|
|
sub edi,ecx
|
|
mov ebx,edi
|
|
rep stosb
|
|
|
|
; Added at libpng-1.2.6
|
|
if PNG_USER_LIMITS_SUPPORTED eq 1
|
|
mov dword[ebx+png_struct.user_width_max], PNG_USER_WIDTH_MAX
|
|
mov dword[ebx+png_struct.user_height_max], PNG_USER_HEIGHT_MAX
|
|
|
|
; Added at libpng-1.2.43 and 1.4.0
|
|
mov dword[ebx+png_struct.user_chunk_cache_max], PNG_USER_CHUNK_CACHE_MAX
|
|
|
|
; Added at libpng-1.2.43 and 1.4.1, required only for read but exists
|
|
; in png_struct regardless.
|
|
|
|
mov dword[ebx+png_struct.user_chunk_malloc_max], PNG_USER_CHUNK_MALLOC_MAX
|
|
end if
|
|
|
|
; The following two API calls simply set fields in png_struct, so it is safe
|
|
; to do them now even though error handling is not yet set up.
|
|
|
|
if PNG_USER_MEM_SUPPORTED eq 1
|
|
stdcall png_set_mem_fn, ebx, [mem_ptr], [malloc_fn], [free_fn]
|
|
end if
|
|
|
|
; (*error_fn) can return control to the caller after the error_ptr is set,
|
|
; this will result in a memory leak unless the error_fn does something
|
|
; extremely sophisticated. The design lacks merit but is implicit in the
|
|
; API.
|
|
|
|
stdcall png_set_error_fn, ebx, [error_ptr], [error_fn], [warn_fn]
|
|
|
|
if PNG_SETJMP_SUPPORTED eq 1
|
|
stdcall setjmp,... ;create_jmp_buf
|
|
cmp eax,0
|
|
j... .end0 ;if (!setjmp(create_jmp_buf))
|
|
|
|
; Temporarily fake out the longjmp information until we have
|
|
; successfully completed this function. This only works if we have
|
|
; setjmp() support compiled in, but it is safe - this stuff should
|
|
; never happen.
|
|
|
|
; create_struct.jmp_buf_ptr = &create_jmp_buf;
|
|
mov dword[ebx+png_struct.jmp_buf_size],0 ;stack allocation
|
|
; create_struct.longjmp_fn = longjmp;
|
|
end if
|
|
; Call the general version checker (shared with read and write code):
|
|
|
|
stdcall png_user_version_check, ebx, [user_png_ver]
|
|
or eax,eax
|
|
jz .end0 ;if (..!=0)
|
|
stdcall png_malloc_warn, ebx, sizeof.png_struct
|
|
;eax = png_ptr
|
|
or eax,eax
|
|
jz .end0 ;if (..!=0)
|
|
; png_ptr->zstream holds a back-pointer to the png_struct, so
|
|
; this can only be done now:
|
|
|
|
mov [ebx+png_struct.zstream.zalloc], png_zalloc
|
|
mov [ebx+png_struct.zstream.zfree], png_zfree
|
|
mov [ebx+png_struct.zstream.opaque], eax
|
|
|
|
if PNG_SETJMP_SUPPORTED eq 1
|
|
; Eliminate the local error handling:
|
|
mov [ebx+png_struct.jmp_buf_ptr], 0
|
|
mov [ebx+png_struct.jmp_buf_size], 0
|
|
mov [ebx+png_struct.longjmp_fn], 0
|
|
end if
|
|
mov ecx,sizeof.png_struct
|
|
mov edi,eax
|
|
mov esi,ebx
|
|
rep movsb ;*png_ptr = create_struct
|
|
|
|
; This is the successful return point
|
|
jmp .end_f
|
|
.end0:
|
|
|
|
; A longjmp because of a bug in the application storage allocator or a
|
|
; simple failure to allocate the png_struct.
|
|
|
|
xor eax,eax
|
|
.end_f:
|
|
ret
|
|
endp
|
|
|
|
; Allocate the memory for an info_struct for the application.
|
|
;png_infop (png_structrp png_ptr)
|
|
align 4
|
|
proc png_create_info_struct uses ecx edi, png_ptr:dword
|
|
png_debug 1, 'in png_create_info_struct'
|
|
|
|
mov eax,[png_ptr]
|
|
or eax,eax
|
|
jz .end_f ;if (..==0) return 0
|
|
|
|
; Use the internal API that does not (or at least should not) error out, so
|
|
; that this call always returns ok. The application typically sets up the
|
|
; error handling *after* creating the info_struct because this is the way it
|
|
; has always been done in 'example.asm'.
|
|
|
|
stdcall png_malloc_base, eax, sizeof.png_info_def
|
|
or eax,eax
|
|
jz .end_f
|
|
push eax
|
|
mov edi,eax
|
|
xor eax,eax
|
|
mov ecx,sizeof.png_info_def
|
|
rep stosb ;memset(...
|
|
pop eax
|
|
.end_f:
|
|
ret
|
|
endp
|
|
|
|
; This function frees the memory associated with a single info struct.
|
|
; Normally, one would use either png_destroy_read_struct() or
|
|
; png_destroy_write_struct() to free an info struct, but this may be
|
|
; useful for some applications. From libpng 1.6.0 this function is also used
|
|
; internally to implement the png_info release part of the 'struct' destroy
|
|
; APIs. This ensures that all possible approaches free the same data (all of
|
|
; it).
|
|
|
|
;void (png_structrp png_ptr, png_infopp info_ptr_ptr)
|
|
align 4
|
|
proc png_destroy_info_struct uses eax ebx ecx edi, png_ptr:dword, info_ptr_ptr:dword
|
|
png_debug 1, 'in png_destroy_info_struct'
|
|
|
|
cmp dword[png_ptr],0
|
|
je .end_f ;if (..==0) return
|
|
|
|
mov edi,[info_ptr_ptr]
|
|
or edi,edi ;if (..!=0)
|
|
jz .end_f
|
|
; Do this first in case of an error below; if the app implements its own
|
|
; memory management this can lead to png_free calling png_error, which
|
|
; will abort this routine and return control to the app error handler.
|
|
; An infinite loop may result if it then tries to free the same info
|
|
; ptr.
|
|
|
|
mov dword[edi],0
|
|
|
|
stdcall png_free_data, [png_ptr], edi, PNG_FREE_ALL, -1
|
|
mov ebx,edi
|
|
xor eax,eax
|
|
mov ecx,sizeof.png_info_def
|
|
rep stosb
|
|
stdcall png_free, [png_ptr], ebx
|
|
.end_f:
|
|
ret
|
|
endp
|
|
|
|
; Initialize the info structure. This is now an internal function (0.89)
|
|
; and applications using it are urged to use png_create_info_struct()
|
|
; instead. Use deprecated in 1.6.0, internal use removed (used internally it
|
|
; is just a memset).
|
|
|
|
; NOTE: it is almost inconceivable that this API is used because it bypasses
|
|
; the user-memory mechanism and the user error handling/warning mechanisms in
|
|
; those cases where it does anything other than a memset.
|
|
|
|
;void (png_infopp ptr_ptr, png_size_t png_info_struct_size)
|
|
align 4
|
|
proc png_info_init_3, ptr_ptr:dword, png_info_struct_size:dword
|
|
; png_inforp info_ptr = *ptr_ptr;
|
|
|
|
png_debug 1, 'in png_info_init_3'
|
|
|
|
; if (info_ptr == NULL)
|
|
; return;
|
|
|
|
; if ((sizeof (png_info)) > png_info_struct_size)
|
|
; {
|
|
; *ptr_ptr = NULL;
|
|
; The following line is why this API should not be used:
|
|
; free(info_ptr);
|
|
; info_ptr = png_malloc_base(NULL, (sizeof *info_ptr));
|
|
; if (info_ptr == NULL)
|
|
; return;
|
|
; *ptr_ptr = info_ptr;
|
|
; }
|
|
|
|
; Set everything to 0
|
|
; memset(info_ptr, 0, (sizeof *info_ptr));
|
|
ret
|
|
endp
|
|
|
|
; The following API is not called internally
|
|
;void (png_structrp png_ptr, png_inforp info_ptr, int freer, uint_32 mask)
|
|
align 4
|
|
proc png_data_freer uses edi esi, png_ptr:dword, info_ptr:dword, freer:dword, mask:dword
|
|
png_debug 1, 'in png_data_freer'
|
|
|
|
mov edi,[png_ptr]
|
|
or edi,edi
|
|
jz .end_f
|
|
mov esi,[info_ptr]
|
|
or esi,esi
|
|
jz .end_f ;if (..==0 || ..==0) return
|
|
|
|
; if (freer == PNG_DESTROY_WILL_FREE_DATA)
|
|
; info_ptr->free_me |= mask;
|
|
|
|
; else if (freer == PNG_USER_WILL_FREE_DATA)
|
|
; info_ptr->free_me &= ~mask;
|
|
|
|
; else
|
|
; png_error(png_ptr, "Unknown freer parameter in png_data_freer");
|
|
.end_f
|
|
ret
|
|
endp
|
|
|
|
;void (png_structrp png_ptr, png_inforp info_ptr, uint_32 mask, int num)
|
|
align 4
|
|
proc png_free_data uses eax edi esi, png_ptr:dword, info_ptr:dword, mask:dword, num:dword
|
|
png_debug 1, 'in png_free_data'
|
|
|
|
mov edi,[png_ptr]
|
|
or edi,edi
|
|
jz .end_f
|
|
mov esi,[info_ptr]
|
|
or esi,esi
|
|
jz .end_f ;if (..==0 || ..==0) return
|
|
|
|
if PNG_TEXT_SUPPORTED eq 1
|
|
; Free text item num or (if num == -1) all text items
|
|
; if (info_ptr->text != 0 &&
|
|
; ((mask & PNG_FREE_TEXT) & info_ptr->free_me) != 0)
|
|
; {
|
|
; if (num != -1)
|
|
; {
|
|
; png_free(png_ptr, info_ptr->text[num].key);
|
|
; info_ptr->text[num].key = NULL;
|
|
; }
|
|
|
|
; else
|
|
; {
|
|
; int i;
|
|
|
|
; for (i = 0; i < info_ptr->num_text; i++)
|
|
; png_free(png_ptr, info_ptr->text[i].key);
|
|
|
|
; png_free(png_ptr, info_ptr->text);
|
|
; info_ptr->text = NULL;
|
|
; info_ptr->num_text = 0;
|
|
; }
|
|
; }
|
|
end if
|
|
|
|
if PNG_tRNS_SUPPORTED eq 1
|
|
; Free any tRNS entry
|
|
mov eax,[mask]
|
|
and eax,PNG_FREE_TRNS
|
|
and eax,[esi+png_info_def.free_me]
|
|
jz @f ;if (..!=0)
|
|
and dword[esi+png_info_def.valid], not PNG_INFO_tRNS
|
|
stdcall png_free, edi, [esi+png_info_def.trans_alpha]
|
|
mov dword[esi+png_info_def.trans_alpha],0
|
|
mov word[esi+png_info_def.num_trans],0
|
|
@@:
|
|
end if
|
|
|
|
if PNG_sCAL_SUPPORTED eq 1
|
|
; Free any sCAL entry
|
|
mov eax,[mask]
|
|
and eax,PNG_FREE_SCAL
|
|
and eax,[esi+png_info_def.free_me]
|
|
jz @f ;if (..!=0)
|
|
stdcall png_free, edi, [esi+png_info_def.scal_s_width]
|
|
stdcall png_free, edi, [esi+png_info_def.scal_s_height]
|
|
mov dword[esi+png_info_def.scal_s_width],0
|
|
mov dword[esi+png_info_def.scal_s_height],0
|
|
and dword[esi+png_info_def.valid], not PNG_INFO_sCAL
|
|
@@:
|
|
end if
|
|
|
|
if PNG_pCAL_SUPPORTED eq 1
|
|
; Free any pCAL entry
|
|
; if (((mask & PNG_FREE_PCAL) & info_ptr->free_me) != 0)
|
|
; {
|
|
; png_free(png_ptr, info_ptr->pcal_purpose);
|
|
; png_free(png_ptr, info_ptr->pcal_units);
|
|
; info_ptr->pcal_purpose = NULL;
|
|
; info_ptr->pcal_units = NULL;
|
|
|
|
; if (info_ptr->pcal_params != NULL)
|
|
; {
|
|
; int i;
|
|
|
|
; for (i = 0; i < info_ptr->pcal_nparams; i++)
|
|
; png_free(png_ptr, info_ptr->pcal_params[i]);
|
|
;
|
|
; png_free(png_ptr, info_ptr->pcal_params);
|
|
; info_ptr->pcal_params = NULL;
|
|
; }
|
|
; info_ptr->valid &= ~PNG_INFO_pCAL;
|
|
; }
|
|
end if
|
|
|
|
if PNG_iCCP_SUPPORTED eq 1
|
|
; Free any profile entry
|
|
mov eax,[mask]
|
|
and eax,PNG_FREE_ICCP
|
|
and eax,[esi+png_info_def.free_me]
|
|
jz @f ;if (..!=0)
|
|
stdcall png_free, edi, [esi+png_info_def.iccp_name]
|
|
stdcall png_free, edi, [esi+png_info_def.iccp_profile]
|
|
mov dword[esi+png_info_def.iccp_name],0
|
|
mov dword[esi+png_info_def.iccp_profile],0
|
|
and dword[esi+png_info_def.valid], not PNG_INFO_iCCP
|
|
@@:
|
|
end if
|
|
|
|
if PNG_sPLT_SUPPORTED eq 1
|
|
; Free a given sPLT entry, or (if num == -1) all sPLT entries
|
|
; if (info_ptr->splt_palettes != 0 &&
|
|
; ((mask & PNG_FREE_SPLT) & info_ptr->free_me) != 0)
|
|
; {
|
|
; if (num != -1)
|
|
; {
|
|
; png_free(png_ptr, info_ptr->splt_palettes[num].name);
|
|
; png_free(png_ptr, info_ptr->splt_palettes[num].entries);
|
|
; info_ptr->splt_palettes[num].name = NULL;
|
|
; info_ptr->splt_palettes[num].entries = NULL;
|
|
; }
|
|
|
|
; else
|
|
; {
|
|
; int i;
|
|
|
|
; for (i = 0; i < info_ptr->splt_palettes_num; i++)
|
|
; {
|
|
; png_free(png_ptr, info_ptr->splt_palettes[i].name);
|
|
; png_free(png_ptr, info_ptr->splt_palettes[i].entries);
|
|
; }
|
|
|
|
; png_free(png_ptr, info_ptr->splt_palettes);
|
|
; info_ptr->splt_palettes = NULL;
|
|
; info_ptr->splt_palettes_num = 0;
|
|
; info_ptr->valid &= ~PNG_INFO_sPLT;
|
|
; }
|
|
; }
|
|
end if
|
|
|
|
if PNG_STORE_UNKNOWN_CHUNKS_SUPPORTED eq 1
|
|
; if (info_ptr->unknown_chunks != 0 &&
|
|
; ((mask & PNG_FREE_UNKN) & info_ptr->free_me) != 0)
|
|
; {
|
|
; if (num != -1)
|
|
; {
|
|
; png_free(png_ptr, info_ptr->unknown_chunks[num].data);
|
|
; info_ptr->unknown_chunks[num].data = NULL;
|
|
; }
|
|
|
|
; else
|
|
; {
|
|
; int i;
|
|
|
|
; for (i = 0; i < info_ptr->unknown_chunks_num; i++)
|
|
; png_free(png_ptr, info_ptr->unknown_chunks[i].data);
|
|
|
|
; png_free(png_ptr, info_ptr->unknown_chunks);
|
|
; info_ptr->unknown_chunks = NULL;
|
|
; info_ptr->unknown_chunks_num = 0;
|
|
; }
|
|
; }
|
|
end if
|
|
|
|
if PNG_hIST_SUPPORTED eq 1
|
|
; Free any hIST entry
|
|
mov eax,[mask]
|
|
and eax,PNG_FREE_HIST
|
|
and eax,[esi+png_info_def.free_me]
|
|
jz @f ;if (..!=0)
|
|
stdcall png_free, edi, [esi+png_info_def.hist]
|
|
mov dword[esi+png_info_def.hist],0
|
|
and dword[esi+png_info_def.valid], not PNG_INFO_hIST
|
|
@@:
|
|
end if
|
|
|
|
; Free any PLTE entry that was internally allocated
|
|
mov eax,[mask]
|
|
and eax,PNG_FREE_PLTE
|
|
and eax,[esi+png_info_def.free_me]
|
|
jz @f ;if (..!=0)
|
|
stdcall png_free, edi, [esi+png_info_def.palette]
|
|
mov dword[esi+png_info_def.palette],0
|
|
and dword[esi+png_info_def.valid],not PNG_INFO_PLTE
|
|
mov dword[esi+png_info_def.num_palette],0
|
|
@@:
|
|
|
|
if PNG_INFO_IMAGE_SUPPORTED eq 1
|
|
; Free any image bits attached to the info structure
|
|
; if (((mask & PNG_FREE_ROWS) & info_ptr->free_me) != 0)
|
|
; {
|
|
; if (info_ptr->row_pointers != 0)
|
|
; {
|
|
; uint_32 row;
|
|
; for (row = 0; row < info_ptr->height; row++)
|
|
; png_free(png_ptr, info_ptr->row_pointers[row]);
|
|
|
|
; png_free(png_ptr, info_ptr->row_pointers);
|
|
; info_ptr->row_pointers = NULL;
|
|
; }
|
|
; info_ptr->valid &= ~PNG_INFO_IDAT;
|
|
; }
|
|
end if
|
|
|
|
; if (num != -1)
|
|
; mask &= ~PNG_FREE_MUL;
|
|
|
|
mov eax,[mask]
|
|
not eax
|
|
and [esi+png_info_def.free_me],eax
|
|
.end_f:
|
|
ret
|
|
endp
|
|
|
|
; This function returns a pointer to the io_ptr associated with the user
|
|
; functions. The application should free any memory associated with this
|
|
; pointer before png_write_destroy() or png_read_destroy() are called.
|
|
|
|
;voidp (png_structrp png_ptr)
|
|
align 4
|
|
proc png_get_io_ptr, png_ptr:dword
|
|
mov eax,[png_ptr]
|
|
or eax,eax
|
|
jz @f ;if (..==0) return 0
|
|
mov eax,[eax+png_struct.io_ptr]
|
|
@@:
|
|
ret
|
|
endp
|
|
|
|
;#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
|
|
; Initialize the default input/output functions for the PNG file. If you
|
|
; use your own read or write routines, you can call either png_set_read_fn()
|
|
; or png_set_write_fn() instead of png_init_io(). If you have defined
|
|
; PNG_NO_STDIO or otherwise disabled PNG_STDIO_SUPPORTED, you must use a
|
|
; function of your own because "FILE *" isn't necessarily available.
|
|
|
|
;void (png_structrp png_ptr, png_FILE_p fp)
|
|
align 4
|
|
proc png_init_io uses eax edi, png_ptr:dword, fp:dword
|
|
png_debug 1, 'in png_init_io'
|
|
|
|
mov edi,[png_ptr]
|
|
or edi,edi
|
|
jz @f ;if (..==0) return
|
|
mov eax,[fp]
|
|
mov [edi+png_struct.io_ptr],eax
|
|
@@:
|
|
ret
|
|
endp
|
|
|
|
; PNG signed integers are saved in 32-bit 2's complement format. ANSI C-90
|
|
; defines a cast of a signed integer to an unsigned integer either to preserve
|
|
; the value, if it is positive, or to calculate:
|
|
|
|
; (UNSIGNED_MAX+1) + integer
|
|
|
|
; Where UNSIGNED_MAX is the appropriate maximum unsigned value, so when the
|
|
; negative integral value is added the result will be an unsigned value
|
|
; correspnding to the 2's complement representation.
|
|
|
|
;void (bytep buf, int_32 i)
|
|
align 4
|
|
proc png_save_int_32, buf:dword, i:dword
|
|
stdcall png_save_uint_32, [buf], [i]
|
|
ret
|
|
endp
|
|
|
|
;# ifdef PNG_TIME_RFC1123_SUPPORTED
|
|
; Convert the supplied time into an RFC 1123 string suitable for use in
|
|
; a "Creation Time" or other text-based time string.
|
|
|
|
;int (char out[29], const_timep ptime)
|
|
align 4
|
|
short_months db 'Jan',0, 'Feb',0, 'Mar',0, 'Apr',0, 'May',0, 'Jun',0,\
|
|
'Jul',0, 'Aug',0, 'Sep',0, 'Oct',0, 'Nov',0, 'Dec',0
|
|
|
|
align 4
|
|
proc png_convert_to_rfc1123_buffer, out_29:dword, ptime:dword
|
|
cmp dword[out_29],0
|
|
jne @f
|
|
xor eax,eax
|
|
jmp .end_f ;if (..==0) return 0
|
|
@@:
|
|
|
|
; if (ptime->year > 9999 /* RFC1123 limitation */ ||
|
|
; ptime->month == 0 || ptime->month > 12 ||
|
|
; ptime->day == 0 || ptime->day > 31 ||
|
|
; ptime->hour > 23 || ptime->minute > 59 ||
|
|
; ptime->second > 60)
|
|
; return 0;
|
|
|
|
; {
|
|
; size_t pos = 0;
|
|
; char number_buf[5]; /* enough for a four-digit year */
|
|
|
|
;# define APPEND_STRING(string) pos = png_safecat(out_29, 29, pos, (string))
|
|
;# define APPEND_NUMBER(format, value)\
|
|
; APPEND_STRING(PNG_FORMAT_NUMBER(number_buf, format, (value)))
|
|
;# define APPEND(ch) if (pos < 28) out_29[pos++] = (ch)
|
|
|
|
; APPEND_NUMBER(PNG_NUMBER_FORMAT_u, (unsigned)ptime->day);
|
|
; APPEND(' ');
|
|
; APPEND_STRING(short_months[(ptime->month - 1)]);
|
|
; APPEND(' ');
|
|
; APPEND_NUMBER(PNG_NUMBER_FORMAT_u, ptime->year);
|
|
; APPEND(' ');
|
|
; APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->hour);
|
|
; APPEND(':');
|
|
; APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->minute);
|
|
; APPEND(':');
|
|
; APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->second);
|
|
; APPEND_STRING(" +0000"); /* This reliably terminates the buffer */
|
|
|
|
;# undef APPEND
|
|
;# undef APPEND_NUMBER
|
|
;# undef APPEND_STRING
|
|
; }
|
|
|
|
xor eax,eax
|
|
inc eax
|
|
.end_f:
|
|
ret
|
|
endp
|
|
|
|
;# if PNG_LIBPNG_VER < 10700
|
|
; To do: remove the following from libpng-1.7
|
|
; Original API that uses a private buffer in png_struct.
|
|
; Deprecated because it causes png_struct to carry a spurious temporary
|
|
; buffer (png_struct::time_buffer), better to have the caller pass this in.
|
|
|
|
;charp (png_structrp png_ptr, const_timep ptime)
|
|
align 4
|
|
proc png_convert_to_rfc1123, png_ptr:dword, ptime:dword
|
|
; if (png_ptr != NULL)
|
|
; {
|
|
; The only failure above if png_ptr != NULL is from an invalid ptime
|
|
; if (png_convert_to_rfc1123_buffer(png_ptr->time_buffer, ptime) == 0)
|
|
; png_warning(png_ptr, "Ignoring invalid time value");
|
|
|
|
; else
|
|
; return png_ptr->time_buffer;
|
|
; }
|
|
|
|
; return NULL;
|
|
ret
|
|
endp
|
|
;# endif /* LIBPNG_VER < 10700 */
|
|
;# endif /* TIME_RFC1123 */
|
|
|
|
;end if /* READ || WRITE */
|
|
|
|
;charp (png_structrp png_ptr)
|
|
align 4
|
|
proc png_get_copyright, png_ptr:dword
|
|
jmp .end_0
|
|
@@: db 'libpng version 1.6.25 - September 1, 2016',13,10,\
|
|
' Copyright (c) 1998-2002,2004,2006-2016 Glenn Randers-Pehrson',13,10,\
|
|
' Copyright (c) 1996-1997 Andreas Dilger',13,10,\
|
|
' Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc.',0
|
|
.end_0:
|
|
mov eax,@b
|
|
ret
|
|
endp
|
|
|
|
; The following return the library version as a short string in the
|
|
; format 1.0.0 through 99.99.99zz. To get the version of *.inc files
|
|
; used with your application, print out PNG_LIBPNG_VER_STRING, which
|
|
; is defined in png.inc.
|
|
; Note: now there is no difference between png_get_libpng_ver() and
|
|
; png_get_header_ver(). Due to the version_nn_nn_nn typedef guard,
|
|
; it is guaranteed that png.asm uses the correct version of png.inc.
|
|
|
|
;charp (png_structrp png_ptr)
|
|
align 4
|
|
proc png_get_libpng_ver, png_ptr:dword
|
|
; Version of *.asm files used when building libpng
|
|
; return png_get_header_ver(png_ptr);
|
|
ret
|
|
endp
|
|
|
|
;charp (png_structrp png_ptr)
|
|
align 4
|
|
proc png_get_header_ver, png_ptr:dword
|
|
; Version of *.inc files used when building libpng
|
|
; return PNG_LIBPNG_VER_STRING;
|
|
ret
|
|
endp
|
|
|
|
;charp (png_structrp png_ptr)
|
|
align 4
|
|
proc png_get_header_version, png_ptr:dword
|
|
; Returns longer string containing both version and date
|
|
;if __STDC__
|
|
; return PNG_HEADER_VERSION_STRING
|
|
;# ifndef PNG_READ_SUPPORTED
|
|
; " (NO READ SUPPORT)"
|
|
;# endif
|
|
; PNG_STRING_NEWLINE;
|
|
;#else
|
|
; return PNG_HEADER_VERSION_STRING;
|
|
;end if
|
|
ret
|
|
endp
|
|
|
|
; NOTE: this routine is not used internally!
|
|
; Build a grayscale palette. Palette is assumed to be 1 << bit_depth
|
|
; large of png_color. This lets grayscale images be treated as
|
|
; paletted. Most useful for gamma correction and simplification
|
|
; of code. This API is not used internally.
|
|
|
|
;void (int bit_depth, png_colorp palette)
|
|
align 4
|
|
proc png_build_grayscale_palette, bit_depth:dword, palette:dword
|
|
; int num_palette;
|
|
; int color_inc;
|
|
; int i;
|
|
; int v;
|
|
|
|
png_debug 1, 'in png_do_build_grayscale_palette'
|
|
|
|
; if (palette == NULL)
|
|
; return;
|
|
|
|
; switch (bit_depth)
|
|
; {
|
|
; case 1:
|
|
; num_palette = 2;
|
|
; color_inc = 0xff;
|
|
; break;
|
|
;
|
|
; case 2:
|
|
; num_palette = 4;
|
|
; color_inc = 0x55;
|
|
; break;
|
|
;
|
|
; case 4:
|
|
; num_palette = 16;
|
|
; color_inc = 0x11;
|
|
; break;
|
|
;
|
|
; case 8:
|
|
; num_palette = 256;
|
|
; color_inc = 1;
|
|
; break;
|
|
;
|
|
; default:
|
|
; num_palette = 0;
|
|
; color_inc = 0;
|
|
; break;
|
|
; }
|
|
;
|
|
; for (i = 0, v = 0; i < num_palette; i++, v += color_inc)
|
|
; {
|
|
; palette[i].red = (byte)(v & 0xff);
|
|
; palette[i].green = (byte)(v & 0xff);
|
|
; palette[i].blue = (byte)(v & 0xff);
|
|
; }
|
|
ret
|
|
endp
|
|
|
|
;int (png_structrp png_ptr, bytep chunk_name)
|
|
align 4
|
|
proc png_handle_as_unknown uses ecx edi esi, png_ptr:dword, chunk_name:dword
|
|
; Check chunk_name and return "keep" value if it's on the list, else 0
|
|
; bytep p, p_end;
|
|
|
|
mov edi,[png_ptr]
|
|
or edi,edi
|
|
jz .end0
|
|
cmp dword[chunk_name],0
|
|
je .end0
|
|
cmp dword[edi+png_struct.num_chunk_list],0
|
|
je .end0
|
|
jmp @f
|
|
.end0: ;if (..==0 || ..==0 || ..==0)
|
|
mov eax,PNG_HANDLE_CHUNK_AS_DEFAULT
|
|
jmp .end_f
|
|
@@:
|
|
|
|
; p_end = png_ptr->chunk_list;
|
|
; p = p_end + png_ptr->num_chunk_list*5; /* beyond end */
|
|
|
|
; The code is the fifth byte after each four byte string. Historically this
|
|
; code was always searched from the end of the list, this is no longer
|
|
; necessary because the 'set' routine handles duplicate entries correcty.
|
|
|
|
; do /* num_chunk_list > 0, so at least one */
|
|
; {
|
|
; p -= 5;
|
|
|
|
; if (memcmp(chunk_name, p, 4) == 0)
|
|
; return p[4];
|
|
; }
|
|
; while (p > p_end);
|
|
|
|
; This means that known chunks should be processed and unknown chunks should
|
|
; be handled according to the value of png_ptr->unknown_default; this can be
|
|
; confusing because, as a result, there are two levels of defaulting for
|
|
; unknown chunks.
|
|
|
|
mov eax,PNG_HANDLE_CHUNK_AS_DEFAULT
|
|
.end_f:
|
|
ret
|
|
endp
|
|
|
|
;int (png_structrp png_ptr, uint_32 chunk_name)
|
|
align 4
|
|
proc png_chunk_unknown_handling, png_ptr:dword, chunk_name:dword
|
|
; byte chunk_string[5];
|
|
|
|
; PNG_CSTRING_FROM_CHUNK(chunk_string, chunk_name);
|
|
; return png_handle_as_unknown(png_ptr, chunk_string);
|
|
ret
|
|
endp
|
|
|
|
; This function, added to libpng-1.0.6g, is untested.
|
|
;int (png_structrp png_ptr)
|
|
align 4
|
|
proc png_reset_zstream, png_ptr:dword
|
|
mov eax,[png_ptr]
|
|
or eax,eax
|
|
jnz @f ;if (..==0)
|
|
mov eax,Z_STREAM_ERROR
|
|
jmp .end_f
|
|
@@:
|
|
; WARNING: this resets the window bits to the maximum!
|
|
add eax,png_struct.zstream
|
|
stdcall inflateReset,eax
|
|
.end_f:
|
|
ret
|
|
endp
|
|
|
|
; This function was added to libpng-1.0.7
|
|
;uint_32 png_access_version_number(void)
|
|
align 4
|
|
png_access_version_number:
|
|
; Version of *.asm files used when building libpng
|
|
mov eax,PNG_LIBPNG_VER
|
|
ret
|
|
|
|
;#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
|
|
; Ensure that png_ptr->zstream.msg holds some appropriate error message string.
|
|
; If it doesn't 'ret' is used to set it to something appropriate, even in cases
|
|
; like Z_OK or Z_STREAM_END where the error code is apparently a success code.
|
|
|
|
;void (png_structrp png_ptr, int ret)
|
|
align 4
|
|
proc png_zstream_error uses eax edi, png_ptr:dword, p2ret:dword
|
|
; Translate 'p2ret' into an appropriate error string, priority is given to the
|
|
; one in zstream if set. This always returns a string, even in cases like
|
|
; Z_OK or Z_STREAM_END where the error code is a success code.
|
|
|
|
mov edi,[png_ptr]
|
|
cmp dword[edi+png_struct.zstream.msg],0
|
|
jne .end_f ;if (..==0) switch (p2ret)
|
|
mov eax,[p2ret]
|
|
; default:
|
|
cmp eax,Z_OK
|
|
jne @f
|
|
cStr dword[edi+png_struct.zstream.msg],'unexpected zlib return code'
|
|
jmp .end_f
|
|
@@:
|
|
cmp eax,Z_STREAM_END
|
|
jne @f
|
|
; Normal exit
|
|
cStr dword[edi+png_struct.zstream.msg],'unexpected end of LZ stream'
|
|
jmp .end_f
|
|
@@:
|
|
cmp eax,Z_NEED_DICT
|
|
jne @f
|
|
; This means the deflate stream did not have a dictionary; this
|
|
; indicates a bogus PNG.
|
|
|
|
cStr dword[edi+png_struct.zstream.msg],'missing LZ dictionary'
|
|
jmp .end_f
|
|
@@:
|
|
cmp eax,Z_ERRNO
|
|
jne @f
|
|
; gz APIs only: should not happen
|
|
cStr dword[edi+png_struct.zstream.msg],'zlib IO error'
|
|
jmp .end_f
|
|
@@:
|
|
cmp eax,Z_STREAM_ERROR
|
|
jne @f
|
|
; internal libpng error
|
|
cStr dword[edi+png_struct.zstream.msg],'bad parameters to zlib'
|
|
jmp .end_f
|
|
@@:
|
|
cmp eax,Z_DATA_ERROR
|
|
jne @f
|
|
cStr dword[edi+png_struct.zstream.msg],'damaged LZ stream'
|
|
jmp .end_f
|
|
@@:
|
|
cmp eax,Z_MEM_ERROR
|
|
jne @f
|
|
cStr dword[edi+png_struct.zstream.msg],'insufficient memory'
|
|
jmp .end_f
|
|
@@:
|
|
cmp eax,Z_BUF_ERROR
|
|
jne @f
|
|
; End of input or output; not a problem if the caller is doing
|
|
; incremental read or write.
|
|
|
|
cStr dword[edi+png_struct.zstream.msg],'truncated'
|
|
jmp .end_f
|
|
@@:
|
|
cmp eax,Z_VERSION_ERROR
|
|
jne @f
|
|
cStr dword[edi+png_struct.zstream.msg],'unsupported zlib version'
|
|
jmp .end_f
|
|
@@:
|
|
cmp eax,PNG_UNEXPECTED_ZLIB_RETURN
|
|
jne .end_f
|
|
; Compile errors here mean that zlib now uses the value co-opted in
|
|
; pngpriv.inc for PNG_UNEXPECTED_ZLIB_RETURN; update the switch above
|
|
; and change pngpriv.inc. Note that this message is "... return",
|
|
; whereas the default/Z_OK one is "... return code".
|
|
|
|
cStr dword[edi+png_struct.zstream.msg],'unexpected zlib return'
|
|
; break;
|
|
.end_f:
|
|
ret
|
|
endp
|
|
|
|
; png_convert_size: a PNGAPI but no longer in png.inc, so deleted
|
|
; at libpng 1.5.5!
|
|
|
|
|
|
; Added at libpng version 1.2.34 and 1.4.0 (moved from pngset.asm)
|
|
;if PNG_GAMMA_SUPPORTED /* always set if COLORSPACE */
|
|
;int (png_structrp png_ptr,
|
|
; png_colorspacerp colorspace, png_fixed_point gAMA, int from)
|
|
; This is called to check a new gamma value against an existing one. The
|
|
; routine returns false if the new gamma value should not be written.
|
|
;
|
|
; 'from' says where the new gamma value comes from:
|
|
;
|
|
; 0: the new gamma value is the libpng estimate for an ICC profile
|
|
; 1: the new gamma value comes from a gAMA chunk
|
|
; 2: the new gamma value comes from an sRGB chunk
|
|
|
|
align 4
|
|
proc png_colorspace_check_gamma, png_ptr:dword, colorspace:dword, gAMA:dword, from:dword
|
|
; png_fixed_point gtest;
|
|
;
|
|
; if ((colorspace->flags & PNG_COLORSPACE_HAVE_GAMMA) != 0 &&
|
|
; (png_muldiv(>est, colorspace->gamma, PNG_FP_1, gAMA) == 0 ||
|
|
; png_gamma_significant(gtest) != 0))
|
|
; {
|
|
; Either this is an sRGB image, in which case the calculated gamma
|
|
; approximation should match, or this is an image with a profile and the
|
|
; value libpng calculates for the gamma of the profile does not match the
|
|
; value recorded in the file. The former, sRGB, case is an error, the
|
|
; latter is just a warning.
|
|
|
|
; if ((colorspace->flags & PNG_COLORSPACE_FROM_sRGB) != 0 || from == 2)
|
|
; {
|
|
; png_chunk_report(png_ptr, "gamma value does not match sRGB",
|
|
; PNG_CHUNK_ERROR);
|
|
; /* Do not overwrite an sRGB value */
|
|
; return from == 2;
|
|
; }
|
|
|
|
; else /* sRGB tag not involved */
|
|
; {
|
|
; png_chunk_report(png_ptr, "gamma value does not match libpng estimate",
|
|
; PNG_CHUNK_WARNING);
|
|
; return from == 1;
|
|
; }
|
|
; }
|
|
|
|
; return 1;
|
|
ret
|
|
endp
|
|
|
|
;void (png_structrp png_ptr, png_colorspacerp colorspace, png_fixed_point gAMA)
|
|
align 4
|
|
proc png_colorspace_set_gamma, png_ptr:dword, colorspace:dword, gAMA:dword
|
|
; Changed in libpng-1.5.4 to limit the values to ensure overflow can't
|
|
; occur. Since the fixed point representation is asymetrical it is
|
|
; possible for 1/gamma to overflow the limit of 21474 and this means the
|
|
; gamma value must be at least 5/100000 and hence at most 20000.0. For
|
|
; safety the limits here are a little narrower. The values are 0.00016 to
|
|
; 6250.0, which are truly ridiculous gamma values (and will produce
|
|
; displays that are all black or all white.)
|
|
|
|
; In 1.6.0 this test replaces the ones in pngrutil.c, in the gAMA chunk
|
|
; handling code, which only required the value to be >0.
|
|
|
|
; charp errmsg;
|
|
|
|
; if (gAMA < 16 || gAMA > 625000000)
|
|
; errmsg = "gamma value out of range";
|
|
|
|
;# ifdef PNG_READ_gAMA_SUPPORTED
|
|
; Allow the application to set the gamma value more than once
|
|
; else if ((png_ptr->mode & PNG_IS_READ_STRUCT) != 0 &&
|
|
; (colorspace->flags & PNG_COLORSPACE_FROM_gAMA) != 0)
|
|
; errmsg = "duplicate";
|
|
;# endif
|
|
|
|
; Do nothing if the colorspace is already invalid
|
|
; else if ((colorspace->flags & PNG_COLORSPACE_INVALID) != 0)
|
|
; return;
|
|
|
|
; else
|
|
; {
|
|
; if (png_colorspace_check_gamma(png_ptr, colorspace, gAMA,
|
|
; 1/*from gAMA*/) != 0)
|
|
; {
|
|
; /* Store this gamma value. */
|
|
; colorspace->gamma = gAMA;
|
|
; colorspace->flags |=
|
|
; (PNG_COLORSPACE_HAVE_GAMMA | PNG_COLORSPACE_FROM_gAMA);
|
|
; }
|
|
|
|
; At present if the check_gamma test fails the gamma of the colorspace is
|
|
; not updated however the colorspace is not invalidated. This
|
|
; corresponds to the case where the existing gamma comes from an sRGB
|
|
; chunk or profile. An error message has already been output.
|
|
|
|
; return;
|
|
; }
|
|
|
|
; Error exit - errmsg has been set.
|
|
; colorspace->flags |= PNG_COLORSPACE_INVALID;
|
|
; png_chunk_report(png_ptr, errmsg, PNG_CHUNK_WRITE_ERROR);
|
|
.end_f:
|
|
ret
|
|
endp
|
|
|
|
;void (png_structrp png_ptr, png_inforp info_ptr)
|
|
align 4
|
|
proc png_colorspace_sync_info uses eax esi, png_ptr:dword, info_ptr:dword
|
|
mov esi,[info_ptr]
|
|
mov ax,[esi+png_info_def.colorspace.flags]
|
|
and ax,PNG_COLORSPACE_INVALID
|
|
cmp ax,0
|
|
je @f ;if (..!=0)
|
|
; Everything is invalid
|
|
and dword[esi+png_info_def.valid], not (PNG_INFO_gAMA or PNG_INFO_cHRM or PNG_INFO_sRGB or PNG_INFO_iCCP)
|
|
|
|
if PNG_COLORSPACE_SUPPORTED eq 1
|
|
; Clean up the iCCP profile now if it won't be used.
|
|
stdcall png_free_data, [png_ptr], esi, PNG_FREE_ICCP, -1 ;not used
|
|
end if
|
|
jmp .end0
|
|
@@: ;else
|
|
if PNG_COLORSPACE_SUPPORTED eq 1
|
|
; Leave the INFO_iCCP flag set if the pngset.c code has already set
|
|
; it; this allows a PNG to contain a profile which matches sRGB and
|
|
; yet still have that profile retrievable by the application.
|
|
|
|
mov ax,[esi+png_info_def.colorspace.flags]
|
|
and ax,PNG_COLORSPACE_MATCHES_sRGB
|
|
cmp ax,0
|
|
je @f ;if (..!=0)
|
|
or dword[esi+png_info_def.valid], PNG_INFO_sRGB
|
|
jmp .end1
|
|
@@: ;else
|
|
and dword[esi+png_info_def.valid], not PNG_INFO_sRGB
|
|
.end1:
|
|
mov ax,[esi+png_info_def.colorspace.flags]
|
|
and ax,PNG_COLORSPACE_HAVE_ENDPOINTS
|
|
cmp ax,0
|
|
je @f ;if (..!=0)
|
|
or dword[esi+png_info_def.valid], PNG_INFO_cHRM
|
|
jmp .end2
|
|
@@: ;else
|
|
and dword[esi+png_info_def.valid], not PNG_INFO_cHRM
|
|
.end2:
|
|
end if
|
|
|
|
mov ax,[esi+png_info_def.colorspace.flags]
|
|
and ax,PNG_COLORSPACE_HAVE_GAMMA
|
|
cmp ax,0
|
|
je @f ;if (..!=0)
|
|
or dword[esi+png_info_def.valid], PNG_INFO_gAMA
|
|
jmp .end0
|
|
@@: ;else
|
|
and dword[esi+png_info_def.valid], not PNG_INFO_gAMA
|
|
.end0:
|
|
ret
|
|
endp
|
|
|
|
;void (png_structrp png_ptr, png_inforp info_ptr)
|
|
align 4
|
|
proc png_colorspace_sync uses ecx edi esi, png_ptr:dword, info_ptr:dword
|
|
mov edi,[info_ptr]
|
|
or edi,edi
|
|
jz @f ;if (..==0) ;reduce code size; check here not in the caller
|
|
mov ecx,sizeof.png_colorspace
|
|
mov esi,[png_ptr]
|
|
add esi,png_struct.colorspace
|
|
add edi,png_info_def.colorspace
|
|
rep movsb
|
|
stdcall png_colorspace_sync_info, [png_ptr], [info_ptr]
|
|
@@:
|
|
ret
|
|
endp
|
|
|
|
;end if /* GAMMA */
|
|
|
|
;if PNG_COLORSPACE_SUPPORTED
|
|
; Added at libpng-1.5.5 to support read and write of true CIEXYZ values for
|
|
; cHRM, as opposed to using chromaticities. These internal APIs return
|
|
; non-zero on a parameter error. The X, Y and Z values are required to be
|
|
; positive and less than 1.0.
|
|
|
|
;int (png_xy *xy, const png_XYZ *XYZ)
|
|
align 4
|
|
proc png_xy_from_XYZ, xy:dword, XYZ:dword
|
|
; int_32 d, dwhite, whiteX, whiteY;
|
|
|
|
; d = XYZ->red_X + XYZ->red_Y + XYZ->red_Z;
|
|
; if (png_muldiv(&xy->redx, XYZ->red_X, PNG_FP_1, d) == 0)
|
|
; return 1;
|
|
; if (png_muldiv(&xy->redy, XYZ->red_Y, PNG_FP_1, d) == 0)
|
|
; return 1;
|
|
; dwhite = d;
|
|
; whiteX = XYZ->red_X;
|
|
; whiteY = XYZ->red_Y;
|
|
|
|
; d = XYZ->green_X + XYZ->green_Y + XYZ->green_Z;
|
|
; if (png_muldiv(&xy->greenx, XYZ->green_X, PNG_FP_1, d) == 0)
|
|
; return 1;
|
|
; if (png_muldiv(&xy->greeny, XYZ->green_Y, PNG_FP_1, d) == 0)
|
|
; return 1;
|
|
; dwhite += d;
|
|
; whiteX += XYZ->green_X;
|
|
; whiteY += XYZ->green_Y;
|
|
|
|
; d = XYZ->blue_X + XYZ->blue_Y + XYZ->blue_Z;
|
|
; if (png_muldiv(&xy->bluex, XYZ->blue_X, PNG_FP_1, d) == 0)
|
|
; return 1;
|
|
; if (png_muldiv(&xy->bluey, XYZ->blue_Y, PNG_FP_1, d) == 0)
|
|
; return 1;
|
|
; dwhite += d;
|
|
; whiteX += XYZ->blue_X;
|
|
; whiteY += XYZ->blue_Y;
|
|
|
|
; The reference white is simply the sum of the end-point (X,Y,Z) vectors,
|
|
; thus:
|
|
|
|
; if (png_muldiv(&xy->whitex, whiteX, PNG_FP_1, dwhite) == 0)
|
|
; return 1;
|
|
; if (png_muldiv(&xy->whitey, whiteY, PNG_FP_1, dwhite) == 0)
|
|
; return 1;
|
|
|
|
; return 0;
|
|
ret
|
|
endp
|
|
|
|
;int (png_XYZ *XYZ, const png_xy *xy)
|
|
align 4
|
|
proc png_XYZ_from_xy, XYZ:dword, xy:dword
|
|
; png_fixed_point red_inverse, green_inverse, blue_scale;
|
|
; png_fixed_point left, right, denominator;
|
|
|
|
; Check xy and, implicitly, z. Note that wide gamut color spaces typically
|
|
; have end points with 0 tristimulus values (these are impossible end
|
|
; points, but they are used to cover the possible colors). We check
|
|
; xy->whitey against 5, not 0, to avoid a possible integer overflow.
|
|
|
|
; if (xy->redx < 0 || xy->redx > PNG_FP_1) return 1;
|
|
; if (xy->redy < 0 || xy->redy > PNG_FP_1-xy->redx) return 1;
|
|
; if (xy->greenx < 0 || xy->greenx > PNG_FP_1) return 1;
|
|
; if (xy->greeny < 0 || xy->greeny > PNG_FP_1-xy->greenx) return 1;
|
|
; if (xy->bluex < 0 || xy->bluex > PNG_FP_1) return 1;
|
|
; if (xy->bluey < 0 || xy->bluey > PNG_FP_1-xy->bluex) return 1;
|
|
; if (xy->whitex < 0 || xy->whitex > PNG_FP_1) return 1;
|
|
; if (xy->whitey < 5 || xy->whitey > PNG_FP_1-xy->whitex) return 1;
|
|
|
|
; The reverse calculation is more difficult because the original tristimulus
|
|
; value had 9 independent values (red,green,blue)x(X,Y,Z) however only 8
|
|
; derived values were recorded in the cHRM chunk;
|
|
; (red,green,blue,white)x(x,y). This loses one degree of freedom and
|
|
; therefore an arbitrary ninth value has to be introduced to undo the
|
|
; original transformations.
|
|
|
|
; Think of the original end-points as points in (X,Y,Z) space. The
|
|
; chromaticity values (c) have the property:
|
|
|
|
; C
|
|
; c = ---------
|
|
; X + Y + Z
|
|
|
|
; For each c (x,y,z) from the corresponding original C (X,Y,Z). Thus the
|
|
; three chromaticity values (x,y,z) for each end-point obey the
|
|
; relationship:
|
|
|
|
; x + y + z = 1
|
|
|
|
; This describes the plane in (X,Y,Z) space that intersects each axis at the
|
|
; value 1.0; call this the chromaticity plane. Thus the chromaticity
|
|
; calculation has scaled each end-point so that it is on the x+y+z=1 plane
|
|
; and chromaticity is the intersection of the vector from the origin to the
|
|
; (X,Y,Z) value with the chromaticity plane.
|
|
|
|
; To fully invert the chromaticity calculation we would need the three
|
|
; end-point scale factors, (red-scale, green-scale, blue-scale), but these
|
|
; were not recorded. Instead we calculated the reference white (X,Y,Z) and
|
|
; recorded the chromaticity of this. The reference white (X,Y,Z) would have
|
|
; given all three of the scale factors since:
|
|
|
|
; color-C = color-c * color-scale
|
|
; white-C = red-C + green-C + blue-C
|
|
; = red-c*red-scale + green-c*green-scale + blue-c*blue-scale
|
|
|
|
; But cHRM records only white-x and white-y, so we have lost the white scale
|
|
; factor:
|
|
|
|
; white-C = white-c*white-scale
|
|
|
|
; To handle this the inverse transformation makes an arbitrary assumption
|
|
; about white-scale:
|
|
|
|
; Assume: white-Y = 1.0
|
|
; Hence: white-scale = 1/white-y
|
|
; Or: red-Y + green-Y + blue-Y = 1.0
|
|
|
|
; Notice the last statement of the assumption gives an equation in three of
|
|
; the nine values we want to calculate. 8 more equations come from the
|
|
; above routine as summarised at the top above (the chromaticity
|
|
; calculation):
|
|
|
|
; Given: color-x = color-X / (color-X + color-Y + color-Z)
|
|
; Hence: (color-x - 1)*color-X + color.x*color-Y + color.x*color-Z = 0
|
|
|
|
; This is 9 simultaneous equations in the 9 variables "color-C" and can be
|
|
; solved by Cramer's rule. Cramer's rule requires calculating 10 9x9 matrix
|
|
; determinants, however this is not as bad as it seems because only 28 of
|
|
; the total of 90 terms in the various matrices are non-zero. Nevertheless
|
|
; Cramer's rule is notoriously numerically unstable because the determinant
|
|
; calculation involves the difference of large, but similar, numbers. It is
|
|
; difficult to be sure that the calculation is stable for real world values
|
|
; and it is certain that it becomes unstable where the end points are close
|
|
; together.
|
|
|
|
; So this code uses the perhaps slightly less optimal but more
|
|
; understandable and totally obvious approach of calculating color-scale.
|
|
|
|
; This algorithm depends on the precision in white-scale and that is
|
|
; (1/white-y), so we can immediately see that as white-y approaches 0 the
|
|
; accuracy inherent in the cHRM chunk drops off substantially.
|
|
|
|
; libpng arithmetic: a simple inversion of the above equations
|
|
; ------------------------------------------------------------
|
|
|
|
; white_scale = 1/white-y
|
|
; white-X = white-x * white-scale
|
|
; white-Y = 1.0
|
|
; white-Z = (1 - white-x - white-y) * white_scale
|
|
|
|
; white-C = red-C + green-C + blue-C
|
|
; = red-c*red-scale + green-c*green-scale + blue-c*blue-scale
|
|
|
|
; This gives us three equations in (red-scale,green-scale,blue-scale) where
|
|
; all the coefficients are now known:
|
|
|
|
; red-x*red-scale + green-x*green-scale + blue-x*blue-scale
|
|
; = white-x/white-y
|
|
; red-y*red-scale + green-y*green-scale + blue-y*blue-scale = 1
|
|
; red-z*red-scale + green-z*green-scale + blue-z*blue-scale
|
|
; = (1 - white-x - white-y)/white-y
|
|
|
|
; In the last equation color-z is (1 - color-x - color-y) so we can add all
|
|
; three equations together to get an alternative third:
|
|
|
|
; red-scale + green-scale + blue-scale = 1/white-y = white-scale
|
|
|
|
; So now we have a Cramer's rule solution where the determinants are just
|
|
; 3x3 - far more tractible. Unfortunately 3x3 determinants still involve
|
|
; multiplication of three coefficients so we can't guarantee to avoid
|
|
; overflow in the libpng fixed point representation. Using Cramer's rule in
|
|
; floating point is probably a good choice here, but it's not an option for
|
|
; fixed point. Instead proceed to simplify the first two equations by
|
|
; eliminating what is likely to be the largest value, blue-scale:
|
|
|
|
; blue-scale = white-scale - red-scale - green-scale
|
|
|
|
; Hence:
|
|
|
|
; (red-x - blue-x)*red-scale + (green-x - blue-x)*green-scale =
|
|
; (white-x - blue-x)*white-scale
|
|
|
|
; (red-y - blue-y)*red-scale + (green-y - blue-y)*green-scale =
|
|
; 1 - blue-y*white-scale
|
|
|
|
; And now we can trivially solve for (red-scale,green-scale):
|
|
|
|
; green-scale =
|
|
; (white-x - blue-x)*white-scale - (red-x - blue-x)*red-scale
|
|
; -----------------------------------------------------------
|
|
; green-x - blue-x
|
|
|
|
; red-scale =
|
|
; 1 - blue-y*white-scale - (green-y - blue-y) * green-scale
|
|
; ---------------------------------------------------------
|
|
; red-y - blue-y
|
|
|
|
; Hence:
|
|
|
|
; red-scale =
|
|
; ( (green-x - blue-x) * (white-y - blue-y) -
|
|
; (green-y - blue-y) * (white-x - blue-x) ) / white-y
|
|
; -------------------------------------------------------------------------
|
|
; (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x)
|
|
|
|
; green-scale =
|
|
; ( (red-y - blue-y) * (white-x - blue-x) -
|
|
; (red-x - blue-x) * (white-y - blue-y) ) / white-y
|
|
; -------------------------------------------------------------------------
|
|
; (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x)
|
|
|
|
; Accuracy:
|
|
; The input values have 5 decimal digits of accuracy. The values are all in
|
|
; the range 0 < value < 1, so simple products are in the same range but may
|
|
; need up to 10 decimal digits to preserve the original precision and avoid
|
|
; underflow. Because we are using a 32-bit signed representation we cannot
|
|
; match this; the best is a little over 9 decimal digits, less than 10.
|
|
|
|
; The approach used here is to preserve the maximum precision within the
|
|
; signed representation. Because the red-scale calculation above uses the
|
|
; difference between two products of values that must be in the range -1..+1
|
|
; it is sufficient to divide the product by 7; ceil(100,000/32767*2). The
|
|
; factor is irrelevant in the calculation because it is applied to both
|
|
; numerator and denominator.
|
|
|
|
; Note that the values of the differences of the products of the
|
|
; chromaticities in the above equations tend to be small, for example for
|
|
; the sRGB chromaticities they are:
|
|
|
|
; red numerator: -0.04751
|
|
; green numerator: -0.08788
|
|
; denominator: -0.2241 (without white-y multiplication)
|
|
|
|
; The resultant Y coefficients from the chromaticities of some widely used
|
|
; color space definitions are (to 15 decimal places):
|
|
|
|
; sRGB
|
|
; 0.212639005871510 0.715168678767756 0.072192315360734
|
|
; Kodak ProPhoto
|
|
; 0.288071128229293 0.711843217810102 0.000085653960605
|
|
; Adobe RGB
|
|
; 0.297344975250536 0.627363566255466 0.075291458493998
|
|
; Adobe Wide Gamut RGB
|
|
; 0.258728243040113 0.724682314948566 0.016589442011321
|
|
|
|
; By the argument, above overflow should be impossible here. The return
|
|
; value of 2 indicates an internal error to the caller.
|
|
|
|
; if (png_muldiv(&left, xy->greenx-xy->bluex, xy->redy - xy->bluey, 7) == 0)
|
|
; return 2;
|
|
; if (png_muldiv(&right, xy->greeny-xy->bluey, xy->redx - xy->bluex, 7) == 0)
|
|
; return 2;
|
|
; denominator = left - right;
|
|
|
|
; Now find the red numerator.
|
|
; if (png_muldiv(&left, xy->greenx-xy->bluex, xy->whitey-xy->bluey, 7) == 0)
|
|
; return 2;
|
|
; if (png_muldiv(&right, xy->greeny-xy->bluey, xy->whitex-xy->bluex, 7) == 0)
|
|
; return 2;
|
|
|
|
; Overflow is possible here and it indicates an extreme set of PNG cHRM
|
|
; chunk values. This calculation actually returns the reciprocal of the
|
|
; scale value because this allows us to delay the multiplication of white-y
|
|
; into the denominator, which tends to produce a small number.
|
|
|
|
; if (png_muldiv(&red_inverse, xy->whitey, denominator, left-right) == 0 ||
|
|
; red_inverse <= xy->whitey /* r+g+b scales = white scale */)
|
|
; return 1;
|
|
|
|
; Similarly for green_inverse:
|
|
; if (png_muldiv(&left, xy->redy-xy->bluey, xy->whitex-xy->bluex, 7) == 0)
|
|
; return 2;
|
|
; if (png_muldiv(&right, xy->redx-xy->bluex, xy->whitey-xy->bluey, 7) == 0)
|
|
; return 2;
|
|
; if (png_muldiv(&green_inverse, xy->whitey, denominator, left-right) == 0 ||
|
|
; green_inverse <= xy->whitey)
|
|
; return 1;
|
|
|
|
; And the blue scale, the checks above guarantee this can't overflow but it
|
|
; can still produce 0 for extreme cHRM values.
|
|
|
|
; blue_scale = png_reciprocal(xy->whitey) - png_reciprocal(red_inverse) -
|
|
; png_reciprocal(green_inverse);
|
|
; if (blue_scale <= 0)
|
|
; return 1;
|
|
|
|
|
|
; And fill in the png_XYZ:
|
|
; if (png_muldiv(&XYZ->red_X, xy->redx, PNG_FP_1, red_inverse) == 0)
|
|
; return 1;
|
|
; if (png_muldiv(&XYZ->red_Y, xy->redy, PNG_FP_1, red_inverse) == 0)
|
|
; return 1;
|
|
; if (png_muldiv(&XYZ->red_Z, PNG_FP_1 - xy->redx - xy->redy, PNG_FP_1,
|
|
; red_inverse) == 0)
|
|
; return 1;
|
|
|
|
; if (png_muldiv(&XYZ->green_X, xy->greenx, PNG_FP_1, green_inverse) == 0)
|
|
; return 1;
|
|
; if (png_muldiv(&XYZ->green_Y, xy->greeny, PNG_FP_1, green_inverse) == 0)
|
|
; return 1;
|
|
; if (png_muldiv(&XYZ->green_Z, PNG_FP_1 - xy->greenx - xy->greeny, PNG_FP_1,
|
|
; green_inverse) == 0)
|
|
; return 1;
|
|
|
|
; if (png_muldiv(&XYZ->blue_X, xy->bluex, blue_scale, PNG_FP_1) == 0)
|
|
; return 1;
|
|
; if (png_muldiv(&XYZ->blue_Y, xy->bluey, blue_scale, PNG_FP_1) == 0)
|
|
; return 1;
|
|
; if (png_muldiv(&XYZ->blue_Z, PNG_FP_1 - xy->bluex - xy->bluey, blue_scale,
|
|
; PNG_FP_1) == 0)
|
|
; return 1;
|
|
|
|
; return 0; /*success*/
|
|
ret
|
|
endp
|
|
|
|
;int (png_XYZ *XYZ)
|
|
align 4
|
|
proc png_XYZ_normalize, XYZ:dword
|
|
; int_32 Y;
|
|
|
|
; if (XYZ->red_Y < 0 || XYZ->green_Y < 0 || XYZ->blue_Y < 0 ||
|
|
; XYZ->red_X < 0 || XYZ->green_X < 0 || XYZ->blue_X < 0 ||
|
|
; XYZ->red_Z < 0 || XYZ->green_Z < 0 || XYZ->blue_Z < 0)
|
|
; return 1;
|
|
|
|
; Normalize by scaling so the sum of the end-point Y values is PNG_FP_1.
|
|
; IMPLEMENTATION NOTE: ANSI requires signed overflow not to occur, therefore
|
|
; relying on addition of two positive values producing a negative one is not
|
|
; safe.
|
|
|
|
; Y = XYZ->red_Y;
|
|
; if (0x7fffffff - Y < XYZ->green_X)
|
|
; return 1;
|
|
; Y += XYZ->green_Y;
|
|
; if (0x7fffffff - Y < XYZ->blue_X)
|
|
; return 1;
|
|
; Y += XYZ->blue_Y;
|
|
|
|
; if (Y != PNG_FP_1)
|
|
; {
|
|
; if (png_muldiv(&XYZ->red_X, XYZ->red_X, PNG_FP_1, Y) == 0)
|
|
; return 1;
|
|
; if (png_muldiv(&XYZ->red_Y, XYZ->red_Y, PNG_FP_1, Y) == 0)
|
|
; return 1;
|
|
; if (png_muldiv(&XYZ->red_Z, XYZ->red_Z, PNG_FP_1, Y) == 0)
|
|
; return 1;
|
|
|
|
; if (png_muldiv(&XYZ->green_X, XYZ->green_X, PNG_FP_1, Y) == 0)
|
|
; return 1;
|
|
; if (png_muldiv(&XYZ->green_Y, XYZ->green_Y, PNG_FP_1, Y) == 0)
|
|
; return 1;
|
|
; if (png_muldiv(&XYZ->green_Z, XYZ->green_Z, PNG_FP_1, Y) == 0)
|
|
; return 1;
|
|
|
|
; if (png_muldiv(&XYZ->blue_X, XYZ->blue_X, PNG_FP_1, Y) == 0)
|
|
; return 1;
|
|
; if (png_muldiv(&XYZ->blue_Y, XYZ->blue_Y, PNG_FP_1, Y) == 0)
|
|
; return 1;
|
|
; if (png_muldiv(&XYZ->blue_Z, XYZ->blue_Z, PNG_FP_1, Y) == 0)
|
|
; return 1;
|
|
; }
|
|
|
|
; return 0;
|
|
ret
|
|
endp
|
|
|
|
;int (const png_xy *xy1, const png_xy *xy2, int delta)
|
|
align 4
|
|
proc png_colorspace_endpoints_match, xy1:dword, xy2:dword, delta:dword
|
|
; Allow an error of +/-0.01 (absolute value) on each chromaticity
|
|
; if (PNG_OUT_OF_RANGE(xy1->whitex, xy2->whitex,delta) ||
|
|
; PNG_OUT_OF_RANGE(xy1->whitey, xy2->whitey,delta) ||
|
|
; PNG_OUT_OF_RANGE(xy1->redx, xy2->redx, delta) ||
|
|
; PNG_OUT_OF_RANGE(xy1->redy, xy2->redy, delta) ||
|
|
; PNG_OUT_OF_RANGE(xy1->greenx, xy2->greenx,delta) ||
|
|
; PNG_OUT_OF_RANGE(xy1->greeny, xy2->greeny,delta) ||
|
|
; PNG_OUT_OF_RANGE(xy1->bluex, xy2->bluex, delta) ||
|
|
; PNG_OUT_OF_RANGE(xy1->bluey, xy2->bluey, delta))
|
|
; return 0;
|
|
; return 1;
|
|
ret
|
|
endp
|
|
|
|
; Added in libpng-1.6.0, a different check for the validity of a set of cHRM
|
|
; chunk chromaticities. Earlier checks used to simply look for the overflow
|
|
; condition (where the determinant of the matrix to solve for XYZ ends up zero
|
|
; because the chromaticity values are not all distinct.) Despite this it is
|
|
; theoretically possible to produce chromaticities that are apparently valid
|
|
; but that rapidly degrade to invalid, potentially crashing, sets because of
|
|
; arithmetic inaccuracies when calculations are performed on them. The new
|
|
; check is to round-trip xy -> XYZ -> xy and then check that the result is
|
|
; within a small percentage of the original.
|
|
|
|
;int (png_XYZ *XYZ, const png_xy *xy)
|
|
align 4
|
|
proc png_colorspace_check_xy, XYZ:dword, xy:dword
|
|
; int result;
|
|
; png_xy xy_test;
|
|
|
|
; As a side-effect this routine also returns the XYZ endpoints.
|
|
; result = png_XYZ_from_xy(XYZ, xy);
|
|
; if (result != 0)
|
|
; return result;
|
|
|
|
; result = png_xy_from_XYZ(&xy_test, XYZ);
|
|
; if (result != 0)
|
|
; return result;
|
|
|
|
; if (png_colorspace_endpoints_match(xy, &xy_test,
|
|
; 5/*actually, the math is pretty accurate*/) != 0)
|
|
; return 0;
|
|
|
|
; Too much slip
|
|
; return 1;
|
|
ret
|
|
endp
|
|
|
|
; This is the check going the other way. The XYZ is modified to normalize it
|
|
; (another side-effect) and the xy chromaticities are returned.
|
|
|
|
;int (png_xy *xy, png_XYZ *XYZ)
|
|
align 4
|
|
proc png_colorspace_check_XYZ, xy:dword, XYZ:dword
|
|
; int result;
|
|
; png_XYZ XYZtemp;
|
|
|
|
; result = png_XYZ_normalize(XYZ);
|
|
; if (result != 0)
|
|
; return result;
|
|
|
|
; result = png_xy_from_XYZ(xy, XYZ);
|
|
; if (result != 0)
|
|
; return result;
|
|
|
|
; XYZtemp = *XYZ;
|
|
; return png_colorspace_check_xy(&XYZtemp, xy);
|
|
ret
|
|
endp
|
|
|
|
; Used to check for an endpoint match against sRGB
|
|
;const png_xy sRGB_xy = /* From ITU-R BT.709-3 */
|
|
; /* color x y */
|
|
; /* red */ 64000, 33000,
|
|
; /* green */ 30000, 60000,
|
|
; /* blue */ 15000, 6000,
|
|
; /* white */ 31270, 32900
|
|
|
|
;int (png_structrp png_ptr,
|
|
; png_colorspacerp colorspace, const png_xy *xy, const png_XYZ *XYZ,
|
|
; int preferred)
|
|
align 4
|
|
proc png_colorspace_set_xy_and_XYZ, png_ptr:dword, colorspace:dword, xy:dword, XYZ:dword, preferred:dword
|
|
; if ((colorspace->flags & PNG_COLORSPACE_INVALID) != 0)
|
|
; return 0;
|
|
|
|
; The consistency check is performed on the chromaticities; this factors out
|
|
; variations because of the normalization (or not) of the end point Y
|
|
; values.
|
|
|
|
; if (preferred < 2 &&
|
|
; (colorspace->flags & PNG_COLORSPACE_HAVE_ENDPOINTS) != 0)
|
|
; {
|
|
; The end points must be reasonably close to any we already have. The
|
|
; following allows an error of up to +/-.001
|
|
|
|
; if (png_colorspace_endpoints_match(xy, &colorspace->end_points_xy,
|
|
; 100) == 0)
|
|
; {
|
|
; colorspace->flags |= PNG_COLORSPACE_INVALID;
|
|
; png_benign_error(png_ptr, "inconsistent chromaticities");
|
|
; return 0; /* failed */
|
|
; }
|
|
|
|
; Only overwrite with preferred values
|
|
; if (preferred == 0)
|
|
; return 1; /* ok, but no change */
|
|
; }
|
|
|
|
; colorspace->end_points_xy = *xy;
|
|
; colorspace->end_points_XYZ = *XYZ;
|
|
; colorspace->flags |= PNG_COLORSPACE_HAVE_ENDPOINTS;
|
|
|
|
; /* The end points are normally quoted to two decimal digits, so allow +/-0.01
|
|
; on this test.
|
|
|
|
; if (png_colorspace_endpoints_match(xy, &sRGB_xy, 1000) != 0)
|
|
; colorspace->flags |= PNG_COLORSPACE_ENDPOINTS_MATCH_sRGB;
|
|
;
|
|
; else
|
|
; colorspace->flags &= PNG_COLORSPACE_CANCEL(
|
|
; PNG_COLORSPACE_ENDPOINTS_MATCH_sRGB);
|
|
|
|
; return 2; /* ok and changed */
|
|
ret
|
|
endp
|
|
|
|
;int (png_structrp png_ptr,
|
|
; png_colorspacerp colorspace, const png_xy *xy, int preferred)
|
|
align 4
|
|
proc png_colorspace_set_chromaticities, png_ptr:dword, colorspace:dword, xy:dword, preferred:dword
|
|
; We must check the end points to ensure they are reasonable - in the past
|
|
; color management systems have crashed as a result of getting bogus
|
|
; colorant values, while this isn't the fault of libpng it is the
|
|
; responsibility of libpng because PNG carries the bomb and libpng is in a
|
|
; position to protect against it.
|
|
|
|
; png_XYZ XYZ;
|
|
|
|
; switch (png_colorspace_check_xy(&XYZ, xy))
|
|
; {
|
|
; case 0: /* success */
|
|
; return png_colorspace_set_xy_and_XYZ(png_ptr, colorspace, xy, &XYZ,
|
|
; preferred);
|
|
|
|
; case 1:
|
|
; We can't invert the chromaticities so we can't produce value XYZ
|
|
; values. Likely as not a color management system will fail too.
|
|
|
|
; colorspace->flags |= PNG_COLORSPACE_INVALID;
|
|
; png_benign_error(png_ptr, "invalid chromaticities");
|
|
; break;
|
|
;
|
|
; default:
|
|
; libpng is broken; this should be a warning but if it happens we
|
|
; want error reports so for the moment it is an error.
|
|
|
|
; colorspace->flags |= PNG_COLORSPACE_INVALID;
|
|
; png_error(png_ptr, "internal error checking chromaticities");
|
|
; }
|
|
|
|
xor eax,eax
|
|
.end_f:
|
|
ret
|
|
endp
|
|
|
|
;int (png_structrp png_ptr,
|
|
; png_colorspacerp colorspace, const png_XYZ *XYZ_in, int preferred)
|
|
align 4
|
|
proc png_colorspace_set_endpoints, png_ptr:dword, colorspace:dword, XYZ_in:dword, preferred:dword
|
|
; png_XYZ XYZ = *XYZ_in;
|
|
; png_xy xy;
|
|
|
|
; switch (png_colorspace_check_XYZ(&xy, &XYZ))
|
|
; {
|
|
; case 0:
|
|
; return png_colorspace_set_xy_and_XYZ(png_ptr, colorspace, &xy, &XYZ,
|
|
; preferred);
|
|
|
|
; case 1:
|
|
; End points are invalid.
|
|
; colorspace->flags |= PNG_COLORSPACE_INVALID;
|
|
; png_benign_error(png_ptr, "invalid end points");
|
|
; break;
|
|
|
|
; default:
|
|
; colorspace->flags |= PNG_COLORSPACE_INVALID;
|
|
; png_error(png_ptr, "internal error checking chromaticities");
|
|
; }
|
|
|
|
xor eax,eax
|
|
.end_f:
|
|
ret
|
|
endp
|
|
|
|
; Error message generation
|
|
;char (uint_32 byte)
|
|
align 4
|
|
proc png_icc_tag_char, p1byte:dword
|
|
mov eax,[p1byte]
|
|
cmp al,32
|
|
jl @f
|
|
cmp al,126
|
|
jg @f ;if (..>=.. && ..<=..) return
|
|
mov al,'?'
|
|
@@:
|
|
and eax,0xff
|
|
ret
|
|
endp
|
|
|
|
;void (char *name, uint_32 tag)
|
|
align 4
|
|
proc png_icc_tag_name uses eax edi, name:dword, tag:dword
|
|
mov edi,[name]
|
|
mov byte[edi],39
|
|
mov byte[edi+5],39
|
|
inc edi
|
|
mov eax,[tag]
|
|
shr eax,24
|
|
stdcall png_icc_tag_char,eax
|
|
stosb
|
|
mov eax,[tag]
|
|
shr eax,16
|
|
stdcall png_icc_tag_char,eax
|
|
stosb
|
|
mov eax,[tag]
|
|
shr eax,8
|
|
stdcall png_icc_tag_char,eax
|
|
stosb
|
|
stdcall png_icc_tag_char,[tag]
|
|
stosb
|
|
ret
|
|
endp
|
|
|
|
;int (png_alloc_size_t it)
|
|
align 4
|
|
proc is_ICC_signature_char, it:dword
|
|
; return it == 32 || (it >= 48 && it <= 57) || (it >= 65 && it <= 90) ||
|
|
; (it >= 97 && it <= 122);
|
|
ret
|
|
endp
|
|
|
|
;int (png_alloc_size_t it)
|
|
align 4
|
|
proc is_ICC_signature, it:dword
|
|
; return is_ICC_signature_char(it >> 24) /* checks all the top bits */ &&
|
|
; is_ICC_signature_char((it >> 16) & 0xff) &&
|
|
; is_ICC_signature_char((it >> 8) & 0xff) &&
|
|
; is_ICC_signature_char(it & 0xff);
|
|
ret
|
|
endp
|
|
|
|
;int (png_structrp png_ptr, png_colorspacerp colorspace,
|
|
; charp name, png_alloc_size_t value, charp reason)
|
|
align 4
|
|
proc png_icc_profile_error, png_ptr:dword, colorspace:dword, name:dword, value:dword, reason:dword
|
|
locals
|
|
pos dd ? ;size_t
|
|
message rb 196 ;char[] ;see below for calculation
|
|
endl
|
|
mov eax,[colorspace]
|
|
or eax,eax
|
|
jz @f ;if (..!=0)
|
|
or word[eax+png_colorspace.flags], PNG_COLORSPACE_INVALID
|
|
@@:
|
|
|
|
; pos = png_safecat(message, (sizeof message), 0, "profile '"); /* 9 chars */
|
|
; pos = png_safecat(message, pos+79, pos, name); /* Truncate to 79 chars */
|
|
; pos = png_safecat(message, (sizeof message), pos, "': "); /* +2 = 90 */
|
|
; if (is_ICC_signature(value) != 0)
|
|
; {
|
|
; So 'value' is at most 4 bytes and the following cast is safe
|
|
; png_icc_tag_name(message+pos, (uint_32)value);
|
|
; pos += 6; /* total +8; less than the else clause */
|
|
; message[pos++] = ':';
|
|
; message[pos++] = ' ';
|
|
; }
|
|
if PNG_WARNINGS_SUPPORTED eq 1
|
|
; else
|
|
; {
|
|
; char number[PNG_NUMBER_BUFFER_SIZE]; /* +24 = 114*/
|
|
|
|
; pos = png_safecat(message, (sizeof message), pos,
|
|
; png_format_number(number, number+(sizeof number),
|
|
; PNG_NUMBER_FORMAT_x, value));
|
|
; pos = png_safecat(message, (sizeof message), pos, "h: "); /*+2 = 116*/
|
|
; }
|
|
end if
|
|
; The 'reason' is an arbitrary message, allow +79 maximum 195
|
|
; pos = png_safecat(message, (sizeof message), pos, reason);
|
|
|
|
; This is recoverable, but make it unconditionally an app_error on write to
|
|
; avoid writing invalid ICC profiles into PNG files (i.e., we handle them
|
|
; on read, with a warning, but on write unless the app turns off
|
|
; application errors the PNG won't be written.)
|
|
|
|
; png_chunk_report(png_ptr, message,
|
|
; (colorspace != NULL) ? PNG_CHUNK_ERROR : PNG_CHUNK_WRITE_ERROR);
|
|
|
|
xor eax,eax
|
|
ret
|
|
endp
|
|
|
|
if PNG_sRGB_SUPPORTED eq 1
|
|
;color X Y Z
|
|
sRGB_XYZ dd 41239, 21264, 1933,\ ;red
|
|
35758, 71517, 11919,\ ;green
|
|
18048, 7219, 95053 ;blue
|
|
end if
|
|
|
|
;int (png_structrp png_ptr, png_colorspacerp colorspace, int intent)
|
|
align 4
|
|
proc png_colorspace_set_sRGB uses ebx ecx edi esi, png_ptr:dword, colorspace:dword, intent:dword
|
|
; sRGB sets known gamma, end points and (from the chunk) intent.
|
|
; IMPORTANT: these are not necessarily the values found in an ICC profile
|
|
; because ICC profiles store values adapted to a D50 environment; it is
|
|
; expected that the ICC profile mediaWhitePointTag will be D50; see the
|
|
; checks and code elsewhere to understand this better.
|
|
|
|
; These XYZ values, which are accurate to 5dp, produce rgb to gray
|
|
; coefficients of (6968,23435,2366), which are reduced (because they add up
|
|
; to 32769 not 32768) to (6968,23434,2366). These are the values that
|
|
; libpng has traditionally used (and are the best values given the 15bit
|
|
; algorithm used by the rgb to gray code.)
|
|
|
|
; Do nothing if the colorspace is already invalidated.
|
|
mov ebx,[colorspace]
|
|
mov ax,[ebx+png_colorspace.flags]
|
|
and ax,PNG_COLORSPACE_INVALID
|
|
cmp ax,0
|
|
je @f ;if (..!=0)
|
|
xor eax,eax
|
|
jmp .end_f
|
|
@@:
|
|
|
|
; Check the intent, then check for existing settings. It is valid for the
|
|
; PNG file to have cHRM or gAMA chunks along with sRGB, but the values must
|
|
; be consistent with the correct values. If, however, this function is
|
|
; called below because an iCCP chunk matches sRGB then it is quite
|
|
; conceivable that an older app recorded incorrect gAMA and cHRM because of
|
|
; an incorrect calculation based on the values in the profile - this does
|
|
; *not* invalidate the profile (though it still produces an error, which can
|
|
; be ignored.)
|
|
|
|
mov edi,[png_ptr]
|
|
cmp dword[intent],0
|
|
jl @f
|
|
cmp dword[intent],PNG_sRGB_INTENT_LAST
|
|
jge @f
|
|
jmp .end0
|
|
@@: ;if (..<0 || ..>=..)
|
|
cStr ,'sRGB'
|
|
cStr ecx,'invalid sRGB rendering intent'
|
|
stdcall png_icc_profile_error, edi, ebx, eax, [intent], ecx
|
|
jmp .end_f
|
|
.end0:
|
|
|
|
mov ax,[ebx+png_colorspace.flags]
|
|
and ax,PNG_COLORSPACE_HAVE_INTENT
|
|
cmp ax,0
|
|
je @f
|
|
movzx eax,word[ebx+png_colorspace.rendering_intent]
|
|
cmp eax,[intent]
|
|
je @f ;if (..!=0 && ..!=..)
|
|
cStr ,'sRGB'
|
|
cStr ecx,'inconsistent rendering intents'
|
|
stdcall png_icc_profile_error, edi, ebx, eax, [intent], ecx
|
|
jmp .end_f
|
|
@@:
|
|
|
|
mov ax,[ebx+png_colorspace.flags]
|
|
and ax,PNG_COLORSPACE_FROM_sRGB
|
|
cmp ax,0
|
|
je @f ;if (..!=0)
|
|
png_benign_error edi, 'duplicate sRGB information ignored'
|
|
xor eax,eax
|
|
jmp .end_f
|
|
@@:
|
|
|
|
; If the standard sRGB cHRM chunk does not match the one from the PNG file
|
|
; warn but overwrite the value with the correct one.
|
|
|
|
mov ax,[ebx+png_colorspace.flags]
|
|
and ax,PNG_COLORSPACE_HAVE_ENDPOINTS
|
|
cmp ax,0
|
|
je @f ;if (..!=0 &&
|
|
; !png_colorspace_endpoints_match(&sRGB_xy, &colorspace->end_points_xy,
|
|
; 100))
|
|
cStr ,'cHRM chunk does not match sRGB'
|
|
stdcall png_chunk_report, edi, eax, PNG_CHUNK_ERROR
|
|
@@:
|
|
|
|
; This check is just done for the error reporting - the routine always
|
|
; returns true when the 'from' argument corresponds to sRGB (2).
|
|
|
|
stdcall png_colorspace_check_gamma, edi, ebx, PNG_GAMMA_sRGB_INVERSE, 2 ;from sRGB
|
|
|
|
; intent: bugs in GCC force 'int' to be used as the parameter type.
|
|
mov eax,[intent]
|
|
mov [ebx+png_colorspace.rendering_intent],ax
|
|
or word[ebx+png_colorspace.flags], PNG_COLORSPACE_HAVE_INTENT
|
|
|
|
; endpoints
|
|
; colorspace->end_points_xy = sRGB_xy;
|
|
; colorspace->end_points_XYZ = sRGB_XYZ;
|
|
or word[ebx+png_colorspace.flags], (PNG_COLORSPACE_HAVE_ENDPOINTS or PNG_COLORSPACE_ENDPOINTS_MATCH_sRGB)
|
|
|
|
; gamma
|
|
mov dword[ebx+png_colorspace.gamma], PNG_GAMMA_sRGB_INVERSE
|
|
or word[ebx+png_colorspace.flags], PNG_COLORSPACE_HAVE_GAMMA
|
|
|
|
; Finally record that we have an sRGB profile
|
|
or word[ebx+png_colorspace.flags], (PNG_COLORSPACE_MATCHES_sRGB or PNG_COLORSPACE_FROM_sRGB)
|
|
|
|
xor eax,eax
|
|
inc eax ;set
|
|
.end_f:
|
|
ret
|
|
endp
|
|
|
|
;if PNG_iCCP_SUPPORTED
|
|
; Encoded value of D50 as an ICC XYZNumber. From the ICC 2010 spec the value
|
|
; is XYZ(0.9642,1.0,0.8249), which scales to:
|
|
|
|
; (63189.8112, 65536, 54060.6464)
|
|
|
|
D50_nCIEXYZ db \ ;byte[12]
|
|
0x00, 0x00, 0xf6, 0xd6, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0xd3, 0x2d
|
|
|
|
;int /* bool */
|
|
;(png_structrp png_ptr, png_colorspacerp colorspace, charp name, uint_32 profile_length)
|
|
align 4
|
|
proc icc_check_length, png_ptr:dword, colorspace:dword, name:dword, profile_length:dword
|
|
cmp dword[profile_length],132
|
|
jge @f ;if (..<..)
|
|
; return png_icc_profile_error(png_ptr, colorspace, name, profile_length,
|
|
; "too short");
|
|
jmp .end_f
|
|
@@:
|
|
xor eax,eax
|
|
inc eax
|
|
.end_f:
|
|
ret
|
|
endp
|
|
|
|
;int (png_structrp png_ptr, png_colorspacerp colorspace,
|
|
; charp name, uint_32 profile_length)
|
|
align 4
|
|
proc png_icc_check_length, png_ptr:dword, colorspace:dword, name:dword, profile_length:dword
|
|
; if (!icc_check_length(png_ptr, colorspace, name, profile_length))
|
|
; return 0;
|
|
|
|
; This needs to be here because the 'normal' check is in
|
|
; png_decompress_chunk, yet this happens after the attempt to
|
|
; png_malloc_base the required data. We only need this on read; on write
|
|
; the caller supplies the profile buffer so libpng doesn't allocate it. See
|
|
; the call to icc_check_length below (the write case).
|
|
|
|
if PNG_SET_USER_LIMITS_SUPPORTED eq 1
|
|
; else if (png_ptr->user_chunk_malloc_max > 0 &&
|
|
; png_ptr->user_chunk_malloc_max < profile_length)
|
|
; return png_icc_profile_error(png_ptr, colorspace, name, profile_length,
|
|
; "exceeds application limits");
|
|
elseif PNG_USER_CHUNK_MALLOC_MAX > 0
|
|
; else if (PNG_USER_CHUNK_MALLOC_MAX < profile_length)
|
|
; return png_icc_profile_error(png_ptr, colorspace, name, profile_length,
|
|
; "exceeds libpng limits");
|
|
else ;!SET_USER_LIMITS
|
|
; This will get compiled out on all 32-bit and better systems.
|
|
; else if (PNG_SIZE_MAX < profile_length)
|
|
; return png_icc_profile_error(png_ptr, colorspace, name, profile_length,
|
|
; "exceeds system limits");
|
|
end if ;!SET_USER_LIMITS
|
|
xor eax,eax
|
|
inc eax
|
|
.end_f:
|
|
ret
|
|
endp
|
|
|
|
;int (png_structrp png_ptr, png_colorspacerp colorspace,
|
|
; charp name, uint_32 profile_length,
|
|
; bytep profile/* first 132 bytes only */, int color_type)
|
|
align 4
|
|
proc png_icc_check_header, png_ptr:dword, colorspace:dword, name:dword, profile_length:dword, profile:dword, color_type:dword
|
|
; uint_32 temp;
|
|
|
|
; Length check; this cannot be ignored in this code because profile_length
|
|
; is used later to check the tag table, so even if the profile seems over
|
|
; long profile_length from the caller must be correct. The caller can fix
|
|
; this up on read or write by just passing in the profile header length.
|
|
|
|
; temp = png_get_uint_32(profile);
|
|
; if (temp != profile_length)
|
|
; return png_icc_profile_error(png_ptr, colorspace, name, temp,
|
|
; "length does not match profile");
|
|
|
|
; temp = (uint_32) (*(profile+8));
|
|
; if (temp > 3 && (profile_length & 3))
|
|
; return png_icc_profile_error(png_ptr, colorspace, name, profile_length,
|
|
; "invalid length");
|
|
|
|
; temp = png_get_uint_32(profile+128); /* tag count: 12 bytes/tag */
|
|
; if (temp > 357913930 || /* (2^32-4-132)/12: maximum possible tag count */
|
|
; profile_length < 132+12*temp) /* truncated tag table */
|
|
; return png_icc_profile_error(png_ptr, colorspace, name, temp,
|
|
; "tag count too large");
|
|
|
|
; The 'intent' must be valid or we can't store it, ICC limits the intent to
|
|
; 16 bits.
|
|
|
|
; temp = png_get_uint_32(profile+64);
|
|
; if (temp >= 0xffff) /* The ICC limit */
|
|
; return png_icc_profile_error(png_ptr, colorspace, name, temp,
|
|
; "invalid rendering intent");
|
|
|
|
; This is just a warning because the profile may be valid in future
|
|
; versions.
|
|
|
|
; if (temp >= PNG_sRGB_INTENT_LAST)
|
|
; (void)png_icc_profile_error(png_ptr, NULL, name, temp,
|
|
; "intent outside defined range");
|
|
|
|
; At this point the tag table can't be checked because it hasn't necessarily
|
|
; been loaded; however, various header fields can be checked. These checks
|
|
; are for values permitted by the PNG spec in an ICC profile; the PNG spec
|
|
; restricts the profiles that can be passed in an iCCP chunk (they must be
|
|
; appropriate to processing PNG data!)
|
|
|
|
; Data checks (could be skipped). These checks must be independent of the
|
|
; version number; however, the version number doesn't accomodate changes in
|
|
; the header fields (just the known tags and the interpretation of the
|
|
; data.)
|
|
|
|
; temp = png_get_uint_32(profile+36); /* signature 'ascp' */
|
|
; if (temp != 0x61637370)
|
|
; return png_icc_profile_error(png_ptr, colorspace, name, temp,
|
|
; "invalid signature");
|
|
|
|
; Currently the PCS illuminant/adopted white point (the computational
|
|
; white point) are required to be D50,
|
|
; however the profile contains a record of the illuminant so perhaps ICC
|
|
; expects to be able to change this in the future (despite the rationale in
|
|
; the introduction for using a fixed PCS adopted white.) Consequently the
|
|
; following is just a warning.
|
|
|
|
; if (memcmp(profile+68, D50_nCIEXYZ, 12) != 0)
|
|
; (void)png_icc_profile_error(png_ptr, NULL, name, 0/*no tag value*/,
|
|
; "PCS illuminant is not D50");
|
|
|
|
; The PNG spec requires this:
|
|
; "If the iCCP chunk is present, the image samples conform to the colour
|
|
; space represented by the embedded ICC profile as defined by the
|
|
; International Color Consortium [ICC]. The colour space of the ICC profile
|
|
; shall be an RGB colour space for colour images (PNG colour types 2, 3, and
|
|
; 6), or a greyscale colour space for greyscale images (PNG colour types 0
|
|
; and 4)."
|
|
|
|
; This checking code ensures the embedded profile (on either read or write)
|
|
; conforms to the specification requirements. Notice that an ICC 'gray'
|
|
; color-space profile contains the information to transform the monochrome
|
|
; data to XYZ or L*a*b (according to which PCS the profile uses) and this
|
|
; should be used in preference to the standard libpng K channel replication
|
|
; into R, G and B channels.
|
|
|
|
; Previously it was suggested that an RGB profile on grayscale data could be
|
|
; handled. However it it is clear that using an RGB profile in this context
|
|
; must be an error - there is no specification of what it means. Thus it is
|
|
; almost certainly more correct to ignore the profile.
|
|
|
|
; temp = png_get_uint_32(profile+16); /* data colour space field */
|
|
; switch (temp)
|
|
; {
|
|
; case 0x52474220: /* 'RGB ' */
|
|
; if ((color_type & PNG_COLOR_MASK_COLOR) == 0)
|
|
; return png_icc_profile_error(png_ptr, colorspace, name, temp,
|
|
; "RGB color space not permitted on grayscale PNG");
|
|
; break;
|
|
|
|
; case 0x47524159: /* 'GRAY' */
|
|
; if ((color_type & PNG_COLOR_MASK_COLOR) != 0)
|
|
; return png_icc_profile_error(png_ptr, colorspace, name, temp,
|
|
; "Gray color space not permitted on RGB PNG");
|
|
; break;
|
|
|
|
; default:
|
|
; return png_icc_profile_error(png_ptr, colorspace, name, temp,
|
|
; "invalid ICC profile color space");
|
|
; }
|
|
|
|
; It is up to the application to check that the profile class matches the
|
|
; application requirements; the spec provides no guidance, but it's pretty
|
|
; weird if the profile is not scanner ('scnr'), monitor ('mntr'), printer
|
|
; ('prtr') or 'spac' (for generic color spaces). Issue a warning in these
|
|
; cases. Issue an error for device link or abstract profiles - these don't
|
|
; contain the records necessary to transform the color-space to anything
|
|
; other than the target device (and not even that for an abstract profile).
|
|
; Profiles of these classes may not be embedded in images.
|
|
|
|
; temp = png_get_uint_32(profile+12); /* profile/device class */
|
|
; switch (temp)
|
|
; {
|
|
; case 0x73636e72: /* 'scnr' */
|
|
; case 0x6d6e7472: /* 'mntr' */
|
|
; case 0x70727472: /* 'prtr' */
|
|
; case 0x73706163: /* 'spac' */
|
|
; /* All supported */
|
|
; break;
|
|
|
|
; case 0x61627374: /* 'abst' */
|
|
; /* May not be embedded in an image */
|
|
; return png_icc_profile_error(png_ptr, colorspace, name, temp,
|
|
; "invalid embedded Abstract ICC profile");
|
|
|
|
; case 0x6c696e6b: /* 'link' */
|
|
; /* DeviceLink profiles cannot be interpreted in a non-device specific
|
|
; fashion, if an app uses the AToB0Tag in the profile the results are
|
|
; undefined unless the result is sent to the intended device,
|
|
; therefore a DeviceLink profile should not be found embedded in a
|
|
; PNG.
|
|
|
|
; return png_icc_profile_error(png_ptr, colorspace, name, temp,
|
|
; "unexpected DeviceLink ICC profile class");
|
|
|
|
; case 0x6e6d636c: /* 'nmcl' */
|
|
; /* A NamedColor profile is also device specific, however it doesn't
|
|
; contain an AToB0 tag that is open to misinterpretation. Almost
|
|
; certainly it will fail the tests below.
|
|
|
|
; (void)png_icc_profile_error(png_ptr, NULL, name, temp,
|
|
; "unexpected NamedColor ICC profile class");
|
|
; break;
|
|
|
|
; default:
|
|
; /* To allow for future enhancements to the profile accept unrecognized
|
|
; profile classes with a warning, these then hit the test below on the
|
|
; tag content to ensure they are backward compatible with one of the
|
|
; understood profiles.
|
|
|
|
; (void)png_icc_profile_error(png_ptr, NULL, name, temp,
|
|
; "unrecognized ICC profile class");
|
|
; break;
|
|
; }
|
|
|
|
; For any profile other than a device link one the PCS must be encoded
|
|
; either in XYZ or Lab.
|
|
|
|
; temp = png_get_uint_32(profile+20);
|
|
; switch (temp)
|
|
; {
|
|
; case 0x58595a20: /* 'XYZ ' */
|
|
; case 0x4c616220: /* 'Lab ' */
|
|
; break;
|
|
|
|
; default:
|
|
; return png_icc_profile_error(png_ptr, colorspace, name, temp,
|
|
; "unexpected ICC PCS encoding");
|
|
; }
|
|
|
|
; return 1;
|
|
ret
|
|
endp
|
|
|
|
;int (png_structrp png_ptr, png_colorspacerp colorspace,
|
|
; charp name, uint_32 profile_length,
|
|
; bytep profile /* header plus whole tag table */)
|
|
align 4
|
|
proc png_icc_check_tag_table, png_ptr:dword, colorspace:dword, name:dword, profile_length:dword, profile:dword
|
|
; uint_32 tag_count = png_get_uint_32(profile+128);
|
|
; uint_32 itag;
|
|
; bytep tag = profile+132; /* The first tag */
|
|
|
|
; First scan all the tags in the table and add bits to the icc_info value
|
|
; (temporarily in 'tags').
|
|
|
|
; for (itag=0; itag < tag_count; ++itag, tag += 12)
|
|
; {
|
|
; uint_32 tag_id = png_get_uint_32(tag+0);
|
|
; uint_32 tag_start = png_get_uint_32(tag+4); /* must be aligned */
|
|
; uint_32 tag_length = png_get_uint_32(tag+8);/* not padded */
|
|
|
|
; The ICC specification does not exclude zero length tags, therefore the
|
|
; start might actually be anywhere if there is no data, but this would be
|
|
; a clear abuse of the intent of the standard so the start is checked for
|
|
; being in range. All defined tag types have an 8 byte header - a 4 byte
|
|
; type signature then 0.
|
|
|
|
; if ((tag_start & 3) != 0)
|
|
; {
|
|
; CNHP730S.icc shipped with Microsoft Windows 64 violates this, it is
|
|
; only a warning here because libpng does not care about the
|
|
; alignment.
|
|
|
|
; (void)png_icc_profile_error(png_ptr, NULL, name, tag_id,
|
|
; "ICC profile tag start not a multiple of 4");
|
|
; }
|
|
|
|
; This is a hard error; potentially it can cause read outside the
|
|
; profile.
|
|
|
|
; if (tag_start > profile_length || tag_length > profile_length - tag_start)
|
|
; return png_icc_profile_error(png_ptr, colorspace, name, tag_id,
|
|
; "ICC profile tag outside profile");
|
|
; }
|
|
xor eax,eax
|
|
inc eax ;success, maybe with warnings
|
|
.end_f:
|
|
ret
|
|
endp
|
|
|
|
;if PNG_sRGB_SUPPORTED
|
|
;#if PNG_sRGB_PROFILE_CHECKS >= 0
|
|
; Information about the known ICC sRGB profiles
|
|
struct png_sRGB_checks
|
|
adler dd ? ;uint_32
|
|
crc dd ?
|
|
length dd ?
|
|
md5 rd 4 ;uint_32[4]
|
|
have_md5 db ? ;byte
|
|
is_broken db ? ;byte
|
|
intent dw ? ;uint_16
|
|
ends
|
|
;# define PNG_MD5(a,b,c,d) { a, b, c, d }, (a!=0)||(b!=0)||(c!=0)||(d!=0)
|
|
;# define PNG_ICC_CHECKSUM(adler, crc, md5, intent, broke, date, length, fname)\
|
|
; { adler, crc, length, md5, broke, intent },
|
|
|
|
;[] =
|
|
; This data comes from contrib/tools/checksum-icc run on downloads of
|
|
; all four ICC sRGB profiles from www.color.org.
|
|
|
|
; adler32, crc32, MD5[4], intent, date, length, file-name
|
|
; PNG_ICC_CHECKSUM(0x0a3fd9f6, 0x3b8772b9,
|
|
; PNG_MD5(0x29f83dde, 0xaff255ae, 0x7842fae4, 0xca83390d), 0, 0,
|
|
; "2009/03/27 21:36:31", 3048, "sRGB_IEC61966-2-1_black_scaled.icc")
|
|
|
|
; ICC sRGB v2 perceptual no black-compensation:
|
|
; PNG_ICC_CHECKSUM(0x4909e5e1, 0x427ebb21,
|
|
; PNG_MD5(0xc95bd637, 0xe95d8a3b, 0x0df38f99, 0xc1320389), 1, 0,
|
|
; "2009/03/27 21:37:45", 3052, "sRGB_IEC61966-2-1_no_black_scaling.icc")
|
|
|
|
; PNG_ICC_CHECKSUM(0xfd2144a1, 0x306fd8ae,
|
|
; PNG_MD5(0xfc663378, 0x37e2886b, 0xfd72e983, 0x8228f1b8), 0, 0,
|
|
; "2009/08/10 17:28:01", 60988, "sRGB_v4_ICC_preference_displayclass.icc")
|
|
|
|
; ICC sRGB v4 perceptual
|
|
; PNG_ICC_CHECKSUM(0x209c35d2, 0xbbef7812,
|
|
; PNG_MD5(0x34562abf, 0x994ccd06, 0x6d2c5721, 0xd0d68c5d), 0, 0,
|
|
; "2007/07/25 00:05:37", 60960, "sRGB_v4_ICC_preference.icc")
|
|
|
|
; The following profiles have no known MD5 checksum. If there is a match
|
|
; on the (empty) MD5 the other fields are used to attempt a match and
|
|
; a warning is produced. The first two of these profiles have a 'cprt' tag
|
|
; which suggests that they were also made by Hewlett Packard.
|
|
|
|
; PNG_ICC_CHECKSUM(0xa054d762, 0x5d5129ce,
|
|
; PNG_MD5(0x00000000, 0x00000000, 0x00000000, 0x00000000), 1, 0,
|
|
; "2004/07/21 18:57:42", 3024, "sRGB_IEC61966-2-1_noBPC.icc")
|
|
|
|
; This is a 'mntr' (display) profile with a mediaWhitePointTag that does not
|
|
; match the D50 PCS illuminant in the header (it is in fact the D65 values,
|
|
; so the white point is recorded as the un-adapted value.) The profiles
|
|
; below only differ in one byte - the intent - and are basically the same as
|
|
; the previous profile except for the mediaWhitePointTag error and a missing
|
|
; chromaticAdaptationTag.
|
|
|
|
; PNG_ICC_CHECKSUM(0xf784f3fb, 0x182ea552,
|
|
; PNG_MD5(0x00000000, 0x00000000, 0x00000000, 0x00000000), 0, 1/*broken*/,
|
|
; "1998/02/09 06:49:00", 3144, "HP-Microsoft sRGB v2 perceptual")
|
|
|
|
; PNG_ICC_CHECKSUM(0x0398f3fc, 0xf29e526d,
|
|
; PNG_MD5(0x00000000, 0x00000000, 0x00000000, 0x00000000), 1, 1/*broken*/,
|
|
; "1998/02/09 06:49:00", 3144, "HP-Microsoft sRGB v2 media-relative")
|
|
;
|
|
|
|
;int (png_structrp png_ptr, bytep profile, uLong adler)
|
|
align 4
|
|
proc png_compare_ICC_profile_with_sRGB, png_ptr:dword, profile:dword, adler:dword
|
|
; The quick check is to verify just the MD5 signature and trust the
|
|
; rest of the data. Because the profile has already been verified for
|
|
; correctness this is safe. png_colorspace_set_sRGB will check the 'intent'
|
|
; field too, so if the profile has been edited with an intent not defined
|
|
; by sRGB (but maybe defined by a later ICC specification) the read of
|
|
; the profile will fail at that point.
|
|
|
|
; uint_32 length = 0;
|
|
; uint_32 intent = 0x10000; /* invalid */
|
|
if PNG_sRGB_PROFILE_CHECKS > 1
|
|
; uLong crc = 0; /* the value for 0 length data */
|
|
end if
|
|
; uint i;
|
|
|
|
if PNG_SET_OPTION_SUPPORTED eq 1
|
|
; First see if PNG_SKIP_sRGB_CHECK_PROFILE has been set to "on"
|
|
; if (((png_ptr->options >> PNG_SKIP_sRGB_CHECK_PROFILE) & 3) ==
|
|
; PNG_OPTION_ON)
|
|
; return 0;
|
|
end if
|
|
|
|
; for (i=0; i < (sizeof png_sRGB_checks) / (sizeof png_sRGB_checks[0]); ++i)
|
|
; {
|
|
; if (png_get_uint_32(profile+84) == png_sRGB_checks[i].md5[0] &&
|
|
; png_get_uint_32(profile+88) == png_sRGB_checks[i].md5[1] &&
|
|
; png_get_uint_32(profile+92) == png_sRGB_checks[i].md5[2] &&
|
|
; png_get_uint_32(profile+96) == png_sRGB_checks[i].md5[3])
|
|
; {
|
|
; This may be one of the old HP profiles without an MD5, in that
|
|
; case we can only use the length and Adler32 (note that these
|
|
; are not used by default if there is an MD5!)
|
|
|
|
;# if PNG_sRGB_PROFILE_CHECKS == 0
|
|
; if (png_sRGB_checks[i].have_md5 != 0)
|
|
; return 1+png_sRGB_checks[i].is_broken;
|
|
;# endif
|
|
|
|
; Profile is unsigned or more checks have been configured in.
|
|
; if (length == 0)
|
|
; {
|
|
; length = png_get_uint_32(profile);
|
|
; intent = png_get_uint_32(profile+64);
|
|
; }
|
|
|
|
; Length *and* intent must match
|
|
; if (length == (uint_32) png_sRGB_checks[i].length &&
|
|
; intent == (uint_32) png_sRGB_checks[i].intent)
|
|
; {
|
|
; Now calculate the adler32 if not done already.
|
|
; if (adler == 0)
|
|
; {
|
|
; adler = adler32(0, NULL, 0);
|
|
; adler = adler32(adler, profile, length);
|
|
; }
|
|
|
|
; if (adler == png_sRGB_checks[i].adler)
|
|
; {
|
|
; These basic checks suggest that the data has not been
|
|
; modified, but if the check level is more than 1 perform
|
|
; our own crc32 checksum on the data.
|
|
|
|
;# if PNG_sRGB_PROFILE_CHECKS > 1
|
|
; if (crc == 0)
|
|
; {
|
|
; crc = calc_crc32(0, NULL, 0);
|
|
; crc = calc_crc32(crc, profile, length);
|
|
; }
|
|
|
|
; /* So this check must pass for the 'return' below to happen.
|
|
|
|
; if (crc == png_sRGB_checks[i].crc)
|
|
;# endif
|
|
; {
|
|
; if (png_sRGB_checks[i].is_broken != 0)
|
|
; {
|
|
; These profiles are known to have bad data that may cause
|
|
; problems if they are used, therefore attempt to
|
|
; discourage their use, skip the 'have_md5' warning below,
|
|
; which is made irrelevant by this error.
|
|
|
|
; png_chunk_report(png_ptr, "known incorrect sRGB profile",
|
|
; PNG_CHUNK_ERROR);
|
|
; }
|
|
|
|
; Warn that this being done; this isn't even an error since
|
|
; the profile is perfectly valid, but it would be nice if
|
|
; people used the up-to-date ones.
|
|
|
|
; else if (png_sRGB_checks[i].have_md5 == 0)
|
|
; {
|
|
; png_chunk_report(png_ptr,
|
|
; "out-of-date sRGB profile with no signature",
|
|
; PNG_CHUNK_WARNING);
|
|
; }
|
|
|
|
; return 1+png_sRGB_checks[i].is_broken;
|
|
; }
|
|
; }
|
|
|
|
;# if PNG_sRGB_PROFILE_CHECKS > 0
|
|
; The signature matched, but the profile had been changed in some
|
|
; way. This probably indicates a data error or uninformed hacking.
|
|
; Fall through to "no match".
|
|
|
|
; png_chunk_report(png_ptr,
|
|
; "Not recognizing known sRGB profile that has been edited",
|
|
; PNG_CHUNK_WARNING);
|
|
; break;
|
|
;# endif
|
|
; }
|
|
; }
|
|
; }
|
|
|
|
; return 0; /* no match */
|
|
ret
|
|
endp
|
|
|
|
;void (png_structrp png_ptr,
|
|
; png_colorspacerp colorspace, bytep profile, uLong adler)
|
|
align 4
|
|
proc png_icc_set_sRGB uses eax, png_ptr:dword, colorspace:dword, profile:dword, adler:dword
|
|
; Is this profile one of the known ICC sRGB profiles? If it is, just set
|
|
; the sRGB information.
|
|
|
|
; if (png_compare_ICC_profile_with_sRGB(png_ptr, profile, adler) != 0)
|
|
; (void)png_colorspace_set_sRGB(png_ptr, colorspace,
|
|
; (int)/*already checked*/png_get_uint_32(profile+64));
|
|
ret
|
|
endp
|
|
;end if /* PNG_sRGB_PROFILE_CHECKS >= 0 */
|
|
;end if /* sRGB */
|
|
|
|
;int (png_structrp png_ptr, png_colorspacerp colorspace,
|
|
; charp name, uint_32 profile_length, bytep profile,
|
|
; int color_type)
|
|
align 4
|
|
proc png_colorspace_set_ICC, png_ptr:dword, colorspace:dword, name:dword, profile_length:dword, profile:dword, color_type:dword
|
|
; if ((colorspace->flags & PNG_COLORSPACE_INVALID) != 0)
|
|
; return 0;
|
|
|
|
; if (icc_check_length(png_ptr, colorspace, name, profile_length) != 0 &&
|
|
; png_icc_check_header(png_ptr, colorspace, name, profile_length, profile,
|
|
; color_type) != 0 &&
|
|
; png_icc_check_tag_table(png_ptr, colorspace, name, profile_length,
|
|
; profile) != 0)
|
|
; {
|
|
;# if defined(PNG_sRGB_SUPPORTED) && PNG_sRGB_PROFILE_CHECKS >= 0
|
|
; If no sRGB support, don't try storing sRGB information
|
|
; png_icc_set_sRGB(png_ptr, colorspace, profile, 0);
|
|
;# endif
|
|
; return 1;
|
|
; }
|
|
|
|
; Failure case
|
|
xor eax,eax
|
|
.end_f:
|
|
ret
|
|
endp
|
|
;end if /* iCCP */
|
|
|
|
;void (png_structrp png_ptr)
|
|
align 4
|
|
proc png_colorspace_set_rgb_coefficients, png_ptr:dword
|
|
; Set the rgb_to_gray coefficients from the colorspace.
|
|
; if (png_ptr->rgb_to_gray_coefficients_set == 0 &&
|
|
; (png_ptr->colorspace.flags & PNG_COLORSPACE_HAVE_ENDPOINTS) != 0)
|
|
; {
|
|
; png_set_background has not been called, get the coefficients from the Y
|
|
; values of the colorspace colorants.
|
|
|
|
; png_fixed_point r = png_ptr->colorspace.end_points_XYZ.red_Y;
|
|
; png_fixed_point g = png_ptr->colorspace.end_points_XYZ.green_Y;
|
|
; png_fixed_point b = png_ptr->colorspace.end_points_XYZ.blue_Y;
|
|
; png_fixed_point total = r+g+b;
|
|
|
|
; if (total > 0 &&
|
|
; r >= 0 && png_muldiv(&r, r, 32768, total) && r >= 0 && r <= 32768 &&
|
|
; g >= 0 && png_muldiv(&g, g, 32768, total) && g >= 0 && g <= 32768 &&
|
|
; b >= 0 && png_muldiv(&b, b, 32768, total) && b >= 0 && b <= 32768 &&
|
|
; r+g+b <= 32769)
|
|
; {
|
|
; We allow 0 coefficients here. r+g+b may be 32769 if two or
|
|
; all of the coefficients were rounded up. Handle this by
|
|
; reducing the *largest* coefficient by 1; this matches the
|
|
; approach used for the default coefficients in pngrtran.c
|
|
|
|
; int add = 0;
|
|
;
|
|
; if (r+g+b > 32768)
|
|
; add = -1;
|
|
; else if (r+g+b < 32768)
|
|
; add = 1;
|
|
|
|
; if (add != 0)
|
|
; {
|
|
; if (g >= r && g >= b)
|
|
; g += add;
|
|
; else if (r >= g && r >= b)
|
|
; r += add;
|
|
; else
|
|
; b += add;
|
|
; }
|
|
|
|
; /* Check for an internal error. */
|
|
; if (r+g+b != 32768)
|
|
; png_error(png_ptr,
|
|
; "internal error handling cHRM coefficients");
|
|
|
|
; else
|
|
; {
|
|
; png_ptr->rgb_to_gray_red_coeff = (uint_16)r;
|
|
; png_ptr->rgb_to_gray_green_coeff = (uint_16)g;
|
|
; }
|
|
; }
|
|
|
|
; This is a png_error at present even though it could be ignored -
|
|
; it should never happen, but it is important that if it does, the
|
|
; bug is fixed.
|
|
|
|
; else
|
|
; png_error(png_ptr, "internal error handling cHRM->XYZ");
|
|
; }
|
|
ret
|
|
endp
|
|
|
|
;end if /* COLORSPACE */
|
|
|
|
;void (png_structrp png_ptr,
|
|
; uint_32 width, uint_32 height, int bit_depth,
|
|
; int color_type, int interlace_type, int compression_type, int filter_type)
|
|
align 4
|
|
proc png_check_IHDR uses eax ebx edi, png_ptr:dword, width:dword, height:dword, bit_depth:dword, color_type:dword, interlace_type:dword, compression_type:dword, filter_type:dword
|
|
mov edi,[png_ptr]
|
|
xor ebx,ebx
|
|
|
|
; Check for width and height valid values
|
|
cmp dword[width],0
|
|
jne @f ;if (..==0)
|
|
png_warning edi, 'Image width is zero in IHDR'
|
|
inc ebx
|
|
@@:
|
|
|
|
cmp dword[width],PNG_UINT_31_MAX
|
|
jle @f ;if (..>..)
|
|
png_warning edi, 'Invalid image width in IHDR'
|
|
inc ebx
|
|
@@:
|
|
|
|
; 48 - big_row_buf hack
|
|
; 1 - filter byte
|
|
; 8 - 8-byte RGBA pixels
|
|
; 1 - extra max_pixel_depth pad
|
|
mov eax,[width]
|
|
add eax,7
|
|
and eax,not 7
|
|
cmp eax,((PNG_SIZE_MAX -48 -1) / 8) -1
|
|
jle @f ;if (..>..)
|
|
; The size of the row must be within the limits of this architecture.
|
|
; Because the read code can perform arbitrary transformations the
|
|
; maximum size is checked here. Because the code in png_read_start_row
|
|
; adds extra space "for safety's sake" in several places a conservative
|
|
; limit is used here.
|
|
|
|
; NOTE: it would be far better to check the size that is actually used,
|
|
; but the effect in the real world is minor and the changes are more
|
|
; extensive, therefore much more dangerous and much more difficult to
|
|
; write in a way that avoids compiler warnings.
|
|
|
|
png_warning edi, 'Image width is too large for this architecture'
|
|
inc ebx
|
|
@@:
|
|
|
|
if PNG_SET_USER_LIMITS_SUPPORTED eq 1
|
|
mov eax,[edi+png_struct.user_width_max]
|
|
cmp dword[width],eax
|
|
else
|
|
cmp dword[width],PNG_USER_WIDTH_MAX
|
|
end if
|
|
jle @f ;if (..>..)
|
|
png_warning edi, 'Image width exceeds user limit in IHDR'
|
|
inc ebx
|
|
@@:
|
|
|
|
cmp dword[height],0
|
|
jne @f ;if (..==0)
|
|
png_warning edi, 'Image height is zero in IHDR'
|
|
inc ebx
|
|
@@:
|
|
|
|
cmp dword[height],PNG_UINT_31_MAX
|
|
jle @f ;if (..>..)
|
|
png_warning edi, 'Invalid image height in IHDR'
|
|
inc ebx
|
|
@@:
|
|
|
|
if PNG_SET_USER_LIMITS_SUPPORTED eq 1
|
|
mov eax,[edi+png_struct.user_height_max]
|
|
cmp dword[height],eax
|
|
else
|
|
cmp dword[height],PNG_USER_HEIGHT_MAX
|
|
end if
|
|
jle @f ;if (..>..)
|
|
png_warning edi, 'Image height exceeds user limit in IHDR'
|
|
inc ebx
|
|
@@:
|
|
|
|
; Check other values
|
|
cmp dword[bit_depth],1
|
|
je @f
|
|
cmp dword[bit_depth],2
|
|
je @f
|
|
cmp dword[bit_depth],4
|
|
je @f
|
|
cmp dword[bit_depth],8
|
|
je @f
|
|
cmp dword[bit_depth],16
|
|
je @f ;if (..!=.. && ...)
|
|
png_warning edi, 'Invalid bit depth in IHDR'
|
|
inc ebx
|
|
@@:
|
|
|
|
cmp dword[color_type],0
|
|
jl @f
|
|
cmp dword[color_type],1
|
|
je @f
|
|
cmp dword[color_type],5
|
|
je @f
|
|
cmp dword[color_type],6
|
|
jg @f
|
|
jmp .end0
|
|
@@: ;if (..<0 || ..==1 || ..==5 || ..>6)
|
|
png_warning edi, 'Invalid color type in IHDR'
|
|
inc ebx
|
|
.end0:
|
|
|
|
cmp dword[color_type],PNG_COLOR_TYPE_PALETTE
|
|
jne @f
|
|
cmp dword[bit_depth],8
|
|
jg .beg1
|
|
@@:
|
|
cmp dword[color_type],PNG_COLOR_TYPE_RGB
|
|
je @f
|
|
cmp dword[color_type],PNG_COLOR_TYPE_GRAY_ALPHA
|
|
je @f
|
|
cmp dword[color_type],PNG_COLOR_TYPE_RGB_ALPHA
|
|
jne .end1
|
|
@@:
|
|
cmp dword[bit_depth],8
|
|
jge .end1
|
|
.beg1: ;if (((..==..) && ..>..) || ((..==.. || ..==.. || ..==..) && ..<..))
|
|
png_warning edi, 'Invalid color type/bit depth combination in IHDR'
|
|
inc ebx
|
|
.end1:
|
|
|
|
cmp dword[interlace_type],PNG_INTERLACE_LAST
|
|
jl @f ;if (..>=..)
|
|
png_warning edi, 'Unknown interlace method in IHDR'
|
|
inc ebx
|
|
@@:
|
|
|
|
cmp dword[compression_type],PNG_COMPRESSION_TYPE_BASE
|
|
je @f ;if (..!=..)
|
|
png_warning edi, 'Unknown compression method in IHDR'
|
|
inc ebx
|
|
@@:
|
|
|
|
if PNG_MNG_FEATURES_SUPPORTED eq 1
|
|
; Accept filter_method 64 (intrapixel differencing) only if
|
|
; 1. Libpng was compiled with PNG_MNG_FEATURES_SUPPORTED and
|
|
; 2. Libpng did not read a PNG signature (this filter_method is only
|
|
; used in PNG datastreams that are embedded in MNG datastreams) and
|
|
; 3. The application called png_permit_mng_features with a mask that
|
|
; included PNG_FLAG_MNG_FILTER_64 and
|
|
; 4. The filter_method is 64 and
|
|
; 5. The color_type is RGB or RGBA
|
|
|
|
; if ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) != 0 &&
|
|
; png_ptr->mng_features_permitted != 0)
|
|
png_warning edi, 'MNG features are not allowed in a PNG datastream'
|
|
|
|
; if (filter_type != PNG_FILTER_TYPE_BASE)
|
|
; {
|
|
; if (!((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) != 0 &&
|
|
; (filter_type == PNG_INTRAPIXEL_DIFFERENCING) &&
|
|
; ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) == 0) &&
|
|
; (color_type == PNG_COLOR_TYPE_RGB ||
|
|
; color_type == PNG_COLOR_TYPE_RGB_ALPHA)))
|
|
; {
|
|
png_warning edi, 'Unknown filter method in IHDR'
|
|
inc ebx
|
|
; }
|
|
|
|
; if ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) != 0)
|
|
; {
|
|
png_warning edi, 'Invalid filter method in IHDR'
|
|
inc ebx
|
|
; }
|
|
; }
|
|
|
|
else
|
|
cmp dword[filter_type],PNG_FILTER_TYPE_BASE
|
|
je @f ;if (..!=..)
|
|
png_warning edi, 'Unknown filter method in IHDR'
|
|
inc ebx
|
|
@@:
|
|
end if
|
|
|
|
or ebx,ebx
|
|
jz @f
|
|
png_error edi, 'Invalid IHDR data'
|
|
@@:
|
|
ret
|
|
endp
|
|
|
|
;#if defined(PNG_sCAL_SUPPORTED) || defined(PNG_pCAL_SUPPORTED)
|
|
; ASCII to fp functions
|
|
; Check an ASCII formated floating point value, see the more detailed
|
|
; comments in pngpriv.inc
|
|
|
|
; The following is used internally to preserve the sticky flags */
|
|
;#define png_fp_add(state, flags) ((state) |= (flags))
|
|
;#define png_fp_set(state, value) ((state) = (value) | ((state) & PNG_FP_STICKY))
|
|
|
|
;int (charp string, png_size_t size, int *statep, png_size_tp whereami)
|
|
align 4
|
|
proc png_check_fp_number, string:dword, size:dword, statep:dword, whereami:dword
|
|
; int state = *statep;
|
|
; png_size_t i = *whereami;
|
|
|
|
; while (i < size)
|
|
; {
|
|
; int type;
|
|
; First find the type of the next character
|
|
; switch (string[i])
|
|
; {
|
|
; case 43: type = PNG_FP_SAW_SIGN; break;
|
|
; case 45: type = PNG_FP_SAW_SIGN + PNG_FP_NEGATIVE; break;
|
|
; case 46: type = PNG_FP_SAW_DOT; break;
|
|
; case 48: type = PNG_FP_SAW_DIGIT; break;
|
|
; case 49: case 50: case 51: case 52:
|
|
; case 53: case 54: case 55: case 56:
|
|
; case 57: type = PNG_FP_SAW_DIGIT + PNG_FP_NONZERO; break;
|
|
; case 69:
|
|
; case 101: type = PNG_FP_SAW_E; break;
|
|
; default: goto PNG_FP_End;
|
|
; }
|
|
|
|
; Now deal with this type according to the current
|
|
; state, the type is arranged to not overlap the
|
|
; bits of the PNG_FP_STATE.
|
|
|
|
; switch ((state & PNG_FP_STATE) + (type & PNG_FP_SAW_ANY))
|
|
; {
|
|
; case PNG_FP_INTEGER + PNG_FP_SAW_SIGN:
|
|
; if ((state & PNG_FP_SAW_ANY) != 0)
|
|
; goto PNG_FP_End; /* not a part of the number */
|
|
|
|
; png_fp_add(state, type);
|
|
; break;
|
|
|
|
; case PNG_FP_INTEGER + PNG_FP_SAW_DOT:
|
|
; Ok as trailer, ok as lead of fraction.
|
|
; if ((state & PNG_FP_SAW_DOT) != 0) /* two dots */
|
|
; goto PNG_FP_End;
|
|
|
|
; else if ((state & PNG_FP_SAW_DIGIT) != 0) /* trailing dot? */
|
|
; png_fp_add(state, type);
|
|
|
|
; else
|
|
; png_fp_set(state, PNG_FP_FRACTION | type);
|
|
|
|
; break;
|
|
|
|
; case PNG_FP_INTEGER + PNG_FP_SAW_DIGIT:
|
|
; if ((state & PNG_FP_SAW_DOT) != 0) /* delayed fraction */
|
|
; png_fp_set(state, PNG_FP_FRACTION | PNG_FP_SAW_DOT);
|
|
|
|
; png_fp_add(state, type | PNG_FP_WAS_VALID);
|
|
|
|
; break;
|
|
|
|
; case PNG_FP_INTEGER + PNG_FP_SAW_E:
|
|
; if ((state & PNG_FP_SAW_DIGIT) == 0)
|
|
; goto PNG_FP_End;
|
|
|
|
; png_fp_set(state, PNG_FP_EXPONENT);
|
|
|
|
; break;
|
|
|
|
; /* case PNG_FP_FRACTION + PNG_FP_SAW_SIGN: goto PNG_FP_End; ** no sign in fraction */
|
|
|
|
; /* case PNG_FP_FRACTION + PNG_FP_SAW_DOT: goto PNG_FP_End; ** Because SAW_DOT is always set */
|
|
|
|
; case PNG_FP_FRACTION + PNG_FP_SAW_DIGIT:
|
|
; png_fp_add(state, type | PNG_FP_WAS_VALID);
|
|
; break;
|
|
|
|
; case PNG_FP_FRACTION + PNG_FP_SAW_E:
|
|
; This is correct because the trailing '.' on an
|
|
; integer is handled above - so we can only get here
|
|
; with the sequence ".E" (with no preceding digits).
|
|
|
|
; if ((state & PNG_FP_SAW_DIGIT) == 0)
|
|
; goto PNG_FP_End;
|
|
|
|
; png_fp_set(state, PNG_FP_EXPONENT);
|
|
|
|
; break;
|
|
|
|
; case PNG_FP_EXPONENT + PNG_FP_SAW_SIGN:
|
|
; if ((state & PNG_FP_SAW_ANY) != 0)
|
|
; goto PNG_FP_End; /* not a part of the number */
|
|
|
|
; png_fp_add(state, PNG_FP_SAW_SIGN);
|
|
|
|
; break;
|
|
|
|
; /* case PNG_FP_EXPONENT + PNG_FP_SAW_DOT: goto PNG_FP_End; */
|
|
|
|
; case PNG_FP_EXPONENT + PNG_FP_SAW_DIGIT:
|
|
; png_fp_add(state, PNG_FP_SAW_DIGIT | PNG_FP_WAS_VALID);
|
|
|
|
; break;
|
|
|
|
; /* case PNG_FP_EXPONEXT + PNG_FP_SAW_E: goto PNG_FP_End; */
|
|
|
|
; default: goto PNG_FP_End; /* I.e. break 2 */
|
|
; }
|
|
|
|
; The character seems ok, continue.
|
|
; ++i;
|
|
; }
|
|
;
|
|
;PNG_FP_End:
|
|
; Here at the end, update the state and return the correct
|
|
; return code.
|
|
|
|
; *statep = state;
|
|
; *whereami = i;
|
|
|
|
; return (state & PNG_FP_SAW_DIGIT) != 0;
|
|
ret
|
|
endp
|
|
|
|
|
|
; The same but for a complete string.
|
|
;int (charp string, png_size_t size)
|
|
align 4
|
|
proc png_check_fp_string, string:dword, size:dword
|
|
; int state=0;
|
|
; png_size_t char_index=0;
|
|
;
|
|
; if (png_check_fp_number(string, size, &state, &char_index) != 0 &&
|
|
; (char_index == size || string[char_index] == 0))
|
|
; return state /* must be non-zero - see above */;
|
|
|
|
; return 0; /* i.e. fail */
|
|
ret
|
|
endp
|
|
;end if /* pCAL || sCAL */
|
|
|
|
;if PNG_sCAL_SUPPORTED
|
|
;# ifdef PNG_FLOATING_POINT_SUPPORTED
|
|
; Utility used below - a simple accurate power of ten from an integral
|
|
; exponent.
|
|
|
|
;double (int power)
|
|
align 4
|
|
proc png_pow10, power:dword
|
|
; int recip = 0;
|
|
; double d = 1;
|
|
|
|
; Handle negative exponent with a reciprocal at the end because
|
|
; 10 is exact whereas .1 is inexact in base 2
|
|
|
|
; if (power < 0)
|
|
; {
|
|
; if (power < DBL_MIN_10_EXP) return 0;
|
|
; recip = 1, power = -power;
|
|
; }
|
|
|
|
; if (power > 0)
|
|
; {
|
|
; Decompose power bitwise.
|
|
; double mult = 10;
|
|
; do
|
|
; {
|
|
; if (power & 1) d *= mult;
|
|
; mult *= mult;
|
|
; power >>= 1;
|
|
; }
|
|
; while (power > 0);
|
|
|
|
; if (recip != 0) d = 1/d;
|
|
; }
|
|
; else power is 0 and d is 1
|
|
|
|
; return d;
|
|
ret
|
|
endp
|
|
|
|
; Function to format a floating point value in ASCII with a given
|
|
; precision.
|
|
|
|
;void (png_structrp png_ptr, charp ascii, png_size_t size,
|
|
; double fp, uint precision)
|
|
align 4
|
|
proc png_ascii_from_fp, png_ptr:dword, ascii:dword, size:dword, fp:dword, precision:dword
|
|
; We use standard functions from math.h, but not printf because
|
|
; that would require stdio. The caller must supply a buffer of
|
|
; sufficient size or we will png_error. The tests on size and
|
|
; the space in ascii[] consumed are indicated below.
|
|
|
|
; if (precision < 1)
|
|
; precision = DBL_DIG;
|
|
|
|
; Enforce the limit of the implementation precision too.
|
|
; if (precision > DBL_DIG+1)
|
|
; precision = DBL_DIG+1;
|
|
|
|
; Basic sanity checks
|
|
; if (size >= precision+5) /* See the requirements below. */
|
|
; {
|
|
; if (fp < 0)
|
|
; {
|
|
; fp = -fp;
|
|
; *ascii++ = 45; /* '-' PLUS 1 TOTAL 1 */
|
|
; --size;
|
|
; }
|
|
|
|
; if (fp >= DBL_MIN && fp <= DBL_MAX)
|
|
; {
|
|
; int exp_b10; /* A base 10 exponent */
|
|
; double base; /* 10^exp_b10 */
|
|
|
|
; First extract a base 10 exponent of the number,
|
|
; the calculation below rounds down when converting
|
|
; from base 2 to base 10 (multiply by log10(2) -
|
|
; 0.3010, but 77/256 is 0.3008, so exp_b10 needs to
|
|
; be increased. Note that the arithmetic shift
|
|
; performs a floor() unlike C arithmetic - using a
|
|
; C multiply would break the following for negative
|
|
; exponents.
|
|
|
|
; (void)frexp(fp, &exp_b10); /* exponent to base 2 */
|
|
|
|
; exp_b10 = (exp_b10 * 77) >> 8; /* <= exponent to base 10 */
|
|
|
|
; /* Avoid underflow here. */
|
|
; base = png_pow10(exp_b10); /* May underflow */
|
|
|
|
; while (base < DBL_MIN || base < fp)
|
|
; {
|
|
; /* And this may overflow. */
|
|
; double test = png_pow10(exp_b10+1);
|
|
|
|
; if (test <= DBL_MAX)
|
|
; ++exp_b10, base = test;
|
|
|
|
; else
|
|
; break;
|
|
; }
|
|
|
|
; Normalize fp and correct exp_b10, after this fp is in the
|
|
; range [.1,1) and exp_b10 is both the exponent and the digit
|
|
; *before* which the decimal point should be inserted
|
|
; (starting with 0 for the first digit). Note that this
|
|
; works even if 10^exp_b10 is out of range because of the
|
|
; test on DBL_MAX above.
|
|
|
|
; fp /= base;
|
|
; while (fp >= 1) fp /= 10, ++exp_b10;
|
|
|
|
; Because of the code above fp may, at this point, be
|
|
; less than .1, this is ok because the code below can
|
|
; handle the leading zeros this generates, so no attempt
|
|
; is made to correct that here.
|
|
|
|
; {
|
|
; uint czero, clead, cdigits;
|
|
; char exponent[10];
|
|
|
|
; Allow up to two leading zeros - this will not lengthen
|
|
; the number compared to using E-n.
|
|
|
|
; if (exp_b10 < 0 && exp_b10 > -3) /* PLUS 3 TOTAL 4 */
|
|
; {
|
|
; czero = -exp_b10; /* PLUS 2 digits: TOTAL 3 */
|
|
; exp_b10 = 0; /* Dot added below before first output. */
|
|
; }
|
|
; else
|
|
; czero = 0; /* No zeros to add */
|
|
|
|
; Generate the digit list, stripping trailing zeros and
|
|
; inserting a '.' before a digit if the exponent is 0.
|
|
|
|
; clead = czero; /* Count of leading zeros */
|
|
; cdigits = 0; /* Count of digits in list. */
|
|
|
|
; do
|
|
; {
|
|
; double d;
|
|
|
|
; fp *= 10;
|
|
; Use modf here, not floor and subtract, so that
|
|
; the separation is done in one step. At the end
|
|
; of the loop don't break the number into parts so
|
|
; that the final digit is rounded.
|
|
|
|
; if (cdigits+czero+1 < precision+clead)
|
|
; fp = modf(fp, &d);
|
|
|
|
; else
|
|
; {
|
|
; d = floor(fp + .5);
|
|
|
|
; if (d > 9)
|
|
; {
|
|
; /* Rounding up to 10, handle that here. */
|
|
; if (czero > 0)
|
|
; {
|
|
; --czero, d = 1;
|
|
; if (cdigits == 0) --clead;
|
|
; }
|
|
; else
|
|
; {
|
|
; while (cdigits > 0 && d > 9)
|
|
; {
|
|
; int ch = *--ascii;
|
|
|
|
; if (exp_b10 != (-1))
|
|
; ++exp_b10;
|
|
|
|
; else if (ch == 46)
|
|
; {
|
|
; ch = *--ascii, ++size;
|
|
; /* Advance exp_b10 to '1', so that the
|
|
; * decimal point happens after the
|
|
; * previous digit.
|
|
|
|
; exp_b10 = 1;
|
|
; }
|
|
|
|
; --cdigits;
|
|
; d = ch - 47; /* I.e. 1+(ch-48) */
|
|
; }
|
|
|
|
; /* Did we reach the beginning? If so adjust the
|
|
; * exponent but take into account the leading
|
|
; * decimal point.
|
|
|
|
; if (d > 9) /* cdigits == 0 */
|
|
; {
|
|
; if (exp_b10 == (-1))
|
|
; {
|
|
; Leading decimal point (plus zeros?), if
|
|
; we lose the decimal point here it must
|
|
; be reentered below.
|
|
|
|
; int ch = *--ascii;
|
|
|
|
; if (ch == 46)
|
|
; ++size, exp_b10 = 1;
|
|
|
|
; /* Else lost a leading zero, so 'exp_b10' is
|
|
; * still ok at (-1)
|
|
|
|
; }
|
|
; else
|
|
; ++exp_b10;
|
|
|
|
; /* In all cases we output a '1' */
|
|
; d = 1;
|
|
; }
|
|
; }
|
|
; }
|
|
; fp = 0; /* Guarantees termination below. */
|
|
; }
|
|
|
|
; if (d == 0)
|
|
; {
|
|
; ++czero;
|
|
; if (cdigits == 0) ++clead;
|
|
; }
|
|
; else
|
|
; {
|
|
; /* Included embedded zeros in the digit count. */
|
|
; cdigits += czero - clead;
|
|
; clead = 0;
|
|
|
|
; while (czero > 0)
|
|
; {
|
|
; exp_b10 == (-1) means we just output the decimal
|
|
; place - after the DP don't adjust 'exp_b10' any
|
|
; more!
|
|
|
|
; if (exp_b10 != (-1))
|
|
; {
|
|
; if (exp_b10 == 0) *ascii++ = 46, --size;
|
|
; /* PLUS 1: TOTAL 4 */
|
|
; --exp_b10;
|
|
; }
|
|
; *ascii++ = 48, --czero;
|
|
; }
|
|
|
|
; if (exp_b10 != (-1))
|
|
; {
|
|
; if (exp_b10 == 0)
|
|
; *ascii++ = 46, --size; /* counted above */
|
|
|
|
; --exp_b10;
|
|
; }
|
|
; *ascii++ = (char)(48 + (int)d), ++cdigits;
|
|
; }
|
|
; }
|
|
; while (cdigits+czero < precision+clead && fp > DBL_MIN);
|
|
|
|
; /* The total output count (max) is now 4+precision */
|
|
|
|
; Check for an exponent, if we don't need one we are
|
|
; done and just need to terminate the string. At
|
|
; this point exp_b10==(-1) is effectively if flag - it got
|
|
; to '-1' because of the decrement after outputting
|
|
; the decimal point above (the exponent required is
|
|
; *not* -1!)
|
|
|
|
; if (exp_b10 >= (-1) && exp_b10 <= 2)
|
|
; {
|
|
; The following only happens if we didn't output the
|
|
; leading zeros above for negative exponent, so this
|
|
; doesn't add to the digit requirement. Note that the
|
|
; two zeros here can only be output if the two leading
|
|
; zeros were *not* output, so this doesn't increase
|
|
; the output count.
|
|
|
|
; while (--exp_b10 >= 0) *ascii++ = 48;
|
|
|
|
; *ascii = 0;
|
|
|
|
; /* Total buffer requirement (including the '\0') is
|
|
; 5+precision - see check at the start.
|
|
|
|
; return;
|
|
; }
|
|
|
|
; Here if an exponent is required, adjust size for
|
|
; the digits we output but did not count. The total
|
|
; digit output here so far is at most 1+precision - no
|
|
; decimal point and no leading or trailing zeros have
|
|
; been output.
|
|
|
|
; size -= cdigits;
|
|
;
|
|
; *ascii++ = 69, --size; /* 'E': PLUS 1 TOTAL 2+precision */
|
|
|
|
; The following use of an unsigned temporary avoids ambiguities in
|
|
; the signed arithmetic on exp_b10 and permits GCC at least to do
|
|
; better optimization.
|
|
|
|
; {
|
|
; uint uexp_b10;
|
|
|
|
; if (exp_b10 < 0)
|
|
; {
|
|
; *ascii++ = 45, --size; /* '-': PLUS 1 TOTAL 3+precision */
|
|
; uexp_b10 = -exp_b10;
|
|
; }
|
|
|
|
; else
|
|
; uexp_b10 = exp_b10;
|
|
|
|
; cdigits = 0;
|
|
|
|
; while (uexp_b10 > 0)
|
|
; {
|
|
; exponent[cdigits++] = (char)(48 + uexp_b10 % 10);
|
|
; uexp_b10 /= 10;
|
|
; }
|
|
; }
|
|
|
|
; Need another size check here for the exponent digits, so
|
|
; this need not be considered above.
|
|
|
|
; if (size > cdigits)
|
|
; {
|
|
; while (cdigits > 0) *ascii++ = exponent[--cdigits];
|
|
|
|
; *ascii = 0;
|
|
|
|
; return;
|
|
; }
|
|
; }
|
|
; }
|
|
; else if (!(fp >= DBL_MIN))
|
|
; {
|
|
; *ascii++ = 48; /* '0' */
|
|
; *ascii = 0;
|
|
; return;
|
|
; }
|
|
; else
|
|
; {
|
|
; *ascii++ = 105; /* 'i' */
|
|
; *ascii++ = 110; /* 'n' */
|
|
; *ascii++ = 102; /* 'f' */
|
|
; *ascii = 0;
|
|
; return;
|
|
; }
|
|
; }
|
|
|
|
; Here on buffer too small.
|
|
; png_error(png_ptr, "ASCII conversion buffer too small");
|
|
ret
|
|
endp
|
|
|
|
;# endif /* FLOATING_POINT */
|
|
|
|
; Function to format a fixed point value in ASCII.
|
|
|
|
;void (png_structrp png_ptr, charp ascii, png_size_t size, png_fixed_point fp)
|
|
align 4
|
|
proc png_ascii_from_fixed, png_ptr:dword, ascii:dword, size:dword, fp:dword
|
|
; Require space for 10 decimal digits, a decimal point, a minus sign and a
|
|
; trailing \0, 13 characters:
|
|
|
|
cmp dword[size],12
|
|
jle .end0 ;if (..>..)
|
|
; uint_32 num;
|
|
|
|
; Avoid overflow here on the minimum integer.
|
|
; if (fp < 0)
|
|
; *ascii++ = 45, num = -fp;
|
|
; else
|
|
; num = fp;
|
|
|
|
; if (num <= 0x80000000) /* else overflowed */
|
|
; {
|
|
; uint ndigits = 0, first = 16 /* flag value */;
|
|
; char digits[10];
|
|
|
|
; while (num)
|
|
; {
|
|
; Split the low digit off num:
|
|
; uint tmp = num/10;
|
|
; num -= tmp*10;
|
|
; digits[ndigits++] = (char)(48 + num);
|
|
; Record the first non-zero digit, note that this is a number
|
|
; starting at 1, it's not actually the array index.
|
|
|
|
; if (first == 16 && num > 0)
|
|
; first = ndigits;
|
|
; num = tmp;
|
|
; }
|
|
|
|
; if (ndigits > 0)
|
|
; {
|
|
; while (ndigits > 5) *ascii++ = digits[--ndigits];
|
|
; The remaining digits are fractional digits, ndigits is '5' or
|
|
; smaller at this point. It is certainly not zero. Check for a
|
|
; non-zero fractional digit:
|
|
|
|
; if (first <= 5)
|
|
; {
|
|
; uint i;
|
|
; *ascii++ = 46; /* decimal point */
|
|
; ndigits may be <5 for small numbers, output leading zeros
|
|
; then ndigits digits to first:
|
|
|
|
; i = 5;
|
|
; while (ndigits < i) *ascii++ = 48, --i;
|
|
; while (ndigits >= first) *ascii++ = digits[--ndigits];
|
|
; Don't output the trailing zeros!
|
|
; }
|
|
; }
|
|
; else
|
|
; *ascii++ = 48;
|
|
|
|
; And null terminate the string:
|
|
; *ascii = 0;
|
|
; return;
|
|
; }
|
|
.end0:
|
|
|
|
; Here on buffer too small.
|
|
png_error [png_ptr], 'ASCII conversion buffer too small'
|
|
ret
|
|
endp
|
|
;end if /* SCAL */
|
|
|
|
;png_fixed_point (png_structrp png_ptr, double fp, charp text)
|
|
align 4
|
|
proc png_fixed, png_ptr:dword, fp:dword, text:dword
|
|
; double r = floor(100000 * fp + .5);
|
|
|
|
; if (r > 2147483647. || r < -2147483648.)
|
|
; png_fixed_error(png_ptr, text);
|
|
|
|
; return (png_fixed_point)r;
|
|
ret
|
|
endp
|
|
|
|
; muldiv functions
|
|
; This API takes signed arguments and rounds the result to the nearest
|
|
; integer (or, for a fixed point number - the standard argument - to
|
|
; the nearest .00001). Overflow and divide by zero are signalled in
|
|
; the result, a boolean - true on success, false on overflow.
|
|
|
|
;int (png_fixed_point_p res, png_fixed_point a, int_32 times, int_32 divisor)
|
|
align 4
|
|
proc png_muldiv, res:dword, a:dword, p3times:dword, divisor:dword
|
|
; Return a * times / divisor, rounded.
|
|
; if (divisor != 0)
|
|
; {
|
|
; if (a == 0 || p3times == 0)
|
|
; {
|
|
; *res = 0;
|
|
; return 1;
|
|
; }
|
|
; else
|
|
; {
|
|
if PNG_FLOATING_ARITHMETIC_SUPPORTED eq 1
|
|
; double r = a;
|
|
; r *= p3times;
|
|
; r /= divisor;
|
|
; r = floor(r+.5);
|
|
|
|
; /* A png_fixed_point is a 32-bit integer. */
|
|
; if (r <= 2147483647. && r >= -2147483648.)
|
|
; {
|
|
; *res = (png_fixed_point)r;
|
|
; return 1;
|
|
; }
|
|
else
|
|
; int negative = 0;
|
|
; uint_32 A, T, D;
|
|
; uint_32 s16, s32, s00;
|
|
|
|
; if (a < 0)
|
|
; negative = 1, A = -a;
|
|
; else
|
|
; A = a;
|
|
|
|
; if (p3times < 0)
|
|
; negative = !negative, T = -p3times;
|
|
; else
|
|
; T = p3times;
|
|
|
|
; if (divisor < 0)
|
|
; negative = !negative, D = -divisor;
|
|
; else
|
|
; D = divisor;
|
|
|
|
; Following can't overflow because the arguments only
|
|
; have 31 bits each, however the result may be 32 bits.
|
|
|
|
; s16 = (A >> 16) * (T & 0xffff) +
|
|
; (A & 0xffff) * (T >> 16);
|
|
; Can't overflow because the a*times bit is only 30
|
|
; bits at most.
|
|
|
|
; s32 = (A >> 16) * (T >> 16) + (s16 >> 16);
|
|
; s00 = (A & 0xffff) * (T & 0xffff);
|
|
|
|
; s16 = (s16 & 0xffff) << 16;
|
|
; s00 += s16;
|
|
|
|
; if (s00 < s16)
|
|
; ++s32; /* carry */
|
|
|
|
; if (s32 < D) /* else overflow */
|
|
; {
|
|
; s32.s00 is now the 64-bit product, do a standard
|
|
; division, we know that s32 < D, so the maximum
|
|
; required shift is 31.
|
|
|
|
; int bitshift = 32;
|
|
; png_fixed_point result = 0; /* NOTE: signed */
|
|
|
|
; while (--bitshift >= 0)
|
|
; {
|
|
; uint_32 d32, d00;
|
|
|
|
; if (bitshift > 0)
|
|
; d32 = D >> (32-bitshift), d00 = D << bitshift;
|
|
|
|
; else
|
|
; d32 = 0, d00 = D;
|
|
|
|
; if (s32 > d32)
|
|
; {
|
|
; if (s00 < d00) --s32; /* carry */
|
|
; s32 -= d32, s00 -= d00, result += 1<<bitshift;
|
|
; }
|
|
|
|
; else
|
|
; if (s32 == d32 && s00 >= d00)
|
|
; s32 = 0, s00 -= d00, result += 1<<bitshift;
|
|
; }
|
|
|
|
; /* Handle the rounding. */
|
|
; if (s00 >= (D >> 1))
|
|
; ++result;
|
|
|
|
; if (negative != 0)
|
|
; result = -result;
|
|
|
|
; /* Check for overflow. */
|
|
; if ((negative != 0 && result <= 0) ||
|
|
; (negative == 0 && result >= 0))
|
|
; {
|
|
; *res = result;
|
|
; return 1;
|
|
; }
|
|
; }
|
|
end if
|
|
; }
|
|
; }
|
|
|
|
xor eax,eax
|
|
ret
|
|
endp
|
|
|
|
; The following is for when the caller doesn't much care about the
|
|
; result.
|
|
|
|
;png_fixed_point (png_structrp png_ptr, png_fixed_point a, int_32 times,
|
|
; int_32 divisor)
|
|
align 4
|
|
proc png_muldiv_warn, png_ptr:dword, a:dword, p3times:dword, divisor:dword
|
|
; png_fixed_point result;
|
|
|
|
; if (png_muldiv(&result, a, p3times, divisor) != 0)
|
|
; return result;
|
|
|
|
png_warning [png_ptr], 'fixed point overflow ignored'
|
|
xor eax,eax
|
|
ret
|
|
endp
|
|
|
|
; Calculate a reciprocal, return 0 on div-by-zero or overflow.
|
|
;png_fixed_point (png_fixed_point a)
|
|
align 4
|
|
proc png_reciprocal, a:dword
|
|
if PNG_FLOATING_ARITHMETIC_SUPPORTED eq 1
|
|
; double r = floor(1E10/a+.5);
|
|
|
|
; if (r <= 2147483647. && r >= -2147483648.)
|
|
; return (png_fixed_point)r;
|
|
else
|
|
; png_fixed_point res;
|
|
|
|
; if (png_muldiv(&res, 100000, 100000, a) != 0)
|
|
; return res;
|
|
end if
|
|
|
|
; return 0; /* error/overflow */
|
|
ret
|
|
endp
|
|
|
|
; This is the shared test on whether a gamma value is 'significant' - whether
|
|
; it is worth doing gamma correction.
|
|
|
|
;int (png_fixed_point gamma_val)
|
|
align 4
|
|
proc png_gamma_significant, gamma_val:dword
|
|
; return gamma_val < PNG_FP_1 - PNG_GAMMA_THRESHOLD_FIXED ||
|
|
; gamma_val > PNG_FP_1 + PNG_GAMMA_THRESHOLD_FIXED;
|
|
ret
|
|
endp
|
|
|
|
;if PNG_READ_GAMMA_SUPPORTED
|
|
; A local convenience routine.
|
|
;png_fixed_point (png_fixed_point a, png_fixed_point b)
|
|
align 4
|
|
proc png_product2, a:dword, b:dword
|
|
; The required result is 1/a * 1/b; the following preserves accuracy.
|
|
if PNG_FLOATING_ARITHMETIC_SUPPORTED eq 1
|
|
; double r = a * 1E-5;
|
|
; r *= b;
|
|
; r = floor(r+.5);
|
|
|
|
; if (r <= 2147483647. && r >= -2147483648.)
|
|
; return (png_fixed_point)r;
|
|
else
|
|
; png_fixed_point res;
|
|
|
|
; if (png_muldiv(&res, a, b, 100000) != 0)
|
|
; return res;
|
|
end if
|
|
|
|
; return 0; /* overflow */
|
|
ret
|
|
endp
|
|
|
|
; The inverse of the above.
|
|
;png_fixed_point (png_fixed_point a, png_fixed_point b)
|
|
align 4
|
|
proc png_reciprocal2, a:dword, b:dword
|
|
; The required result is 1/a * 1/b; the following preserves accuracy.
|
|
if PNG_FLOATING_ARITHMETIC_SUPPORTED eq 1
|
|
; if (a != 0 && b != 0)
|
|
; {
|
|
; double r = 1E15/a;
|
|
; r /= b;
|
|
; r = floor(r+.5);
|
|
;
|
|
; if (r <= 2147483647. && r >= -2147483648.)
|
|
; return (png_fixed_point)r;
|
|
; }
|
|
else
|
|
; This may overflow because the range of png_fixed_point isn't symmetric,
|
|
; but this API is only used for the product of file and screen gamma so it
|
|
; doesn't matter that the smallest number it can produce is 1/21474, not
|
|
; 1/100000
|
|
|
|
; png_fixed_point res = png_product2(a, b);
|
|
|
|
; if (res != 0)
|
|
; return png_reciprocal(res);
|
|
end if
|
|
|
|
; return 0; /* overflow */
|
|
ret
|
|
endp
|
|
;end if /* READ_GAMMA */
|
|
|
|
;if PNG_READ_GAMMA_SUPPORTED /* gamma table code */
|
|
;#ifndef PNG_FLOATING_ARITHMETIC_SUPPORTED
|
|
; Fixed point gamma.
|
|
|
|
; The code to calculate the tables used below can be found in the shell script
|
|
; contrib/tools/intgamma.sh
|
|
|
|
; To calculate gamma this code implements fast log() and exp() calls using only
|
|
; fixed point arithmetic. This code has sufficient precision for either 8-bit
|
|
; or 16-bit sample values.
|
|
|
|
; The tables used here were calculated using simple 'bc' programs, but C double
|
|
; precision floating point arithmetic would work fine.
|
|
|
|
; 8-bit log table
|
|
; This is a table of -log(value/255)/log(2) for 'value' in the range 128 to
|
|
; 255, so it's the base 2 logarithm of a normalized 8-bit floating point
|
|
; mantissa. The numbers are 32-bit fractions.
|
|
|
|
;const uint_32
|
|
;png_8bit_l2[128] =
|
|
; 4270715492U, 4222494797U, 4174646467U, 4127164793U, 4080044201U, 4033279239U,
|
|
; 3986864580U, 3940795015U, 3895065449U, 3849670902U, 3804606499U, 3759867474U,
|
|
; 3715449162U, 3671346997U, 3627556511U, 3584073329U, 3540893168U, 3498011834U,
|
|
; 3455425220U, 3413129301U, 3371120137U, 3329393864U, 3287946700U, 3246774933U,
|
|
; 3205874930U, 3165243125U, 3124876025U, 3084770202U, 3044922296U, 3005329011U,
|
|
; 2965987113U, 2926893432U, 2888044853U, 2849438323U, 2811070844U, 2772939474U,
|
|
; 2735041326U, 2697373562U, 2659933400U, 2622718104U, 2585724991U, 2548951424U,
|
|
; 2512394810U, 2476052606U, 2439922311U, 2404001468U, 2368287663U, 2332778523U,
|
|
; 2297471715U, 2262364947U, 2227455964U, 2192742551U, 2158222529U, 2123893754U,
|
|
; 2089754119U, 2055801552U, 2022034013U, 1988449497U, 1955046031U, 1921821672U,
|
|
; 1888774511U, 1855902668U, 1823204291U, 1790677560U, 1758320682U, 1726131893U,
|
|
; 1694109454U, 1662251657U, 1630556815U, 1599023271U, 1567649391U, 1536433567U,
|
|
; 1505374214U, 1474469770U, 1443718700U, 1413119487U, 1382670639U, 1352370686U,
|
|
; 1322218179U, 1292211689U, 1262349810U, 1232631153U, 1203054352U, 1173618059U,
|
|
; 1144320946U, 1115161701U, 1086139034U, 1057251672U, 1028498358U, 999877854U,
|
|
; 971388940U, 943030410U, 914801076U, 886699767U, 858725327U, 830876614U,
|
|
; 803152505U, 775551890U, 748073672U, 720716771U, 693480120U, 666362667U,
|
|
; 639363374U, 612481215U, 585715177U, 559064263U, 532527486U, 506103872U,
|
|
; 479792461U, 453592303U, 427502463U, 401522014U, 375650043U, 349885648U,
|
|
; 324227938U, 298676034U, 273229066U, 247886176U, 222646516U, 197509248U,
|
|
; 172473545U, 147538590U, 122703574U, 97967701U, 73330182U, 48790236U,
|
|
; 24347096U, 0U
|
|
|
|
if 0
|
|
; The following are the values for 16-bit tables - these work fine for the
|
|
; 8-bit conversions but produce very slightly larger errors in the 16-bit
|
|
; log (about 1.2 as opposed to 0.7 absolute error in the final value). To
|
|
; use these all the shifts below must be adjusted appropriately.
|
|
|
|
; 65166, 64430, 63700, 62976, 62257, 61543, 60835, 60132, 59434, 58741, 58054,
|
|
; 57371, 56693, 56020, 55352, 54689, 54030, 53375, 52726, 52080, 51439, 50803,
|
|
; 50170, 49542, 48918, 48298, 47682, 47070, 46462, 45858, 45257, 44661, 44068,
|
|
; 43479, 42894, 42312, 41733, 41159, 40587, 40020, 39455, 38894, 38336, 37782,
|
|
; 37230, 36682, 36137, 35595, 35057, 34521, 33988, 33459, 32932, 32408, 31887,
|
|
; 31369, 30854, 30341, 29832, 29325, 28820, 28319, 27820, 27324, 26830, 26339,
|
|
; 25850, 25364, 24880, 24399, 23920, 23444, 22970, 22499, 22029, 21562, 21098,
|
|
; 20636, 20175, 19718, 19262, 18808, 18357, 17908, 17461, 17016, 16573, 16132,
|
|
; 15694, 15257, 14822, 14390, 13959, 13530, 13103, 12678, 12255, 11834, 11415,
|
|
; 10997, 10582, 10168, 9756, 9346, 8937, 8531, 8126, 7723, 7321, 6921, 6523,
|
|
; 6127, 5732, 5339, 4947, 4557, 4169, 3782, 3397, 3014, 2632, 2251, 1872, 1495,
|
|
; 1119, 744, 372
|
|
end if
|
|
|
|
;int_32 (uint x)
|
|
align 4
|
|
proc png_log8bit, x:dword
|
|
; uint lg2 = 0;
|
|
; Each time 'x' is multiplied by 2, 1 must be subtracted off the final log,
|
|
; because the log is actually negate that means adding 1. The final
|
|
; returned value thus has the range 0 (for 255 input) to 7.994 (for 1
|
|
; input), return -1 for the overflow (log 0) case, - so the result is
|
|
; always at most 19 bits.
|
|
|
|
; if ((x &= 0xff) == 0)
|
|
; return -1;
|
|
|
|
; if ((x & 0xf0) == 0)
|
|
; lg2 = 4, x <<= 4;
|
|
|
|
; if ((x & 0xc0) == 0)
|
|
; lg2 += 2, x <<= 2;
|
|
|
|
; if ((x & 0x80) == 0)
|
|
; lg2 += 1, x <<= 1;
|
|
|
|
; result is at most 19 bits, so this cast is safe:
|
|
; return (int_32)((lg2 << 16) + ((png_8bit_l2[x-128]+32768)>>16));
|
|
ret
|
|
endp
|
|
|
|
; The above gives exact (to 16 binary places) log2 values for 8-bit images,
|
|
; for 16-bit images we use the most significant 8 bits of the 16-bit value to
|
|
; get an approximation then multiply the approximation by a correction factor
|
|
; determined by the remaining up to 8 bits. This requires an additional step
|
|
; in the 16-bit case.
|
|
|
|
; We want log2(value/65535), we have log2(v'/255), where:
|
|
|
|
; value = v' * 256 + v''
|
|
; = v' * f
|
|
|
|
; So f is value/v', which is equal to (256+v''/v') since v' is in the range 128
|
|
; to 255 and v'' is in the range 0 to 255 f will be in the range 256 to less
|
|
; than 258. The final factor also needs to correct for the fact that our 8-bit
|
|
; value is scaled by 255, whereas the 16-bit values must be scaled by 65535.
|
|
|
|
; This gives a final formula using a calculated value 'x' which is value/v' and
|
|
; scaling by 65536 to match the above table:
|
|
|
|
; log2(x/257) * 65536
|
|
|
|
; Since these numbers are so close to '1' we can use simple linear
|
|
; interpolation between the two end values 256/257 (result -368.61) and 258/257
|
|
; (result 367.179). The values used below are scaled by a further 64 to give
|
|
; 16-bit precision in the interpolation:
|
|
|
|
; Start (256): -23591
|
|
; Zero (257): 0
|
|
; End (258): 23499
|
|
|
|
;int_32 (uint_32 x)
|
|
align 4
|
|
proc png_log16bit, x:dword
|
|
; uint lg2 = 0;
|
|
|
|
; As above, but now the input has 16 bits.
|
|
; if ((x &= 0xffff) == 0)
|
|
; return -1;
|
|
|
|
; if ((x & 0xff00) == 0)
|
|
; lg2 = 8, x <<= 8;
|
|
|
|
; if ((x & 0xf000) == 0)
|
|
; lg2 += 4, x <<= 4;
|
|
|
|
; if ((x & 0xc000) == 0)
|
|
; lg2 += 2, x <<= 2;
|
|
|
|
; if ((x & 0x8000) == 0)
|
|
; lg2 += 1, x <<= 1;
|
|
|
|
; Calculate the base logarithm from the top 8 bits as a 28-bit fractional
|
|
; value.
|
|
|
|
; lg2 <<= 28;
|
|
; lg2 += (png_8bit_l2[(x>>8)-128]+8) >> 4;
|
|
|
|
; Now we need to interpolate the factor, this requires a division by the top
|
|
; 8 bits. Do this with maximum precision.
|
|
|
|
; x = ((x << 16) + (x >> 9)) / (x >> 8);
|
|
|
|
; Since we divided by the top 8 bits of 'x' there will be a '1' at 1<<24,
|
|
; the value at 1<<16 (ignoring this) will be 0 or 1; this gives us exactly
|
|
; 16 bits to interpolate to get the low bits of the result. Round the
|
|
; answer. Note that the end point values are scaled by 64 to retain overall
|
|
; precision and that 'lg2' is current scaled by an extra 12 bits, so adjust
|
|
; the overall scaling by 6-12. Round at every step.
|
|
|
|
; x -= 1U << 24;
|
|
|
|
; if (x <= 65536U) /* <= '257' */
|
|
; lg2 += ((23591U * (65536U-x)) + (1U << (16+6-12-1))) >> (16+6-12);
|
|
|
|
; else
|
|
; lg2 -= ((23499U * (x-65536U)) + (1U << (16+6-12-1))) >> (16+6-12);
|
|
|
|
; Safe, because the result can't have more than 20 bits:
|
|
; return (int_32)((lg2 + 2048) >> 12);
|
|
ret
|
|
endp
|
|
|
|
; The 'exp()' case must invert the above, taking a 20-bit fixed point
|
|
; logarithmic value and returning a 16 or 8-bit number as appropriate. In
|
|
; each case only the low 16 bits are relevant - the fraction - since the
|
|
; integer bits (the top 4) simply determine a shift.
|
|
|
|
; The worst case is the 16-bit distinction between 65535 and 65534. This
|
|
; requires perhaps spurious accuracy in the decoding of the logarithm to
|
|
; distinguish log2(65535/65534.5) - 10^-5 or 17 bits. There is little chance
|
|
; of getting this accuracy in practice.
|
|
|
|
; To deal with this the following exp() function works out the exponent of the
|
|
; frational part of the logarithm by using an accurate 32-bit value from the
|
|
; top four fractional bits then multiplying in the remaining bits.
|
|
|
|
; NOTE: the first entry is deliberately set to the maximum 32-bit value.
|
|
align 4
|
|
png_32bit_exp dd 4294967295, 4112874773, 3938502376, 3771522796, 3611622603, 3458501653,\
|
|
3311872529, 3171459999, 3037000500, 2908241642, 2784941738, 2666869345,\
|
|
2553802834, 2445529972, 2341847524, 2242560872
|
|
|
|
; Adjustment table; provided to explain the numbers in the code below.
|
|
;#if 0
|
|
;for (i=11;i>=0;--i){ print i, " ", (1 - e(-(2^i)/65536*l(2))) * 2^(32-i), "\n"}
|
|
; 11 44937.64284865548751208448
|
|
; 10 45180.98734845585101160448
|
|
; 9 45303.31936980687359311872
|
|
; 8 45364.65110595323018870784
|
|
; 7 45395.35850361789624614912
|
|
; 6 45410.72259715102037508096
|
|
; 5 45418.40724413220722311168
|
|
; 4 45422.25021786898173001728
|
|
; 3 45424.17186732298419044352
|
|
; 2 45425.13273269940811464704
|
|
; 1 45425.61317555035558641664
|
|
; 0 45425.85339951654943850496
|
|
;end if
|
|
|
|
;uint_32 (png_fixed_point x)
|
|
align 4
|
|
proc png_exp, x:dword
|
|
; if (x > 0 && x <= 0xfffff) /* Else overflow or zero (underflow) */
|
|
; {
|
|
; Obtain a 4-bit approximation
|
|
; uint_32 e = png_32bit_exp[(x >> 12) & 0x0f];
|
|
|
|
; Incorporate the low 12 bits - these decrease the returned value by
|
|
; multiplying by a number less than 1 if the bit is set. The multiplier
|
|
; is determined by the above table and the shift. Notice that the values
|
|
; converge on 45426 and this is used to allow linear interpolation of the
|
|
; low bits.
|
|
|
|
; if (x & 0x800)
|
|
; e -= (((e >> 16) * 44938U) + 16U) >> 5;
|
|
|
|
; if (x & 0x400)
|
|
; e -= (((e >> 16) * 45181U) + 32U) >> 6;
|
|
|
|
; if (x & 0x200)
|
|
; e -= (((e >> 16) * 45303U) + 64U) >> 7;
|
|
|
|
; if (x & 0x100)
|
|
; e -= (((e >> 16) * 45365U) + 128U) >> 8;
|
|
|
|
; if (x & 0x080)
|
|
; e -= (((e >> 16) * 45395U) + 256U) >> 9;
|
|
|
|
; if (x & 0x040)
|
|
; e -= (((e >> 16) * 45410U) + 512U) >> 10;
|
|
|
|
; And handle the low 6 bits in a single block.
|
|
; e -= (((e >> 16) * 355U * (x & 0x3fU)) + 256U) >> 9;
|
|
|
|
; Handle the upper bits of x.
|
|
; e >>= x >> 16;
|
|
; return e;
|
|
; }
|
|
|
|
; Check for overflow
|
|
; if (x <= 0)
|
|
; return png_32bit_exp[0];
|
|
|
|
; Else underflow
|
|
; return 0;
|
|
ret
|
|
endp
|
|
|
|
;byte (png_fixed_point lg2)
|
|
align 4
|
|
proc png_exp8bit, lg2:dword
|
|
; Get a 32-bit value:
|
|
; uint_32 x = png_exp(lg2);
|
|
|
|
; Convert the 32-bit value to 0..255 by multiplying by 256-1. Note that the
|
|
; second, rounding, step can't overflow because of the first, subtraction,
|
|
; step.
|
|
|
|
; x -= x >> 8;
|
|
; return (byte)(((x + 0x7fffffU) >> 24) & 0xff);
|
|
ret
|
|
endp
|
|
|
|
;uint_16 (png_fixed_point lg2)
|
|
align 4
|
|
proc png_exp16bit, lg2:dword
|
|
; Get a 32-bit value:
|
|
; uint_32 x = png_exp(lg2);
|
|
|
|
; Convert the 32-bit value to 0..65535 by multiplying by 65536-1:
|
|
; x -= x >> 16;
|
|
; return (uint_16)((x + 32767U) >> 16);
|
|
ret
|
|
endp
|
|
;end if /* FLOATING_ARITHMETIC */
|
|
|
|
;byte (uint value, png_fixed_point gamma_val)
|
|
align 4
|
|
proc png_gamma_8bit_correct, value:dword, gamma_val:dword
|
|
; if (value > 0 && value < 255)
|
|
; {
|
|
if PNG_FLOATING_ARITHMETIC_SUPPORTED eq 1
|
|
; 'value' is unsigned, ANSI-C90 requires the compiler to correctly
|
|
; convert this to a floating point value. This includes values that
|
|
; would overflow if 'value' were to be converted to 'int'.
|
|
|
|
; Apparently GCC, however, does an intermediate conversion to (int)
|
|
; on some (ARM) but not all (x86) platforms, possibly because of
|
|
; hardware FP limitations. (E.g. if the hardware conversion always
|
|
; assumes the integer register contains a signed value.) This results
|
|
; in ANSI-C undefined behavior for large values.
|
|
|
|
; Other implementations on the same machine might actually be ANSI-C90
|
|
; conformant and therefore compile spurious extra code for the large
|
|
; values.
|
|
|
|
; We can be reasonably sure that an unsigned to float conversion
|
|
; won't be faster than an int to float one. Therefore this code
|
|
; assumes responsibility for the undefined behavior, which it knows
|
|
; can't happen because of the check above.
|
|
|
|
; Note the argument to this routine is an (uint) because, on
|
|
; 16-bit platforms, it is assigned a value which might be out of
|
|
; range for an (int); that would result in undefined behavior in the
|
|
; caller if the *argument* ('value') were to be declared (int).
|
|
|
|
; double r = floor(255*pow((int)/*SAFE*/value/255.,gamma_val*.00001)+.5);
|
|
; return (byte)r;
|
|
else
|
|
; int_32 lg2 = png_log8bit(value);
|
|
; png_fixed_point res;
|
|
|
|
; if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1) != 0)
|
|
; return png_exp8bit(res);
|
|
|
|
; Overflow.
|
|
; value = 0;
|
|
end if
|
|
; }
|
|
|
|
; return (byte)(value & 0xff);
|
|
ret
|
|
endp
|
|
|
|
;uint_16 (uint value, png_fixed_point gamma_val)
|
|
align 4
|
|
proc png_gamma_16bit_correct, value:dword, gamma_val:dword
|
|
; if (value > 0 && value < 65535)
|
|
; {
|
|
if PNG_FLOATING_ARITHMETIC_SUPPORTED eq 1
|
|
; The same (uint)->(double) constraints apply here as above,
|
|
; however in this case the (uint) to (int) conversion can
|
|
; overflow on an ANSI-C90 compliant system so the cast needs to ensure
|
|
; that this is not possible.
|
|
|
|
; double r = floor(65535*pow((int_32)value/65535.,
|
|
; gamma_val*.00001)+.5);
|
|
; return (uint_16)r;
|
|
else
|
|
; int_32 lg2 = png_log16bit(value);
|
|
; png_fixed_point res;
|
|
|
|
; if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1) != 0)
|
|
; return png_exp16bit(res);
|
|
|
|
; Overflow.
|
|
; value = 0;
|
|
end if
|
|
; }
|
|
|
|
; return (uint_16)value;
|
|
ret
|
|
endp
|
|
|
|
; This does the right thing based on the bit_depth field of the
|
|
; png_struct, interpreting values as 8-bit or 16-bit. While the result
|
|
; is nominally a 16-bit value if bit depth is 8 then the result is
|
|
; 8-bit (as are the arguments.)
|
|
|
|
;uint_16 (png_structrp png_ptr, uint value, png_fixed_point gamma_val)
|
|
align 4
|
|
proc png_gamma_correct, png_ptr:dword, value:dword, gamma_val:dword
|
|
; if (png_ptr->bit_depth == 8)
|
|
; return png_gamma_8bit_correct(value, gamma_val);
|
|
;
|
|
if PNG_16BIT_SUPPORTED eq 1
|
|
; else
|
|
; return png_gamma_16bit_correct(value, gamma_val);
|
|
else
|
|
; should not reach this
|
|
xor eax,eax
|
|
end if ;16BIT
|
|
.end_f:
|
|
ret
|
|
endp
|
|
|
|
;if PNG_16BIT_SUPPORTED
|
|
; Internal function to build a single 16-bit table - the table consists of
|
|
; 'num' 256 entry subtables, where 'num' is determined by 'shift' - the amount
|
|
; to shift the input values right (or 16-number_of_signifiant_bits).
|
|
|
|
; The caller is responsible for ensuring that the table gets cleaned up on
|
|
; png_error (i.e. if one of the mallocs below fails) - i.e. the *table argument
|
|
; should be somewhere that will be cleaned.
|
|
|
|
;void (png_structrp png_ptr, uint_16pp *ptable, uint shift, png_fixed_point gamma_val)
|
|
align 4
|
|
proc png_build_16bit_table, png_ptr:dword, ptable:dword, shift:dword, gamma_val:dword
|
|
; Various values derived from 'shift':
|
|
; uint num = 1U << (8U - shift);
|
|
if PNG_FLOATING_ARITHMETIC_SUPPORTED eq 1
|
|
; CSE the division and work round wacky GCC warnings (see the comments
|
|
; in png_gamma_8bit_correct for where these come from.)
|
|
|
|
; double fmax = 1./(((int_32)1 << (16U - shift))-1);
|
|
end if
|
|
; uint max = (1U << (16U - shift))-1U;
|
|
; uint max_by_2 = 1U << (15U-shift);
|
|
; uint i;
|
|
|
|
; uint_16pp table = *ptable =
|
|
; (uint_16pp)png_calloc(png_ptr, num * (sizeof (uint_16p)));
|
|
|
|
; for (i = 0; i < num; i++)
|
|
; {
|
|
; uint_16p sub_table = table[i] =
|
|
; (uint_16p)png_malloc(png_ptr, 256 * (sizeof (uint_16)));
|
|
|
|
; The 'threshold' test is repeated here because it can arise for one of
|
|
; the 16-bit tables even if the others don't hit it.
|
|
|
|
; if (png_gamma_significant(gamma_val) != 0)
|
|
; {
|
|
; The old code would overflow at the end and this would cause the
|
|
; 'pow' function to return a result >1, resulting in an
|
|
; arithmetic error. This code follows the spec exactly; ig is
|
|
; the recovered input sample, it always has 8-16 bits.
|
|
|
|
; We want input * 65535/max, rounded, the arithmetic fits in 32
|
|
; bits (unsigned) so long as max <= 32767.
|
|
|
|
; uint j;
|
|
; for (j = 0; j < 256; j++)
|
|
; {
|
|
; uint_32 ig = (j << (8-shift)) + i;
|
|
if PNG_FLOATING_ARITHMETIC_SUPPORTED eq 1
|
|
; Inline the 'max' scaling operation:
|
|
; See png_gamma_8bit_correct for why the cast to (int) is
|
|
; required here.
|
|
|
|
; double d = floor(65535.*pow(ig*fmax, gamma_val*.00001)+.5);
|
|
; sub_table[j] = (uint_16)d;
|
|
else
|
|
; if (shift != 0)
|
|
; ig = (ig * 65535U + max_by_2)/max;
|
|
;
|
|
; sub_table[j] = png_gamma_16bit_correct(ig, gamma_val);
|
|
end if
|
|
; }
|
|
; }
|
|
; else
|
|
; {
|
|
; We must still build a table, but do it the fast way.
|
|
; uint j;
|
|
;
|
|
; for (j = 0; j < 256; j++)
|
|
; {
|
|
; uint_32 ig = (j << (8-shift)) + i;
|
|
;
|
|
; if (shift != 0)
|
|
; ig = (ig * 65535U + max_by_2)/max;
|
|
;
|
|
; sub_table[j] = (uint_16)ig;
|
|
; }
|
|
; }
|
|
; }
|
|
ret
|
|
endp
|
|
|
|
; NOTE: this function expects the *inverse* of the overall gamma transformation
|
|
; required.
|
|
|
|
;void (png_structrp png_ptr, uint_16pp *ptable, uint shift, png_fixed_point gamma_val)
|
|
align 4
|
|
proc png_build_16to8_table, png_ptr:dword, ptable:dword, shift:dword, gamma_val:dword
|
|
; uint num = 1U << (8U - shift);
|
|
; uint max = (1U << (16U - shift))-1U;
|
|
; uint i;
|
|
; uint_32 last;
|
|
|
|
; uint_16pp table = *ptable =
|
|
; (uint_16pp)png_calloc(png_ptr, num * (sizeof (uint_16p)));
|
|
|
|
; 'num' is the number of tables and also the number of low bits of low
|
|
; bits of the input 16-bit value used to select a table. Each table is
|
|
; itself indexed by the high 8 bits of the value.
|
|
|
|
; for (i = 0; i < num; i++)
|
|
; table[i] = (uint_16p)png_malloc(png_ptr,
|
|
; 256 * (sizeof (uint_16)));
|
|
|
|
; 'gamma_val' is set to the reciprocal of the value calculated above, so
|
|
; pow(out,g) is an *input* value. 'last' is the last input value set.
|
|
;
|
|
; In the loop 'i' is used to find output values. Since the output is
|
|
; 8-bit there are only 256 possible values. The tables are set up to
|
|
; select the closest possible output value for each input by finding
|
|
; the input value at the boundary between each pair of output values
|
|
; and filling the table up to that boundary with the lower output
|
|
; value.
|
|
|
|
; The boundary values are 0.5,1.5..253.5,254.5. Since these are 9-bit
|
|
; values the code below uses a 16-bit value in i; the values start at
|
|
; 128.5 (for 0.5) and step by 257, for a total of 254 values (the last
|
|
; entries are filled with 255). Start i at 128 and fill all 'last'
|
|
; table entries <= 'max'
|
|
|
|
; last = 0;
|
|
; for (i = 0; i < 255; ++i) /* 8-bit output value */
|
|
; {
|
|
; Find the corresponding maximum input value
|
|
; uint_16 out = (uint_16)(i * 257U); /* 16-bit output value */
|
|
|
|
; Find the boundary value in 16 bits:
|
|
; uint_32 bound = png_gamma_16bit_correct(out+128U, gamma_val);
|
|
|
|
; Adjust (round) to (16-shift) bits:
|
|
; bound = (bound * max + 32768U)/65535U + 1U;
|
|
;
|
|
; while (last < bound)
|
|
; {
|
|
; table[last & (0xffU >> shift)][last >> (8U - shift)] = out;
|
|
; last++;
|
|
; }
|
|
; }
|
|
|
|
; And fill in the final entries.
|
|
; while (last < (num << 8))
|
|
; {
|
|
; table[last & (0xff >> shift)][last >> (8U - shift)] = 65535U;
|
|
; last++;
|
|
; }
|
|
ret
|
|
endp
|
|
;end if /* 16BIT */
|
|
|
|
; Build a single 8-bit table: same as the 16-bit case but much simpler (and
|
|
; typically much faster). Note that libpng currently does no sBIT processing
|
|
; (apparently contrary to the spec) so a 256-entry table is always generated.
|
|
|
|
;void (png_structrp png_ptr, bytepp ptable, png_fixed_point gamma_val)
|
|
align 4
|
|
proc png_build_8bit_table, png_ptr:dword, ptable:dword, gamma_val:dword
|
|
; uint i;
|
|
; bytep table = *ptable = (bytep)png_malloc(png_ptr, 256);
|
|
|
|
; if (png_gamma_significant(gamma_val) != 0)
|
|
; for (i=0; i<256; i++)
|
|
; table[i] = png_gamma_8bit_correct(i, gamma_val);
|
|
|
|
; else
|
|
; for (i=0; i<256; ++i)
|
|
; table[i] = (byte)(i & 0xff);
|
|
ret
|
|
endp
|
|
|
|
; Used from png_read_destroy and below to release the memory used by the gamma
|
|
; tables.
|
|
|
|
;void (png_structrp png_ptr)
|
|
align 4
|
|
proc png_destroy_gamma_table, png_ptr:dword
|
|
; png_free(png_ptr, png_ptr->gamma_table);
|
|
; png_ptr->gamma_table = NULL;
|
|
|
|
if PNG_16BIT_SUPPORTED eq 1
|
|
; if (png_ptr->gamma_16_table != NULL)
|
|
; {
|
|
; int i;
|
|
; int istop = (1 << (8 - png_ptr->gamma_shift));
|
|
; for (i = 0; i < istop; i++)
|
|
; {
|
|
; png_free(png_ptr, png_ptr->gamma_16_table[i]);
|
|
; }
|
|
; png_free(png_ptr, png_ptr->gamma_16_table);
|
|
; png_ptr->gamma_16_table = NULL;
|
|
; }
|
|
end if ;16BIT
|
|
|
|
;#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
|
|
; defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
|
|
; defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
|
|
; png_free(png_ptr, png_ptr->gamma_from_1);
|
|
; png_ptr->gamma_from_1 = NULL;
|
|
; png_free(png_ptr, png_ptr->gamma_to_1);
|
|
; png_ptr->gamma_to_1 = NULL;
|
|
|
|
if PNG_16BIT_SUPPORTED eq 1
|
|
; if (png_ptr->gamma_16_from_1 != NULL)
|
|
; {
|
|
; int i;
|
|
; int istop = (1 << (8 - png_ptr->gamma_shift));
|
|
; for (i = 0; i < istop; i++)
|
|
; {
|
|
; png_free(png_ptr, png_ptr->gamma_16_from_1[i]);
|
|
; }
|
|
; png_free(png_ptr, png_ptr->gamma_16_from_1);
|
|
; png_ptr->gamma_16_from_1 = NULL;
|
|
; }
|
|
; if (png_ptr->gamma_16_to_1 != NULL)
|
|
; {
|
|
; int i;
|
|
; int istop = (1 << (8 - png_ptr->gamma_shift));
|
|
; for (i = 0; i < istop; i++)
|
|
; {
|
|
; png_free(png_ptr, png_ptr->gamma_16_to_1[i]);
|
|
; }
|
|
; png_free(png_ptr, png_ptr->gamma_16_to_1);
|
|
; png_ptr->gamma_16_to_1 = NULL;
|
|
; }
|
|
end if ;16BIT
|
|
;end if /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
|
|
ret
|
|
endp
|
|
|
|
; We build the 8- or 16-bit gamma tables here. Note that for 16-bit
|
|
; tables, we don't make a full table if we are reducing to 8-bit in
|
|
; the future. Note also how the gamma_16 tables are segmented so that
|
|
; we don't need to allocate > 64K chunks for a full 16-bit table.
|
|
|
|
;void (png_structrp png_ptr, int bit_depth)
|
|
align 4
|
|
proc png_build_gamma_table, png_ptr:dword, bit_depth:dword
|
|
png_debug 1, 'in png_build_gamma_table'
|
|
|
|
; Remove any existing table; this copes with multiple calls to
|
|
; png_read_update_info. The warning is because building the gamma tables
|
|
; multiple times is a performance hit - it's harmless but the ability to
|
|
; call png_read_update_info() multiple times is new in 1.5.6 so it seems
|
|
; sensible to warn if the app introduces such a hit.
|
|
|
|
; if (png_ptr->gamma_table != NULL || png_ptr->gamma_16_table != NULL)
|
|
; {
|
|
; png_warning(png_ptr, "gamma table being rebuilt");
|
|
; png_destroy_gamma_table(png_ptr);
|
|
; }
|
|
|
|
; if (bit_depth <= 8)
|
|
; {
|
|
; png_build_8bit_table(png_ptr, &png_ptr->gamma_table,
|
|
; png_ptr->screen_gamma > 0 ?
|
|
; png_reciprocal2(png_ptr->colorspace.gamma,
|
|
; png_ptr->screen_gamma) : PNG_FP_1);
|
|
;
|
|
if (PNG_READ_BACKGROUND_SUPPORTED eq 1) | (PNG_READ_ALPHA_MODE_SUPPORTED eq 1) | (PNG_READ_RGB_TO_GRAY_SUPPORTED eq 1)
|
|
; if ((png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY)) != 0)
|
|
; {
|
|
; png_build_8bit_table(png_ptr, &png_ptr->gamma_to_1,
|
|
; png_reciprocal(png_ptr->colorspace.gamma));
|
|
;
|
|
; png_build_8bit_table(png_ptr, &png_ptr->gamma_from_1,
|
|
; png_ptr->screen_gamma > 0 ?
|
|
; png_reciprocal(png_ptr->screen_gamma) :
|
|
; png_ptr->colorspace.gamma/* Probably doing rgb_to_gray */);
|
|
; }
|
|
end if ;READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY
|
|
; }
|
|
if PNG_16BIT_SUPPORTED eq 1
|
|
; else
|
|
; {
|
|
; byte shift, sig_bit;
|
|
;
|
|
; if ((png_ptr->color_type & PNG_COLOR_MASK_COLOR) != 0)
|
|
; {
|
|
; sig_bit = png_ptr->sig_bit.red;
|
|
;
|
|
; if (png_ptr->sig_bit.green > sig_bit)
|
|
; sig_bit = png_ptr->sig_bit.green;
|
|
;
|
|
; if (png_ptr->sig_bit.blue > sig_bit)
|
|
; sig_bit = png_ptr->sig_bit.blue;
|
|
; }
|
|
; else
|
|
; sig_bit = png_ptr->sig_bit.gray;
|
|
|
|
; 16-bit gamma code uses this equation:
|
|
|
|
; ov = table[(iv & 0xff) >> gamma_shift][iv >> 8]
|
|
|
|
; Where 'iv' is the input color value and 'ov' is the output value -
|
|
; pow(iv, gamma).
|
|
|
|
; Thus the gamma table consists of up to 256 256-entry tables. The table
|
|
; is selected by the (8-gamma_shift) most significant of the low 8 bits
|
|
; of the color value then indexed by the upper 8 bits:
|
|
;
|
|
; table[low bits][high 8 bits]
|
|
|
|
; So the table 'n' corresponds to all those 'iv' of:
|
|
|
|
; <all high 8-bit values><n << gamma_shift>..<(n+1 << gamma_shift)-1>
|
|
|
|
|
|
; if (sig_bit > 0 && sig_bit < 16U)
|
|
; /* shift == insignificant bits */
|
|
; shift = (byte)((16U - sig_bit) & 0xff);
|
|
|
|
; else
|
|
; shift = 0; /* keep all 16 bits */
|
|
|
|
; if ((png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8)) != 0)
|
|
; {
|
|
; PNG_MAX_GAMMA_8 is the number of bits to keep - effectively
|
|
; the significant bits in the *input* when the output will
|
|
; eventually be 8 bits. By default it is 11.
|
|
|
|
; if (shift < (16U - PNG_MAX_GAMMA_8))
|
|
; shift = (16U - PNG_MAX_GAMMA_8);
|
|
; }
|
|
|
|
; if (shift > 8U)
|
|
; shift = 8U; /* Guarantees at least one table! */
|
|
|
|
; png_ptr->gamma_shift = shift;
|
|
|
|
; NOTE: prior to 1.5.4 this test used to include PNG_BACKGROUND (now
|
|
; PNG_COMPOSE). This effectively smashed the background calculation for
|
|
; 16-bit output because the 8-bit table assumes the result will be
|
|
; reduced to 8 bits.
|
|
|
|
; if ((png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8)) != 0)
|
|
; png_build_16to8_table(png_ptr, &png_ptr->gamma_16_table, shift,
|
|
; png_ptr->screen_gamma > 0 ? png_product2(png_ptr->colorspace.gamma,
|
|
; png_ptr->screen_gamma) : PNG_FP_1);
|
|
;
|
|
; else
|
|
; png_build_16bit_table(png_ptr, &png_ptr->gamma_16_table, shift,
|
|
; png_ptr->screen_gamma > 0 ? png_reciprocal2(png_ptr->colorspace.gamma,
|
|
; png_ptr->screen_gamma) : PNG_FP_1);
|
|
;
|
|
if (PNG_READ_BACKGROUND_SUPPORTED eq 1) | (PNG_READ_ALPHA_MODE_SUPPORTED eq 1) | (PNG_READ_RGB_TO_GRAY_SUPPORTED eq 1)
|
|
; if ((png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY)) != 0)
|
|
; {
|
|
; png_build_16bit_table(png_ptr, &png_ptr->gamma_16_to_1, shift,
|
|
; png_reciprocal(png_ptr->colorspace.gamma));
|
|
|
|
; Notice that the '16 from 1' table should be full precision, however
|
|
; the lookup on this table still uses gamma_shift, so it can't be.
|
|
; TODO: fix this.
|
|
|
|
; png_build_16bit_table(png_ptr, &png_ptr->gamma_16_from_1, shift,
|
|
; png_ptr->screen_gamma > 0 ? png_reciprocal(png_ptr->screen_gamma) :
|
|
; png_ptr->colorspace.gamma/* Probably doing rgb_to_gray */);
|
|
; }
|
|
end if ;READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY
|
|
; }
|
|
end if ;16BIT
|
|
ret
|
|
endp
|
|
;end if /* READ_GAMMA */
|
|
|
|
; HARDWARE OR SOFTWARE OPTION SUPPORT
|
|
;int (png_structrp png_ptr, int option, int onoff)
|
|
align 4
|
|
proc png_set_option uses ecx, png_ptr:dword, option:dword, onoff:dword
|
|
mov eax,[png_ptr]
|
|
or eax,eax
|
|
jz @f
|
|
mov ecx,[option]
|
|
cmp ecx,0
|
|
jl @f
|
|
cmp ecx,PNG_OPTION_NEXT
|
|
jge @f
|
|
bt ecx,0 ;cmp (ecx & 1), 0
|
|
jc @f ;if (..!=0 && ..>=0 && ..<.. && ..==0)
|
|
; int mask = 3 << option;
|
|
; int setting = (2 + (onoff != 0)) << option;
|
|
; int current = png_ptr->options;
|
|
|
|
; png_ptr->options = (byte)(((current & ~mask) | setting) & 0xff);
|
|
|
|
; return (current & mask) >> option;
|
|
jmp .end_f
|
|
@@:
|
|
mov eax,PNG_OPTION_INVALID
|
|
.end_f:
|
|
ret
|
|
endp
|
|
|
|
; sRGB support
|
|
if (PNG_SIMPLIFIED_READ_SUPPORTED eq 1) | (PNG_SIMPLIFIED_WRITE_SUPPORTED eq 1)
|
|
; sRGB conversion tables; these are machine generated with the code in
|
|
; contrib/tools/makesRGB.c. The actual sRGB transfer curve defined in the
|
|
; specification (see the article at http://en.wikipedia.org/wiki/SRGB)
|
|
; is used, not the gamma=1/2.2 approximation use elsewhere in libpng.
|
|
; The sRGB to linear table is exact (to the nearest 16-bit linear fraction).
|
|
; The inverse (linear to sRGB) table has accuracies as follows:
|
|
|
|
; For all possible (255*65535+1) input values:
|
|
; error: -0.515566 - 0.625971, 79441 (0.475369%) of readings inexact
|
|
|
|
; For the input values corresponding to the 65536 16-bit values:
|
|
; error: -0.513727 - 0.607759, 308 (0.469978%) of readings inexact
|
|
|
|
; In all cases the inexact readings are only off by one.
|
|
|
|
|
|
if PNG_SIMPLIFIED_READ_SUPPORTED eq 1
|
|
; The convert-to-sRGB table is only currently required for read.
|
|
align 4
|
|
png_sRGB_table dw 0,20,40,60,80,99,119,139,\
|
|
159,179,199,219,241,264,288,313,\
|
|
340,367,396,427,458,491,526,562,\
|
|
599,637,677,718,761,805,851,898,\
|
|
947,997,1048,1101,1156,1212,1270,1330,\
|
|
1391,1453,1517,1583,1651,1720,1790,1863,\
|
|
1937,2013,2090,2170,2250,2333,2418,2504,\
|
|
2592,2681,2773,2866,2961,3058,3157,3258,\
|
|
3360,3464,3570,3678,3788,3900,4014,4129,\
|
|
4247,4366,4488,4611,4736,4864,4993,5124,\
|
|
5257,5392,5530,5669,5810,5953,6099,6246,\
|
|
6395,6547,6700,6856,7014,7174,7335,7500,\
|
|
7666,7834,8004,8177,8352,8528,8708,8889,\
|
|
9072,9258,9445,9635,9828,10022,10219,10417,\
|
|
10619,10822,11028,11235,11446,11658,11873,12090,\
|
|
12309,12530,12754,12980,13209,13440,13673,13909,\
|
|
14146,14387,14629,14874,15122,15371,15623,15878,\
|
|
16135,16394,16656,16920,17187,17456,17727,18001,\
|
|
18277,18556,18837,19121,19407,19696,19987,20281,\
|
|
20577,20876,21177,21481,21787,22096,22407,22721,\
|
|
23038,23357,23678,24002,24329,24658,24990,25325,\
|
|
25662,26001,26344,26688,27036,27386,27739,28094,\
|
|
28452,28813,29176,29542,29911,30282,30656,31033,\
|
|
31412,31794,32179,32567,32957,33350,33745,34143,\
|
|
34544,34948,35355,35764,36176,36591,37008,37429,\
|
|
37852,38278,38706,39138,39572,40009,40449,40891,\
|
|
41337,41785,42236,42690,43147,43606,44069,44534,\
|
|
45002,45473,45947,46423,46903,47385,47871,48359,\
|
|
48850,49344,49841,50341,50844,51349,51858,52369,\
|
|
52884,53401,53921,54445,54971,55500,56032,56567,\
|
|
57105,57646,58190,58737,59287,59840,60396,60955,\
|
|
61517,62082,62650,63221,63795,64372,64952,65535
|
|
end if ;SIMPLIFIED_READ
|
|
|
|
; The base/delta tables are required for both read and write (but currently
|
|
; only the simplified versions.)
|
|
align 4
|
|
png_sRGB_base dw 128,1782,3383,4644,5675,6564,7357,8074,\
|
|
8732,9346,9921,10463,10977,11466,11935,12384,\
|
|
12816,13233,13634,14024,14402,14769,15125,15473,\
|
|
15812,16142,16466,16781,17090,17393,17690,17981,\
|
|
18266,18546,18822,19093,19359,19621,19879,20133,\
|
|
20383,20630,20873,21113,21349,21583,21813,22041,\
|
|
22265,22487,22707,22923,23138,23350,23559,23767,\
|
|
23972,24175,24376,24575,24772,24967,25160,25352,\
|
|
25542,25730,25916,26101,26284,26465,26645,26823,\
|
|
27000,27176,27350,27523,27695,27865,28034,28201,\
|
|
28368,28533,28697,28860,29021,29182,29341,29500,\
|
|
29657,29813,29969,30123,30276,30429,30580,30730,\
|
|
30880,31028,31176,31323,31469,31614,31758,31902,\
|
|
32045,32186,32327,32468,32607,32746,32884,33021,\
|
|
33158,33294,33429,33564,33697,33831,33963,34095,\
|
|
34226,34357,34486,34616,34744,34873,35000,35127,\
|
|
35253,35379,35504,35629,35753,35876,35999,36122,\
|
|
36244,36365,36486,36606,36726,36845,36964,37083,\
|
|
37201,37318,37435,37551,37668,37783,37898,38013,\
|
|
38127,38241,38354,38467,38580,38692,38803,38915,\
|
|
39026,39136,39246,39356,39465,39574,39682,39790,\
|
|
39898,40005,40112,40219,40325,40431,40537,40642,\
|
|
40747,40851,40955,41059,41163,41266,41369,41471,\
|
|
41573,41675,41777,41878,41979,42079,42179,42279,\
|
|
42379,42478,42577,42676,42775,42873,42971,43068,\
|
|
43165,43262,43359,43456,43552,43648,43743,43839,\
|
|
43934,44028,44123,44217,44311,44405,44499,44592,\
|
|
44685,44778,44870,44962,45054,45146,45238,45329,\
|
|
45420,45511,45601,45692,45782,45872,45961,46051,\
|
|
46140,46229,46318,46406,46494,46583,46670,46758,\
|
|
46846,46933,47020,47107,47193,47280,47366,47452,\
|
|
47538,47623,47709,47794,47879,47964,48048,48133,\
|
|
48217,48301,48385,48468,48552,48635,48718,48801,\
|
|
48884,48966,49048,49131,49213,49294,49376,49458,\
|
|
49539,49620,49701,49782,49862,49943,50023,50103,\
|
|
50183,50263,50342,50422,50501,50580,50659,50738,\
|
|
50816,50895,50973,51051,51129,51207,51285,51362,\
|
|
51439,51517,51594,51671,51747,51824,51900,51977,\
|
|
52053,52129,52205,52280,52356,52432,52507,52582,\
|
|
52657,52732,52807,52881,52956,53030,53104,53178,\
|
|
53252,53326,53400,53473,53546,53620,53693,53766,\
|
|
53839,53911,53984,54056,54129,54201,54273,54345,\
|
|
54417,54489,54560,54632,54703,54774,54845,54916,\
|
|
54987,55058,55129,55199,55269,55340,55410,55480,\
|
|
55550,55620,55689,55759,55828,55898,55967,56036,\
|
|
56105,56174,56243,56311,56380,56448,56517,56585,\
|
|
56653,56721,56789,56857,56924,56992,57059,57127,\
|
|
57194,57261,57328,57395,57462,57529,57595,57662,\
|
|
57728,57795,57861,57927,57993,58059,58125,58191,\
|
|
58256,58322,58387,58453,58518,58583,58648,58713,\
|
|
58778,58843,58908,58972,59037,59101,59165,59230,\
|
|
59294,59358,59422,59486,59549,59613,59677,59740,\
|
|
59804,59867,59930,59993,60056,60119,60182,60245,\
|
|
60308,60370,60433,60495,60558,60620,60682,60744,\
|
|
60806,60868,60930,60992,61054,61115,61177,61238,\
|
|
61300,61361,61422,61483,61544,61605,61666,61727,\
|
|
61788,61848,61909,61969,62030,62090,62150,62211,\
|
|
62271,62331,62391,62450,62510,62570,62630,62689,\
|
|
62749,62808,62867,62927,62986,63045,63104,63163,\
|
|
63222,63281,63340,63398,63457,63515,63574,63632,\
|
|
63691,63749,63807,63865,63923,63981,64039,64097,\
|
|
64155,64212,64270,64328,64385,64443,64500,64557,\
|
|
64614,64672,64729,64786,64843,64900,64956,65013,\
|
|
65070,65126,65183,65239,65296,65352,65409,65465
|
|
align 4
|
|
png_sRGB_delta db 207,201,158,129,113,100,90,82,77,72,68,64,61,59,56,54,\
|
|
52,50,49,47,46,45,43,42,41,40,39,39,38,37,36,36,\
|
|
35,34,34,33,33,32,32,31,31,30,30,30,29,29,28,28,\
|
|
28,27,27,27,27,26,26,26,25,25,25,25,24,24,24,24,\
|
|
23,23,23,23,23,22,22,22,22,22,22,21,21,21,21,21,\
|
|
21,20,20,20,20,20,20,20,20,19,19,19,19,19,19,19,\
|
|
19,18,18,18,18,18,18,18,18,18,18,17,17,17,17,17,\
|
|
17,17,17,17,17,17,16,16,16,16,16,16,16,16,16,16,\
|
|
16,16,16,16,15,15,15,15,15,15,15,15,15,15,15,15,\
|
|
15,15,15,15,14,14,14,14,14,14,14,14,14,14,14,14,\
|
|
14,14,14,14,14,14,14,13,13,13,13,13,13,13,13,13,\
|
|
13,13,13,13,13,13,13,13,13,13,13,13,13,13,12,12,\
|
|
12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,\
|
|
12,12,12,12,12,12,12,12,12,12,12,12,11,11,11,11,\
|
|
11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,\
|
|
11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,\
|
|
11,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,\
|
|
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,\
|
|
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,\
|
|
10,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,\
|
|
9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,\
|
|
9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,\
|
|
9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,\
|
|
9,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,\
|
|
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,\
|
|
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,\
|
|
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,\
|
|
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,\
|
|
8,8,8,8,8,8,8,8,8,7,7,7,7,7,7,7,\
|
|
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,\
|
|
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,\
|
|
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7
|
|
|
|
end if ;SIMPLIFIED READ/WRITE sRGB support
|
|
|
|
; SIMPLIFIED READ/WRITE SUPPORT
|
|
;int (voidp argument)
|
|
align 4
|
|
proc png_image_free_function uses ebx ecx edi esi, argument:dword
|
|
locals
|
|
; png_imagep image = argument;
|
|
; png_controlp cp = image->opaque;
|
|
c png_control
|
|
endl
|
|
; Double check that we have a png_ptr - it should be impossible to get here
|
|
; without one.
|
|
|
|
mov ebx,[argument]
|
|
mov esi,[ebx+png_image.opaque] ;esi = cp
|
|
cmp dword[esi+png_control.png_ptr],0
|
|
jne @f ;if (..==0)
|
|
xor eax,eax
|
|
jmp .end_f
|
|
@@:
|
|
|
|
; First free any data held in the control structure.
|
|
if PNG_STDIO_SUPPORTED eq 1
|
|
; if (cp->owned_file != 0)
|
|
; {
|
|
; FILE *fp = cp->png_ptr->io_ptr;
|
|
; cp->owned_file = 0;
|
|
|
|
; Ignore errors here.
|
|
; if (fp != NULL)
|
|
; {
|
|
; cp->png_ptr->io_ptr = NULL;
|
|
; (void)fclose(fp);
|
|
; }
|
|
; }
|
|
end if
|
|
|
|
; Copy the control structure so that the original, allocated, version can be
|
|
; safely freed. Notice that a png_error here stops the remainder of the
|
|
; cleanup, but this is probably fine because that would indicate bad memory
|
|
; problems anyway.
|
|
|
|
mov ecx,sizeof.png_control
|
|
mov edi,ebp
|
|
sub edi,ecx ;edi = &c
|
|
rep movsb
|
|
sub edi,sizeof.png_control
|
|
sub esi,sizeof.png_control
|
|
mov dword[ebx+png_image.opaque],edi
|
|
stdcall png_free, [edi+png_control.png_ptr], esi
|
|
|
|
; Then the structures, calling the correct API.
|
|
; if (c.for_write != 0)
|
|
; {
|
|
if PNG_SIMPLIFIED_WRITE_SUPPORTED eq 1
|
|
; png_destroy_write_struct(&c.png_ptr, &c.info_ptr);
|
|
else
|
|
; png_error(c.png_ptr, "simplified write not supported");
|
|
end if
|
|
jmp .end2
|
|
.end1: ;else
|
|
if PNG_SIMPLIFIED_READ_SUPPORTED eq 1
|
|
; png_destroy_read_struct(&c.png_ptr, &c.info_ptr, NULL);
|
|
else
|
|
; png_error(c.png_ptr, "simplified read not supported");
|
|
end if
|
|
.end2:
|
|
|
|
; Success.
|
|
xor eax,eax
|
|
inc eax
|
|
.end_f:
|
|
ret
|
|
endp
|
|
|
|
;void (png_imagep image)
|
|
align 4
|
|
proc png_image_free uses eax ebx, image:dword
|
|
; Safely call the real function, but only if doing so is safe at this point
|
|
; (if not inside an error handling context). Otherwise assume
|
|
; png_safe_execute will call this API after the return.
|
|
|
|
mov ebx,[image]
|
|
or ebx,ebx
|
|
jz @f
|
|
cmp dword[ebx+png_image.opaque],0
|
|
je @f
|
|
mov eax,[ebx+png_image.opaque]
|
|
cmp dword[eax+png_control.error_buf],0
|
|
jne @f ;if (..!=0 && ..!=0 && ..==0)
|
|
; Ignore errors here:
|
|
stdcall png_safe_execute, ebx, png_image_free_function, ebx
|
|
mov dword[ebx+png_image.opaque],0
|
|
@@:
|
|
ret
|
|
endp
|
|
|
|
;int (png_imagep image, charp error_message)
|
|
align 4
|
|
proc png_image_error uses ebx, image:dword, error_message:dword
|
|
; Utility to log an error.
|
|
mov ebx,[image]
|
|
mov eax,ebx
|
|
add eax,png_image.message
|
|
stdcall png_safecat, eax, sizeof.png_image.message, 0, [error_message]
|
|
or dword[ebx+png_image.warning_or_error], PNG_IMAGE_ERROR
|
|
stdcall png_image_free, ebx
|
|
xor eax,eax
|
|
ret
|
|
endp
|
|
|
|
;end if /* READ || WRITE */
|