mirror of
https://github.com/KolibriOS/kolibrios.git
synced 2024-12-24 07:36:48 +03:00
2336060a0c
git-svn-id: svn://kolibrios.org@1906 a494cfbc-eb01-0410-851d-a64ba20cac60
199 lines
3.4 KiB
C
199 lines
3.4 KiB
C
/* powi.c
|
||
*
|
||
* Real raised to integer power
|
||
*
|
||
*
|
||
*
|
||
* SYNOPSIS:
|
||
*
|
||
* float x, y, __powif();
|
||
* int n;
|
||
*
|
||
* y = powi( x, n );
|
||
*
|
||
*
|
||
*
|
||
* DESCRIPTION:
|
||
*
|
||
* Returns argument x raised to the nth power.
|
||
* The routine efficiently decomposes n as a sum of powers of
|
||
* two. The desired power is a product of two-to-the-kth
|
||
* powers of x. Thus to compute the 32767 power of x requires
|
||
* 28 multiplications instead of 32767 multiplications.
|
||
*
|
||
*
|
||
*
|
||
* ACCURACY:
|
||
*
|
||
*
|
||
* Relative error:
|
||
* arithmetic x domain n domain # trials peak rms
|
||
* DEC .04,26 -26,26 100000 2.7e-16 4.3e-17
|
||
* IEEE .04,26 -26,26 50000 2.0e-15 3.8e-16
|
||
* IEEE 1,2 -1022,1023 50000 8.6e-14 1.6e-14
|
||
*
|
||
* Returns MAXNUM on overflow, zero on underflow.
|
||
*
|
||
*/
|
||
|
||
/* powi.c */
|
||
|
||
/*
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1995, 2000 by Stephen L. Moshier
|
||
*/
|
||
|
||
/*
|
||
Modified for float from powi.c and adapted to mingw
|
||
2002-10-01 Danny Smith <dannysmith@users.sourceforge.net>
|
||
*/
|
||
|
||
#ifdef __MINGW32__
|
||
#include "cephes_mconf.h"
|
||
#else
|
||
#include "mconf.h"
|
||
#ifdef ANSIPROT
|
||
extern float logf ( float );
|
||
extern float frexpf ( float, int * );
|
||
extern int signbitf ( float );
|
||
#else
|
||
float logf(), frexpf();
|
||
int signbitf();
|
||
#endif
|
||
extern float NEGZEROF, INFINITYF, MAXNUMF, MAXLOGF, MINLOGF, LOGE2F;
|
||
#endif /* __MINGW32__ */
|
||
|
||
#ifndef _SET_ERRNO
|
||
#define _SET_ERRNO(x)
|
||
#endif
|
||
|
||
float __powif( float x, int nn )
|
||
{
|
||
int n, e, sign, asign, lx;
|
||
float w, y, s;
|
||
|
||
/* See pow.c for these tests. */
|
||
if( x == 0.0F )
|
||
{
|
||
if( nn == 0 )
|
||
return( 1.0F );
|
||
else if( nn < 0 )
|
||
return( INFINITYF );
|
||
else
|
||
{
|
||
if( nn & 1 )
|
||
return( x );
|
||
else
|
||
return( 0.0 );
|
||
}
|
||
}
|
||
|
||
if( nn == 0 )
|
||
return( 1.0 );
|
||
|
||
if( nn == -1 )
|
||
return( 1.0/x );
|
||
|
||
if( x < 0.0 )
|
||
{
|
||
asign = -1;
|
||
x = -x;
|
||
}
|
||
else
|
||
asign = 0;
|
||
|
||
|
||
if( nn < 0 )
|
||
{
|
||
sign = -1;
|
||
n = -nn;
|
||
}
|
||
else
|
||
{
|
||
sign = 1;
|
||
n = nn;
|
||
}
|
||
|
||
/* Even power will be positive. */
|
||
if( (n & 1) == 0 )
|
||
asign = 0;
|
||
|
||
/* Overflow detection */
|
||
|
||
/* Calculate approximate logarithm of answer */
|
||
s = frexpf( x, &lx );
|
||
e = (lx - 1)*n;
|
||
if( (e == 0) || (e > 64) || (e < -64) )
|
||
{
|
||
s = (s - 7.0710678118654752e-1) / (s + 7.0710678118654752e-1);
|
||
s = (2.9142135623730950 * s - 0.5 + lx) * nn * LOGE2F;
|
||
}
|
||
else
|
||
{
|
||
s = LOGE2F * e;
|
||
}
|
||
|
||
if( s > MAXLOGF )
|
||
{
|
||
mtherr( "__powif", OVERFLOW );
|
||
_SET_ERRNO(ERANGE);
|
||
y = INFINITYF;
|
||
goto done;
|
||
}
|
||
|
||
#if DENORMAL
|
||
if( s < MINLOGF )
|
||
{
|
||
y = 0.0;
|
||
goto done;
|
||
}
|
||
|
||
/* Handle tiny denormal answer, but with less accuracy
|
||
* since roundoff error in 1.0/x will be amplified.
|
||
* The precise demarcation should be the gradual underflow threshold.
|
||
*/
|
||
if( (s < (-MAXLOGF+2.0)) && (sign < 0) )
|
||
{
|
||
x = 1.0/x;
|
||
sign = -sign;
|
||
}
|
||
#else
|
||
/* do not produce denormal answer */
|
||
if( s < -MAXLOGF )
|
||
return(0.0);
|
||
#endif
|
||
|
||
|
||
/* First bit of the power */
|
||
if( n & 1 )
|
||
y = x;
|
||
|
||
else
|
||
y = 1.0;
|
||
|
||
w = x;
|
||
n >>= 1;
|
||
while( n )
|
||
{
|
||
w = w * w; /* arg to the 2-to-the-kth power */
|
||
if( n & 1 ) /* if that bit is set, then include in product */
|
||
y *= w;
|
||
n >>= 1;
|
||
}
|
||
|
||
if( sign < 0 )
|
||
y = 1.0/y;
|
||
|
||
done:
|
||
|
||
if( asign )
|
||
{
|
||
/* odd power of negative number */
|
||
if( y == 0.0 )
|
||
y = NEGZEROF;
|
||
else
|
||
y = -y;
|
||
}
|
||
return(y);
|
||
}
|