mirror of
https://github.com/KolibriOS/kolibrios.git
synced 2024-12-16 03:42:35 +03:00
2f54c7de00
git-svn-id: svn://kolibrios.org@8097 a494cfbc-eb01-0410-851d-a64ba20cac60
238 lines
5.1 KiB
Plaintext
238 lines
5.1 KiB
Plaintext
(* ********************************************
|
|
Дополнение к модулю Math.
|
|
Статистические процедуры.
|
|
-------------------------------------
|
|
Additional functions to the module Math.
|
|
Statistical functions
|
|
*********************************************** *)
|
|
|
|
MODULE MathStat;
|
|
|
|
IMPORT Math;
|
|
|
|
|
|
(*Минимальное значение. Нецелое *)
|
|
PROCEDURE MinValue* (data: ARRAY OF REAL; N: INTEGER): REAL;
|
|
VAR
|
|
i: INTEGER;
|
|
a: REAL;
|
|
|
|
BEGIN
|
|
a := data[0];
|
|
FOR i := 1 TO N - 1 DO
|
|
IF data[i] < a THEN
|
|
a := data[i]
|
|
END
|
|
END
|
|
|
|
RETURN a
|
|
END MinValue;
|
|
|
|
|
|
(*Минимальное значение. Целое *)
|
|
PROCEDURE MinIntValue* (data: ARRAY OF INTEGER; N: INTEGER): INTEGER;
|
|
VAR
|
|
i: INTEGER;
|
|
a: INTEGER;
|
|
|
|
BEGIN
|
|
a := data[0];
|
|
FOR i := 1 TO N - 1 DO
|
|
IF data[i] < a THEN
|
|
a := data[i]
|
|
END
|
|
END
|
|
|
|
RETURN a
|
|
END MinIntValue;
|
|
|
|
|
|
(*Максимальное значение. Нецелое *)
|
|
PROCEDURE MaxValue* (data: ARRAY OF REAL; N: INTEGER): REAL;
|
|
VAR
|
|
i: INTEGER;
|
|
a: REAL;
|
|
|
|
BEGIN
|
|
a := data[0];
|
|
FOR i := 1 TO N - 1 DO
|
|
IF data[i] > a THEN
|
|
a := data[i]
|
|
END
|
|
END
|
|
|
|
RETURN a
|
|
END MaxValue;
|
|
|
|
|
|
(*Максимальное значение. Целое *)
|
|
PROCEDURE MaxIntValue* (data: ARRAY OF INTEGER; N: INTEGER): INTEGER;
|
|
VAR
|
|
i: INTEGER;
|
|
a: INTEGER;
|
|
|
|
BEGIN
|
|
a := data[0];
|
|
FOR i := 1 TO N - 1 DO
|
|
IF data[i] > a THEN
|
|
a := data[i]
|
|
END
|
|
END
|
|
|
|
RETURN a
|
|
END MaxIntValue;
|
|
|
|
|
|
(* Сумма значений массива *)
|
|
PROCEDURE Sum* (data: ARRAY OF REAL; Count: INTEGER): REAL;
|
|
VAR
|
|
a: REAL;
|
|
i: INTEGER;
|
|
|
|
BEGIN
|
|
a := 0.0;
|
|
FOR i := 0 TO Count - 1 DO
|
|
a := a + data[i]
|
|
END
|
|
|
|
RETURN a
|
|
END Sum;
|
|
|
|
|
|
(* Сумма целых значений массива *)
|
|
PROCEDURE SumInt* (data: ARRAY OF INTEGER; Count: INTEGER): INTEGER;
|
|
VAR
|
|
a: INTEGER;
|
|
i: INTEGER;
|
|
|
|
BEGIN
|
|
a := 0;
|
|
FOR i := 0 TO Count - 1 DO
|
|
a := a + data[i]
|
|
END
|
|
|
|
RETURN a
|
|
END SumInt;
|
|
|
|
|
|
(* Сумма квадратов значений массива *)
|
|
PROCEDURE SumOfSquares* (data : ARRAY OF REAL; Count: INTEGER): REAL;
|
|
VAR
|
|
a: REAL;
|
|
i: INTEGER;
|
|
|
|
BEGIN
|
|
a := 0.0;
|
|
FOR i := 0 TO Count - 1 DO
|
|
a := a + Math.sqrr(data[i])
|
|
END
|
|
|
|
RETURN a
|
|
END SumOfSquares;
|
|
|
|
|
|
(* Сумма значений и сумма квадратов значений массмва *)
|
|
PROCEDURE SumsAndSquares* (data: ARRAY OF REAL; Count : INTEGER;
|
|
VAR sum, sumofsquares : REAL);
|
|
VAR
|
|
i: INTEGER;
|
|
temp: REAL;
|
|
|
|
BEGIN
|
|
sumofsquares := 0.0;
|
|
sum := 0.0;
|
|
FOR i := 0 TO Count - 1 DO
|
|
temp := data[i];
|
|
sumofsquares := sumofsquares + Math.sqrr(temp);
|
|
sum := sum + temp
|
|
END
|
|
END SumsAndSquares;
|
|
|
|
|
|
(* Средниее значений массива *)
|
|
PROCEDURE Mean* (data: ARRAY OF REAL; Count: INTEGER): REAL;
|
|
RETURN Sum(data, Count) / FLT(Count)
|
|
END Mean;
|
|
|
|
|
|
PROCEDURE MeanAndTotalVariance* (data: ARRAY OF REAL; Count: INTEGER;
|
|
VAR mu: REAL; VAR variance: REAL);
|
|
VAR
|
|
i: INTEGER;
|
|
|
|
BEGIN
|
|
mu := Mean(data, Count);
|
|
variance := 0.0;
|
|
FOR i := 0 TO Count - 1 DO
|
|
variance := variance + Math.sqrr(data[i] - mu)
|
|
END
|
|
END MeanAndTotalVariance;
|
|
|
|
|
|
(* Вычисление статистической дисперсии равной сумме квадратов разницы
|
|
между каждым конкретным значением массива Data и средним значением *)
|
|
PROCEDURE TotalVariance* (data: ARRAY OF REAL; Count: INTEGER): REAL;
|
|
VAR
|
|
mu, tv: REAL;
|
|
|
|
BEGIN
|
|
MeanAndTotalVariance(data, Count, mu, tv)
|
|
RETURN tv
|
|
END TotalVariance;
|
|
|
|
|
|
(* Типовая дисперсия всех значений массива *)
|
|
PROCEDURE Variance* (data: ARRAY OF REAL; Count: INTEGER): REAL;
|
|
VAR
|
|
a: REAL;
|
|
|
|
BEGIN
|
|
IF Count = 1 THEN
|
|
a := 0.0
|
|
ELSE
|
|
a := TotalVariance(data, Count) / FLT(Count - 1)
|
|
END
|
|
|
|
RETURN a
|
|
END Variance;
|
|
|
|
|
|
(* Стандартное среднеквадратичное отклонение *)
|
|
PROCEDURE StdDev* (data: ARRAY OF REAL; Count: INTEGER): REAL;
|
|
RETURN Math.sqrt(Variance(data, Count))
|
|
END StdDev;
|
|
|
|
|
|
(* Среднее арифметическое всех значений массива, и среднее отклонение *)
|
|
PROCEDURE MeanAndStdDev* (data: ARRAY OF REAL; Count: INTEGER;
|
|
VAR mean: REAL; VAR stdDev: REAL);
|
|
VAR
|
|
totalVariance: REAL;
|
|
|
|
BEGIN
|
|
MeanAndTotalVariance(data, Count, mean, totalVariance);
|
|
IF Count < 2 THEN
|
|
stdDev := 0.0
|
|
ELSE
|
|
stdDev := Math.sqrt(totalVariance / FLT(Count - 1))
|
|
END
|
|
END MeanAndStdDev;
|
|
|
|
|
|
(* Евклидова норма для всех значений массива *)
|
|
PROCEDURE Norm* (data: ARRAY OF REAL; Count: INTEGER): REAL;
|
|
VAR
|
|
a: REAL;
|
|
i: INTEGER;
|
|
|
|
BEGIN
|
|
a := 0.0;
|
|
FOR i := 0 TO Count - 1 DO
|
|
a := a + Math.sqrr(data[i])
|
|
END
|
|
|
|
RETURN Math.sqrt(a)
|
|
END Norm;
|
|
|
|
|
|
END MathStat. |