kolibrios/drivers/usb/ehci.asm

1999 lines
78 KiB
NASM

; Code for EHCI controllers.
; Standard driver stuff
format PE DLL native
entry start
__DEBUG__ equ 1
__DEBUG_LEVEL__ equ 1
section '.reloc' data readable discardable fixups
section '.text' code readable executable
include '../proc32.inc'
include '../struct.inc'
include '../macros.inc'
include '../fdo.inc'
include '../../kernel/trunk/bus/usb/common.inc'
; =============================================================================
; ================================= Constants =================================
; =============================================================================
; EHCI register declarations.
; Part 1. Capability registers.
; Base is MMIO from the PCI space.
EhciCapLengthReg = 0
EhciVersionReg = 2
EhciStructParamsReg = 4
EhciCapParamsReg = 8
EhciPortRouteReg = 0Ch
; Part 2. Operational registers.
; Base is (base for part 1) + (value of EhciCapLengthReg).
EhciCommandReg = 0
EhciStatusReg = 4
EhciInterruptReg = 8
EhciFrameIndexReg = 0Ch
EhciCtrlDataSegReg = 10h
EhciPeriodicListReg = 14h
EhciAsyncListReg = 18h
EhciConfigFlagReg = 40h
EhciPortsReg = 44h
; Possible values of ehci_pipe.NextQH.Type bitfield.
EHCI_TYPE_ITD = 0 ; isochronous transfer descriptor
EHCI_TYPE_QH = 1 ; queue head
EHCI_TYPE_SITD = 2 ; split-transaction isochronous TD
EHCI_TYPE_FSTN = 3 ; frame span traversal node
; =============================================================================
; ================================ Structures =================================
; =============================================================================
; Hardware part of EHCI general transfer descriptor.
struct ehci_hardware_td
NextTD dd ?
; Bit 0 is Terminate bit, 1 = there is no next TD.
; Bits 1-4 must be zero.
; With masked 5 lower bits, this is the physical address of the next TD, if any.
AlternateNextTD dd ?
; Similar to NextTD, used if the transfer terminates with a short packet.
Token dd ?
; 1. Lower byte is Status field:
; bit 0 = ping state for USB2 endpoints, ERR handshake signal for USB1 endpoints
; bit 1 = split transaction state, meaningless for USB2 endpoints
; bit 2 = missed micro-frame
; bit 3 = transaction error
; bit 4 = babble detected
; bit 5 = data buffer error
; bit 6 = halted
; bit 7 = active
; 2. Next two bits (bits 8-9) are PID code, 0 = OUT, 1 = IN, 2 = SETUP.
; 3. Next two bits (bits 10-11) is ErrorCounter. Initialized as 3, decremented
; on each error; if it goes to zero, transaction is stopped.
; 4. Next 3 bits (bits 12-14) are CurrentPage field.
; 5. Next bit (bit 15) is InterruptOnComplete bit.
; 6. Next 15 bits (bits 16-30) are TransferLength field,
; number of bytes to transfer.
; 7. Upper bit (bit 31) is DataToggle bit.
BufferPointers rd 5
; The buffer to be transferred can be spanned on up to 5 physical pages.
; The first item of this array is the physical address of the first byte in
; the buffer, other items are physical addresses of next pages. Lower 12 bits
; in other items must be set to zero; ehci_pipe.Overlay reuses some of them.
BufferPointersHigh rd 5
; Upper dwords of BufferPointers for controllers with 64-bit memory access.
; Always zero.
ends
; EHCI general transfer descriptor.
; * The structure describes transfers to be performed on Control, Bulk or
; Interrupt endpoints.
; * The structure includes two parts, the hardware part and the software part.
; * The hardware part consists of first 52 bytes and corresponds to
; the Queue Element Transfer Descriptor from EHCI specification.
; * The hardware requires 32-bytes alignment of the hardware part, so
; the entire descriptor must be 32-bytes aligned. Since the allocator
; (usb_allocate_common) allocates memory sequentially from page start
; (aligned on 0x1000 bytes), block size for the allocator must be divisible
; by 32; ehci_alloc_td ensures this.
; * The hardware also requires that the hardware part must not cross page
; boundary; the allocator satisfies this automatically.
struct ehci_gtd ehci_hardware_td
Flags dd ?
; Copy of flags from the call to usb_*_transfer_async.
ends
; EHCI-specific part of a pipe descriptor.
; * This structure corresponds to the Queue Head from the EHCI specification.
; * The hardware requires 32-bytes alignment of the hardware part.
; Since the allocator (usb_allocate_common) allocates memory sequentially
; from page start (aligned on 0x1000 bytes), block size for the allocator
; must be divisible by 32; ehci_alloc_pipe ensures this.
; * The hardware requires also that the hardware part must not cross page
; boundary; the allocator satisfies this automatically.
struct ehci_pipe
NextQH dd ?
; 1. First bit (bit 0) is Terminate bit, 1 = there is no next QH.
; 2. Next two bits (bits 1-2) are Type field of the next QH,
; one of EHCI_TYPE_* constants.
; 3. Next two bits (bits 3-4) are reserved, must be zero.
; 4. With masked 5 lower bits, this is the physical address of the next object
; to be processed, usually next QH.
Token dd ?
; 1. Lower 7 bits are DeviceAddress field. This is the address of the
; target device on the USB bus.
; 2. Next bit (bit 7) is Inactivate-on-next-transaction bit. Can be nonzero
; only for interrupt/isochronous USB1 endpoints.
; 3. Next 4 bits (bits 8-11) are Endpoint field. This is the target endpoint
; number.
; 4. Next 2 bits (bits 12-13) are EndpointSpeed field, one of EHCI_SPEED_*.
; 5. Next bit (bit 14) is DataToggleControl bit,
; 0 = use DataToggle bit from QH, 1 = from TD.
; 6. Next bit (bit 15) is Head-of-reclamation-list. The head of Control list
; has 1 here, all other QHs have zero.
; 7. Next 11 bits (bits 16-26) are MaximumPacketLength field for the target
; endpoint.
; 8. Next bit (bit 27) is ControlEndpoint bit, must be 1 for USB1 control
; endpoints and 0 for all others.
; 9. Upper 4 bits (bits 28-31) are NakCountReload field.
; Zero for USB1 endpoints, zero for periodic endpoints.
; For control/bulk USB2 endpoints, the code sets it to 4,
; which is rather arbitrary.
Flags dd ?
; 1. Lower byte is S-mask, each bit corresponds to one microframe per frame;
; bit is set <=> enable transactions in this microframe.
; 2. Next byte is C-mask, each bit corresponds to one microframe per frame;
; bit is set <=> enable complete-split transactions in this microframe.
; Meaningful only for USB1 endpoints.
; 3. Next 14 bits give address of the target device as hub:port, bits 16-22
; are the USB address of the hub, bits 23-29 are the port number.
; Meaningful only for USB1 endpoints.
; 4. Upper 2 bits define number of consequetive transactions per micro-frame
; which host is allowed to permit for this endpoint.
; For control/bulk endpoints, it must be 1.
; For periodic endpoints, the value is taken from the endpoint descriptor.
HeadTD dd ?
; The physical address of the first TD for this pipe.
; Lower 5 bits must be zero.
Overlay ehci_hardware_td ?
; Working area for the current TD, if there is any.
; When TD is retired, it is written to that TD and Overlay is loaded
; from the new TD, if any.
ends
; This structure describes the static head of every list of pipes.
; The hardware requires 32-bytes alignment of this structure.
; All instances of this structure are located sequentially in ehci_controller,
; ehci_controller is page-aligned, so it is sufficient to make this structure
; 32-bytes aligned and verify that the first instance is 32-bytes aligned
; inside ehci_controller.
; The hardware also requires that 44h bytes (size of 64-bit Queue Head
; Descriptor) starting at the beginning of this structure must not cross page
; boundary. If not, most hardware still behaves correctly (in fact, the last
; dword can have any value and this structure is never written), but on some
; hardware some things just break in mysterious ways.
struct ehci_static_ep
; Hardware fields are the same as in ehci_pipe.
; Only NextQH and Overlay.Token are actually used.
; NB: some emulators ignore Token.Halted bit (probably assuming that it is set
; only when device fails and emulation never fails) and always follow
; [Alternate]NextTD when they see that OverlayToken.Active bit is zero;
; so it is important to also set [Alternate]NextTD to 1.
NextQH dd ?
Token dd ?
Flags dd ?
HeadTD dd ?
NextTD dd ?
AlternateNextTD dd ?
OverlayToken dd ?
NextList dd ?
SoftwarePart rd sizeof.usb_static_ep/4
Bandwidths rw 8
dd ?
ends
if sizeof.ehci_static_ep mod 32
.err ehci_static_ep must be 32-bytes aligned
end if
if ehci_static_ep.OverlayToken <> ehci_pipe.Overlay.Token
.err ehci_static_ep.OverlayToken misplaced
end if
; EHCI-specific part of controller data.
; * The structure includes two parts, the hardware part and the software part.
; * The hardware part consists of first 4096 bytes and corresponds to
; the Periodic Frame List from the EHCI specification.
; * The hardware requires page-alignment of the hardware part, so
; the entire descriptor must be page-aligned.
; This structure is allocated with kernel_alloc (see usb_init_controller),
; this gives page-aligned data.
; * The controller is described by both ehci_controller and usb_controller
; structures, for each controller there is one ehci_controller and one
; usb_controller structure. These structures are located sequentially
; in the memory: beginning from some page start, there is ehci_controller
; structure - this enforces hardware alignment requirements - and then
; usb_controller structure.
; * The code keeps pointer to usb_controller structure. The ehci_controller
; structure is addressed as [ptr + ehci_controller.field - sizeof.ehci_controller].
struct ehci_controller
; ------------------------------ hardware fields ------------------------------
FrameList rd 1024
; Entry n corresponds to the head of the frame list to be executed in
; the frames n,n+1024,n+2048,n+3072,...
; The first bit of each entry is Terminate bit, 1 = the frame is empty.
; Bits 1-2 are Type field, one of EHCI_TYPE_* constants.
; Bits 3-4 must be zero.
; With masked 5 lower bits, the entry is a physical address of the first QH/TD
; to be executed.
; ------------------------------ software fields ------------------------------
; Every list has the static head, which is an always halted QH.
; The following fields are static heads, one per list:
; 32+16+8+4+2+1 = 63 for Periodic lists, 1 for Control list and 1 for Bulk list.
IntEDs ehci_static_ep
rb 62 * sizeof.ehci_static_ep
; Beware.
; Two following strings ensure that 44h bytes at any static head
; do not cross page boundary. Without that, the code "works on my machine"...
; but fails on some hardware in seemingly unrelated ways.
; One hardware TD (without any software fields) fit in the rest of the page.
ehci_controller.ControlDelta = 2000h - (ehci_controller.IntEDs + 63 * sizeof.ehci_static_ep)
StopQueueTD ehci_hardware_td
; Used as AlternateNextTD for transfers when short packet is considered
; as an error; short packet must stop the queue in this case, not advance
; to the next transfer.
rb ehci_controller.ControlDelta - sizeof.ehci_hardware_td
; Padding for page-alignment.
ControlED ehci_static_ep
BulkED ehci_static_ep
MMIOBase1 dd ?
; Virtual address of memory-mapped area with part 1 of EHCI registers EhciXxxReg.
MMIOBase2 dd ?
; Pointer inside memory-mapped area MMIOBase1; points to part 2 of EHCI registers.
StructuralParams dd ?
; Copy of EhciStructParamsReg value.
CapabilityParams dd ?
; Copy of EhciCapParamsReg value.
DeferredActions dd ?
; Bitmask of events from EhciStatusReg which were observed by the IRQ handler
; and needs to be processed in the IRQ thread.
PortRoutes rb 16
; Companion port route description.
; Each byte describes routing of one port, value = PCI function.
; This field must be the last one:
; UHCI/OHCI code uses this field without knowing the entire structure.
ends
if ehci_controller.IntEDs mod 32
.err Static endpoint descriptors must be 32-bytes aligned inside ehci_controller
end if
; Description of #HCI-specific data and functions for
; controller-independent code.
; Implements the structure usb_hardware_func from hccommon.inc for EHCI.
iglobal
align 4
ehci_hardware_func:
dd USBHC_VERSION
dd 'EHCI'
dd sizeof.ehci_controller
dd ehci_kickoff_bios
dd ehci_init
dd ehci_process_deferred
dd ehci_set_device_address
dd ehci_get_device_address
dd ehci_port_disable
dd ehci_new_port.reset
dd ehci_set_endpoint_packet_size
dd ehci_alloc_pipe
dd ehci_free_pipe
dd ehci_init_pipe
dd ehci_unlink_pipe
dd ehci_alloc_td
dd ehci_free_td
dd ehci_alloc_transfer
dd ehci_insert_transfer
dd ehci_new_device
dd ehci_disable_pipe
dd ehci_enable_pipe
ehci_name db 'EHCI',0
endg
; =============================================================================
; =================================== Code ====================================
; =============================================================================
; Called once when driver is loading and once at shutdown.
; When loading, must initialize itself, register itself in the system
; and return eax = value obtained when registering.
proc start
virtual at esp
dd ? ; return address
.reason dd ? ; DRV_ENTRY or DRV_EXIT
.cmdline dd ? ; normally NULL
end virtual
cmp [.reason], DRV_ENTRY
jnz .nothing
mov ecx, ehci_ep_mutex
invoke MutexInit
mov ecx, ehci_gtd_mutex
invoke MutexInit
push esi edi
mov esi, [USBHCFunc]
mov edi, usbhc_api
movi ecx, sizeof.usbhc_func/4
rep movsd
pop edi esi
invoke RegUSBDriver, ehci_name, 0, ehci_hardware_func
.nothing:
ret
endp
; Controller-specific initialization function.
; Called from usb_init_controller. Initializes the hardware and
; EHCI-specific parts of software structures.
; eax = pointer to ehci_controller to be initialized
; [ebp-4] = pcidevice
proc ehci_init
; inherit some variables from the parent (usb_init_controller)
.devfn equ ebp - 4
.bus equ ebp - 3
; 1. Store pointer to ehci_controller for further use.
push eax
mov edi, eax
mov esi, eax
; 2. Initialize ehci_controller.FrameList.
; Note that FrameList is located in the beginning of ehci_controller,
; so esi and edi now point to ehci_controller.FrameList.
; First 32 entries of FrameList contain physical addresses
; of first 32 Periodic static heads, further entries duplicate these.
; See the description of structures for full info.
; 2a. Get physical address of first static head.
; Note that 1) it is located in the beginning of a page
; and 2) first 32 static heads fit in the same page,
; so one call to get_phys_addr without correction of lower 12 bits
; is sufficient.
if (ehci_controller.IntEDs / 0x1000) <> ((ehci_controller.IntEDs + 32 * sizeof.ehci_static_ep) / 0x1000)
.err assertion failed
end if
if (ehci_controller.IntEDs mod 0x1000) <> 0
.err assertion failed
end if
add eax, ehci_controller.IntEDs
call [GetPhysAddr]
; 2b. Fill first 32 entries.
inc eax
inc eax ; set Type to EHCI_TYPE_QH
movi ecx, 32
mov edx, ecx
@@:
stosd
add eax, sizeof.ehci_static_ep
loop @b
; 2c. Fill the rest entries.
mov ecx, 1024 - 32
rep movsd
; 3. Initialize static heads ehci_controller.*ED.
; Use the loop over groups: first group consists of first 32 Periodic
; descriptors, next group consists of next 16 Periodic descriptors,
; ..., last group consists of the last Periodic descriptor.
; 3a. Prepare for the loop.
; make esi point to the second group, other registers are already set.
add esi, 32*4 + 32*sizeof.ehci_static_ep
; 3b. Loop over groups. On every iteration:
; edx = size of group, edi = pointer to the current group,
; esi = pointer to the next group.
.init_static_eds:
; 3c. Get the size of next group.
shr edx, 1
; 3d. Exit the loop if there is no next group.
jz .init_static_eds_done
; 3e. Initialize the first half of the current group.
; Advance edi to the second half.
push esi
call ehci_init_static_ep_group
pop esi
; 3f. Initialize the second half of the current group
; with the same values.
; Advance edi to the next group, esi/eax to the next of the next group.
call ehci_init_static_ep_group
jmp .init_static_eds
.init_static_eds_done:
; 3g. Initialize the last static head.
xor esi, esi
call ehci_init_static_endpoint
; While we are here, initialize StopQueueTD.
if (ehci_controller.StopQueueTD <> ehci_controller.IntEDs + 63 * sizeof.ehci_static_ep)
.err assertion failed
end if
inc [edi+ehci_hardware_td.NextTD] ; 0 -> 1
inc [edi+ehci_hardware_td.AlternateNextTD] ; 0 -> 1
; leave other fields as zero, including Active bit
; 3i. Initialize the head of Control list.
add edi, ehci_controller.ControlDelta
lea esi, [edi+sizeof.ehci_static_ep]
call ehci_init_static_endpoint
or byte [edi-sizeof.ehci_static_ep+ehci_static_ep.Token+1], 80h
; 3j. Initialize the head of Bulk list.
sub esi, sizeof.ehci_static_ep
call ehci_init_static_endpoint
; 4. Create a virtual memory area to talk with the controller.
; 4a. Enable memory & bus master access.
invoke PciRead16, dword [.bus], dword [.devfn], 4
or al, 6
invoke PciWrite16, dword [.bus], dword [.devfn], 4, eax
; 4b. Read memory base address.
invoke PciRead32, dword [.bus], dword [.devfn], 10h
; DEBUGF 1,'K : phys MMIO %x\n',eax
and al, not 0Fh
; 4c. Create mapping for physical memory. 200h bytes are always sufficient.
invoke MapIoMem, eax, 200h, PG_SW+PG_NOCACHE
test eax, eax
jz .fail
; DEBUGF 1,'K : MMIO %x\n',eax
if ehci_controller.MMIOBase1 <> ehci_controller.BulkED + sizeof.ehci_static_ep
.err assertion failed
end if
stosd ; fill ehci_controller.MMIOBase1
; 5. Read basic parameters of the controller.
; 5a. Structural parameters.
mov ebx, [eax+EhciStructParamsReg]
; 5b. Port routing rules.
; If bit 7 in HCSPARAMS is set, read and unpack EhciPortRouteReg.
; Otherwise, bits 11:8 are N_PCC = number of ports per companion,
; bits 15:12 are number of companions, maybe zero,
; first N_PCC ports are routed to the first companion and so on.
xor esi, esi
test bl, bl
js .read_routes
test bh, 0x0F
jz .no_companions
test bh, 0xF0
jz .no_companions
xor edx, edx
.fill_routes:
movzx ecx, bh
and ecx, 15
@@:
mov byte [edi+esi+ehci_controller.PortRoutes-(ehci_controller.MMIOBase1+4)], dl
inc esi
cmp esi, 16
jz .routes_filled
dec ecx
jnz @b
movzx ecx, bh
shr ecx, 4
inc edx
cmp edx, ecx
jb .fill_routes
.no_companions:
mov byte [edi+esi+ehci_controller.PortRoutes-(ehci_controller.MMIOBase1+4)], 0xFF
inc esi
cmp esi, 16
jnz .no_companions
jmp .routes_filled
.read_routes:
rept 2 counter
{
mov ecx, [eax+EhciPortRouteReg+(counter-1)*4]
@@:
mov edx, ecx
shr ecx, 4
and edx, 15
mov byte [edi+esi+ehci_controller.PortRoutes-(ehci_controller.MMIOBase1+4)], dl
inc esi
cmp esi, 8*counter
jnz @b
}
.routes_filled:
; DEBUGF 1,'K : EhciPortRouteReg: %x %x\n',[eax+EhciPortRouteReg],[eax+EhciPortRouteReg+4]
; DEBUGF 1,'K : routes:\nK : '
;rept 8 counter
;{
; DEBUGF 1,' %x',[edi+ehci_controller.PortRoutes-(ehci_controller.MMIOBase1+4)+counter-1]:2
;}
; DEBUGF 1,'\nK : '
;rept 8 counter
;{
; DEBUGF 1,' %x',[edi+ehci_controller.PortRoutes+8-(ehci_controller.MMIOBase1+4)+counter-1]:2
;}
; DEBUGF 1,'\n'
movzx ecx, byte [eax+EhciCapLengthReg]
mov edx, [eax+EhciCapParamsReg]
add eax, ecx
if ehci_controller.MMIOBase2 <> ehci_controller.MMIOBase1 + 4
.err assertion failed
end if
stosd ; fill ehci_controller.MMIOBase2
if ehci_controller.StructuralParams <> ehci_controller.MMIOBase2 + 4
.err assertion failed
end if
if ehci_controller.CapabilityParams <> ehci_controller.StructuralParams + 4
.err assertion failed
end if
mov [edi], ebx ; fill ehci_controller.StructuralParams
mov [edi+4], edx ; fill ehci_controller.CapabilityParams
DEBUGF 1,'K : HCSPARAMS=%x, HCCPARAMS=%x\n',ebx,edx
and ebx, 15
mov [edi+usb_controller.NumPorts+sizeof.ehci_controller-ehci_controller.StructuralParams], ebx
mov edi, eax
; now edi = MMIOBase2
; 6. Transfer the controller to a known state.
; 6b. Stop the controller if it is running.
movi ecx, 10
test dword [edi+EhciStatusReg], 1 shl 12
jnz .stopped
and dword [edi+EhciCommandReg], not 1
@@:
movi esi, 1
invoke Sleep
test dword [edi+EhciStatusReg], 1 shl 12
jnz .stopped
loop @b
dbgstr 'Failed to stop EHCI controller'
jmp .fail_unmap
.stopped:
; 6c. Reset the controller. Wait up to 50 ms checking status every 1 ms.
or dword [edi+EhciCommandReg], 2
movi ecx, 50
@@:
movi esi, 1
invoke Sleep
test dword [edi+EhciCommandReg], 2
jz .reset_ok
loop @b
dbgstr 'Failed to reset EHCI controller'
jmp .fail_unmap
.reset_ok:
; 7. Configure the controller.
pop esi ; restore the pointer saved at step 1
add esi, sizeof.ehci_controller
; 7a. If the controller is 64-bit, say to it that all structures are located
; in first 4G.
test byte [esi+ehci_controller.CapabilityParams-sizeof.ehci_controller], 1
jz @f
mov dword [edi+EhciCtrlDataSegReg], 0
@@:
; 7b. Hook interrupt and enable appropriate interrupt sources.
invoke PciRead8, dword [.bus], dword [.devfn], 3Ch
; al = IRQ
; DEBUGF 1,'K : attaching to IRQ %x\n',al
movzx eax, al
invoke AttachIntHandler, eax, ehci_irq, esi
; mov dword [edi+EhciStatusReg], 111111b ; clear status
; disable Frame List Rollover interrupt, enable all other sources
mov dword [edi+EhciInterruptReg], 110111b
; 7c. Inform the controller of the address of periodic lists head.
lea eax, [esi-sizeof.ehci_controller]
invoke GetPhysAddr
mov dword [edi+EhciPeriodicListReg], eax
; 7d. Inform the controller of the address of asynchronous lists head.
lea eax, [esi+ehci_controller.ControlED-sizeof.ehci_controller]
invoke GetPhysAddr
mov dword [edi+EhciAsyncListReg], eax
; 7e. Configure operational details and run the controller.
mov dword [edi+EhciCommandReg], \
(1 shl 16) + \ ; interrupt threshold = 1 microframe = 0.125ms
(0 shl 11) + \ ; disable Async Park Mode
(0 shl 8) + \ ; zero Async Park Mode Count
(1 shl 5) + \ ; Async Schedule Enable
(1 shl 4) + \ ; Periodic Schedule Enable
(0 shl 2) + \ ; 1024 elements in FrameList
1 ; Run
; 7f. Route all ports to this controller, not companion controllers.
mov dword [edi+EhciConfigFlagReg], 1
DEBUGF 1,'K : EHCI controller at %x:%x with %d ports initialized\n',[.bus]:2,[.devfn]:2,[esi+usb_controller.NumPorts]
; 8. Apply port power, if needed, and disable all ports.
xor ecx, ecx
@@:
mov dword [edi+EhciPortsReg+ecx*4], 1000h ; Port Power enabled, all other bits disabled
inc ecx
cmp ecx, [esi+usb_controller.NumPorts]
jb @b
test byte [esi+ehci_controller.StructuralParams-sizeof.ehci_controller], 10h
jz @f
push esi
movi esi, 20
invoke Sleep
pop esi
@@:
; 9. Return pointer to usb_controller.
xchg eax, esi
ret
; On error, pop the pointer saved at step 1 and return zero.
; Note that the main code branch restores the stack at step 7 and never fails
; after step 7.
.fail_unmap:
pop eax
push eax
invoke FreeKernelSpace, [eax+ehci_controller.MMIOBase1]
.fail:
pop ecx
xor eax, eax
ret
endp
; Helper procedure for step 3 of ehci_init, see comments there.
; Initializes the static head of one list.
; esi = pointer to the "next" list, edi = pointer to head to initialize.
; Advances edi to the next head, keeps esi.
proc ehci_init_static_endpoint
xor eax, eax
inc eax ; set Terminate bit
mov [edi+ehci_static_ep.NextTD], eax
mov [edi+ehci_static_ep.AlternateNextTD], eax
test esi, esi
jz @f
mov eax, esi
invoke GetPhysAddr
inc eax
inc eax ; set Type to EHCI_TYPE_QH
@@:
mov [edi+ehci_static_ep.NextQH], eax
mov [edi+ehci_static_ep.NextList], esi
mov byte [edi+ehci_static_ep.OverlayToken], 1 shl 6 ; halted
add edi, ehci_static_ep.SoftwarePart
mov eax, [USBHCFunc]
call [eax+usbhc_func.usb_init_static_endpoint]
add edi, sizeof.ehci_static_ep - ehci_static_ep.SoftwarePart
ret
endp
; Helper procedure for step 3 of ehci_init, see comments there.
; Initializes one half of group of static heads.
; edx = size of the next group = half of size of the group,
; edi = pointer to the group, esi = pointer to the next group.
; Advances esi, edi to next group, keeps edx.
proc ehci_init_static_ep_group
push edx
@@:
call ehci_init_static_endpoint
add esi, sizeof.ehci_static_ep
dec edx
jnz @b
pop edx
ret
endp
; Controller-specific pre-initialization function: take ownership from BIOS.
; Some BIOSes, although not all of them, use USB controllers themselves
; to support USB flash drives. In this case,
; we must notify the BIOS that we don't need that emulation and know how to
; deal with USB devices.
proc ehci_kickoff_bios
; 1. Get the physical address of MMIO registers.
invoke PciRead32, dword [esi+PCIDEV.bus], dword [esi+PCIDEV.devfn], 10h
and al, not 0Fh
; 2. Create mapping for physical memory. 200h bytes are always sufficient.
invoke MapIoMem, eax, 200h, PG_SW+PG_NOCACHE
test eax, eax
jz .nothing
push eax ; push argument for step 8
; 3. Some BIOSes enable controller interrupts as a result of giving
; controller away. At this point the system knows nothing about how to serve
; EHCI interrupts, so such an interrupt will send the system into an infinite
; loop handling the same IRQ again and again. Thus, we need to block EHCI
; interrupts. We can't do this at the controller level until step 5,
; because the controller is currently owned by BIOS, so we block all hardware
; interrupts on this processor until step 5.
pushf
cli
; 4. Take the ownership over the controller.
; 4a. Locate take-ownership capability in the PCI configuration space.
; Limit the loop with 100h iterations; since the entire configuration space is
; 100h bytes long, hitting this number of iterations means that something is
; corrupted.
; Use a value from MMIO as a starting point.
mov edx, [eax+EhciCapParamsReg]
movzx edi, byte [eax+EhciCapLengthReg]
add edi, eax
push 0
mov bl, dh ; get Extended Capabilities Pointer
test bl, bl
jz .has_ownership2
cmp bl, 40h
jb .no_capability
.look_bios_handoff:
test bl, 3
jnz .no_capability
; In each iteration, read the current dword,
invoke PciRead32, dword [esi+PCIDEV.bus], dword [esi+PCIDEV.devfn], ebx
; check, whether the capability ID is take-ownership ID = 1,
cmp al, 1
jz .found_bios_handoff
; if not, advance to next-capability link and continue loop.
dec byte [esp]
jz .no_capability
mov bl, ah
cmp bl, 40h
jae .look_bios_handoff
.no_capability:
dbgstr 'warning: cannot locate take-ownership capability'
jmp .has_ownership2
.found_bios_handoff:
; 4b. Check whether BIOS has ownership.
; Some BIOSes release ownership before loading OS, but forget to unwatch for
; change-ownership requests; they cannot handle ownership request, so
; such a request sends the system into infinite loop of handling the same SMI
; over and over. Avoid this.
inc ebx
inc ebx
test eax, 0x10000
jz .has_ownership
; 4c. Request ownership.
inc ebx
invoke PciWrite8, dword [esi+PCIDEV.bus], dword [esi+PCIDEV.devfn], ebx, 1
; 4d. Some BIOSes set ownership flag, but forget to watch for change-ownership
; requests; if so, there is no sense in waiting.
inc ebx
invoke PciRead32, dword [esi+PCIDEV.bus], dword [esi+PCIDEV.devfn], ebx
dec ebx
dec ebx
test ah, 20h
jz .force_ownership
; 4e. Wait for result no more than 1 s, checking for status every 1 ms.
; If successful, go to 5.
mov dword [esp], 1000
@@:
invoke PciRead8, dword [esi+PCIDEV.bus], dword [esi+PCIDEV.devfn], ebx
test al, 1
jz .has_ownership
push esi
movi esi, 1
invoke Sleep
pop esi
dec dword [esp]
jnz @b
dbgstr 'warning: taking EHCI ownership from BIOS timeout'
.force_ownership:
; 4f. BIOS has not responded within the timeout.
; Let's just clear BIOS ownership flag and hope that everything will be ok.
invoke PciWrite8, dword [esi+PCIDEV.bus], dword [esi+PCIDEV.devfn], ebx, 0
.has_ownership:
; 5. Just in case clear all SMI event sources except change-ownership.
dbgstr 'has_ownership'
inc ebx
inc ebx
invoke PciRead16, dword [esi+PCIDEV.bus], dword [esi+PCIDEV.devfn], ebx
and ax, 2000h
invoke PciWrite16, dword [esi+PCIDEV.bus], dword [esi+PCIDEV.devfn], ebx, eax
.has_ownership2:
pop ecx
; 6. Disable all controller interrupts until the system will be ready to
; process them.
mov dword [edi+EhciInterruptReg], 0
; 7. Now we can unblock interrupts in the processor.
popf
; 8. Release memory mapping created in step 2 and return.
invoke FreeKernelSpace
.nothing:
ret
endp
; IRQ handler for EHCI controllers.
ehci_irq.noint:
spin_unlock_irqrestore [esi+usb_controller.WaitSpinlock]
; Not our interrupt: restore registers and return zero.
xor eax, eax
pop edi esi ebx
ret
proc ehci_irq
push ebx esi edi ; save registers to be cdecl
virtual at esp
rd 3 ; saved registers
dd ? ; return address
.controller dd ?
end virtual
; 1. ebx will hold whether some deferred processing is needed,
; that cannot be done from the interrupt handler. Initialize to zero.
xor ebx, ebx
; 2. Get the mask of events which should be processed.
mov esi, [.controller]
mov edi, [esi+ehci_controller.MMIOBase2-sizeof.ehci_controller]
spin_lock_irqsave [esi+usb_controller.WaitSpinlock]
mov eax, [edi+EhciStatusReg]
; 3. Check whether that interrupt has been generated by our controller.
; (One IRQ can be shared by several devices.)
and eax, [edi+EhciInterruptReg]
jz .noint
; 4. Clear the events we know of.
; Note that this should be done before processing of events:
; new events could arise while we are processing those, this way we won't lose
; them (the controller would generate another interrupt after completion
; of this one).
; DEBUGF 1,'K : EHCI interrupt: status = %x\n',eax
mov [edi+EhciStatusReg], eax
; 5. Sanity check.
test al, 10h
jz @f
DEBUGF 1,'K : something terrible happened with EHCI %x (%x)\n',esi,al
@@:
; We can't do too much from an interrupt handler. Inform the processing thread
; that it should perform appropriate actions.
or [esi+ehci_controller.DeferredActions-sizeof.ehci_controller], eax
spin_unlock_irqrestore [esi+usb_controller.WaitSpinlock]
inc ebx
invoke usbhc_api.usb_wakeup_if_needed
; 6. Interrupt processed; return non-zero.
mov al, 1
pop edi esi ebx ; restore used registers to be cdecl
ret
endp
; This procedure is called from usb_set_address_callback
; and stores USB device address in the ehci_pipe structure.
; in: esi -> usb_controller, ebx -> usb_pipe, cl = address
proc ehci_set_device_address
mov byte [ebx+ehci_pipe.Token-sizeof.ehci_pipe], cl
jmp [usbhc_api.usb_subscribe_control]
endp
; This procedure returns USB device address from the ehci_pipe structure.
; in: esi -> usb_controller, ebx -> usb_pipe
; out: eax = endpoint address
proc ehci_get_device_address
mov eax, [ebx+ehci_pipe.Token-sizeof.ehci_pipe]
and eax, 7Fh
ret
endp
; This procedure is called from usb_set_address_callback
; if the device does not accept SET_ADDRESS command and needs
; to be disabled at the port level.
; in: esi -> usb_controller, ecx = port (zero-based)
proc ehci_port_disable
mov eax, [esi+ehci_controller.MMIOBase2-sizeof.ehci_controller]
and dword [eax+EhciPortsReg+ecx*4], not (4 or 2Ah)
ret
endp
; This procedure is called from usb_get_descr8_callback when
; the packet size for zero endpoint becomes known and
; stores the packet size in ehci_pipe structure.
; in: esi -> usb_controller, ebx -> usb_pipe, ecx = packet size
proc ehci_set_endpoint_packet_size
mov eax, [ebx+ehci_pipe.Token-sizeof.ehci_pipe]
and eax, not (0x7FF shl 16)
shl ecx, 16
or eax, ecx
mov [ebx+ehci_pipe.Token-sizeof.ehci_pipe], eax
; Wait until hardware cache is evicted.
jmp [usbhc_api.usb_subscribe_control]
endp
uglobal
align 4
; Data for memory allocator, see memory.inc.
ehci_ep_first_page dd ?
ehci_ep_mutex MUTEX
ehci_gtd_first_page dd ?
ehci_gtd_mutex MUTEX
endg
; This procedure allocates memory for pipe.
; Both hardware+software parts must be allocated, returns pointer to usb_pipe
; (software part).
proc ehci_alloc_pipe
push ebx
mov ebx, ehci_ep_mutex
invoke usbhc_api.usb_allocate_common, (sizeof.ehci_pipe + sizeof.usb_pipe + 1Fh) and not 1Fh
test eax, eax
jz @f
add eax, sizeof.ehci_pipe
@@:
pop ebx
ret
endp
; This procedure frees memory for pipe allocated by ehci_alloc_pipe.
; void stdcall with one argument = pointer to usb_pipe.
proc ehci_free_pipe
virtual at esp
dd ? ; return address
.ptr dd ?
end virtual
sub [.ptr], sizeof.ehci_pipe
jmp [usbhc_api.usb_free_common]
endp
; This procedure is called from API usb_open_pipe and processes
; the controller-specific part of this API. See docs.
; in: edi -> usb_pipe for target, ecx -> usb_pipe for config pipe,
; esi -> usb_controller, eax -> usb_gtd for the first TD,
; [ebp+12] = endpoint, [ebp+16] = maxpacket, [ebp+20] = type
proc ehci_init_pipe
virtual at ebp+8
.config_pipe dd ?
.endpoint dd ?
.maxpacket dd ?
.type dd ?
.interval dd ?
end virtual
; 1. Zero all fields in the hardware part.
push eax ecx
sub edi, sizeof.ehci_pipe
xor eax, eax
movi ecx, sizeof.ehci_pipe/4
rep stosd
pop ecx eax
; 2. Setup PID in the first TD and make sure that the it is not active.
xor edx, edx
test byte [.endpoint], 80h
setnz dh
mov [eax+ehci_gtd.Token-sizeof.ehci_gtd], edx
mov [eax+ehci_gtd.NextTD-sizeof.ehci_gtd], 1
mov [eax+ehci_gtd.AlternateNextTD-sizeof.ehci_gtd], 1
; 3. Store physical address of the first TD.
sub eax, sizeof.ehci_gtd
call [GetPhysAddr]
mov [edi+ehci_pipe.Overlay.NextTD-sizeof.ehci_pipe], eax
; 4. Fill ehci_pipe.Flags except for S- and C-masks.
; Copy location from the config pipe.
mov eax, [ecx+ehci_pipe.Flags-sizeof.ehci_pipe]
and eax, 3FFF0000h
; Use 1 requests per microframe for control/bulk endpoints,
; use value from the endpoint descriptor for periodic endpoints
movi edx, 1
test [.type], 1
jz @f
mov edx, [.maxpacket]
shr edx, 11
inc edx
@@:
shl edx, 30
or eax, edx
mov [edi+ehci_pipe.Flags-sizeof.ehci_pipe], eax
; 5. Fill ehci_pipe.Token.
mov eax, [ecx+ehci_pipe.Token-sizeof.ehci_pipe]
; copy following fields from the config pipe:
; DeviceAddress, EndpointSpeed, ControlEndpoint if new type is control
mov ecx, eax
and eax, 307Fh
and ecx, 8000000h
or ecx, 4000h
mov edx, [.endpoint]
and edx, 15
shl edx, 8
or eax, edx
mov edx, [.maxpacket]
shl edx, 16
or eax, edx
; for control endpoints, use DataToggle from TD, otherwise use DataToggle from QH
cmp [.type], CONTROL_PIPE
jnz @f
or eax, ecx
@@:
; for control/bulk USB2 endpoints, set NakCountReload to 4
test eax, USB_SPEED_HS shl 12
jz .nonak
cmp [.type], CONTROL_PIPE
jz @f
cmp [.type], BULK_PIPE
jnz .nonak
@@:
or eax, 40000000h
.nonak:
mov [edi+ehci_pipe.Token-sizeof.ehci_pipe], eax
; 5. Select the corresponding list and insert to the list.
; 5a. Use Control list for control pipes, Bulk list for bulk pipes.
lea edx, [esi+ehci_controller.ControlED.SoftwarePart-sizeof.ehci_controller]
cmp [.type], BULK_PIPE
jb .insert ; control pipe
lea edx, [esi+ehci_controller.BulkED.SoftwarePart-sizeof.ehci_controller]
jz .insert ; bulk pipe
.interrupt_pipe:
; 5b. For interrupt pipes, let the scheduler select the appropriate list
; and the appropriate microframe(s) (which goes to S-mask and C-mask)
; based on the current bandwidth distribution and the requested bandwidth.
; There are two schedulers, one for high-speed devices,
; another for split transactions.
; This could fail if the requested bandwidth is not available;
; if so, return an error.
test word [edi+ehci_pipe.Flags-sizeof.ehci_pipe+2], 3FFFh
jnz .interrupt_tt
call ehci_select_hs_interrupt_list
jmp .interrupt_common
.interrupt_tt:
call ehci_select_tt_interrupt_list
.interrupt_common:
test edx, edx
jz .return0
mov word [edi+ehci_pipe.Flags-sizeof.ehci_pipe], ax
.insert:
mov [edi+usb_pipe.BaseList], edx
; Insert to the head of the corresponding list.
; Note: inserting to the head guarantees that the list traverse in
; ehci_process_updated_schedule, once started, will not interact with new pipes.
; However, we still need to ensure that links in the new pipe (edi.NextVirt)
; are initialized before links to the new pipe (edx.NextVirt).
; 5c. Insert in the list of virtual addresses.
mov ecx, [edx+usb_pipe.NextVirt]
mov [edi+usb_pipe.NextVirt], ecx
mov [edi+usb_pipe.PrevVirt], edx
mov [ecx+usb_pipe.PrevVirt], edi
mov [edx+usb_pipe.NextVirt], edi
; 5d. Insert in the hardware list: copy previous NextQH to the new pipe,
; store the physical address of the new pipe to previous NextQH.
mov ecx, [edx+ehci_static_ep.NextQH-ehci_static_ep.SoftwarePart]
mov [edi+ehci_pipe.NextQH-sizeof.ehci_pipe], ecx
lea eax, [edi-sizeof.ehci_pipe]
call [GetPhysAddr]
inc eax
inc eax
mov [edx+ehci_static_ep.NextQH-ehci_static_ep.SoftwarePart], eax
; 6. Return with nonzero eax.
ret
.return0:
xor eax, eax
ret
endp
; This function is called from ehci_process_deferred when
; a new device was connected at least USB_CONNECT_DELAY ticks
; and therefore is ready to be configured.
; ecx = port, esi -> ehci_controller, edi -> EHCI MMIO
proc ehci_new_port
; 1. If the device operates at low-speed, just release it to a companion.
mov eax, [edi+EhciPortsReg+ecx*4]
DEBUGF 1,'K : EHCI %x port %d state is %x\n',esi,ecx,eax
mov edx, eax
and ah, 0Ch
cmp ah, 4
jz .low_speed
; 2. Devices operating at full-speed and high-speed must now have ah == 8.
; Some broken hardware asserts both D+ and D- even after initial decoupling;
; if so, stop initialization here, no sense in further actions.
cmp ah, 0Ch
jz .se1
; 3. If another port is resetting right now, mark this port as 'reset pending'
; and return.
bts [esi+usb_controller.PendingPorts], ecx
cmp [esi+usb_controller.ResettingPort], -1
jnz .nothing
btr [esi+usb_controller.PendingPorts], ecx
; Otherwise, fall through to ohci_new_port.reset.
; This function is called from ehci_new_port and usb_test_pending_port.
; It starts reset signalling for the port. Note that in USB first stages
; of configuration can not be done for several ports in parallel.
.reset:
push edi
mov edi, [esi+ehci_controller.MMIOBase2-sizeof.ehci_controller]
mov eax, [edi+EhciPortsReg+ecx*4]
; 1. Store information about resetting hub (roothub) and port.
and [esi+usb_controller.ResettingHub], 0
mov [esi+usb_controller.ResettingPort], cl
; 2. Initiate reset signalling.
or ah, 1
and al, not (4 or 2Ah)
mov [edi+EhciPortsReg+ecx*4], eax
; 3. Store the current time and set status to 1 = reset signalling active.
invoke GetTimerTicks
mov [esi+usb_controller.ResetTime], eax
mov [esi+usb_controller.ResettingStatus], 1
; dbgstr 'high-speed or full-speed device, resetting'
DEBUGF 1,'K : EHCI %x: port %d has HS or FS device, resetting\n',esi,ecx
pop edi
.nothing:
ret
.low_speed:
; dbgstr 'low-speed device, releasing'
DEBUGF 1,'K : EHCI %x: port %d has LS device, releasing\n',esi,ecx
or dh, 20h
and dl, not 2Ah
mov [edi+EhciPortsReg+ecx*4], edx
ret
.se1:
dbgstr 'SE1 after connect debounce. Broken hardware?'
ret
endp
; This procedure is called from several places in main USB code
; and allocates required packets for the given transfer.
; ebx = pipe, other parameters are passed through the stack:
; buffer,size = data to transfer
; flags = same as in usb_open_pipe: bit 0 = allow short transfer, other bits reserved
; td = pointer to the current end-of-queue descriptor
; direction =
; 0000b for normal transfers,
; 1000b for control SETUP transfer,
; 1101b for control OUT transfer,
; 1110b for control IN transfer
; returns eax = pointer to the new end-of-queue descriptor
; (not included in the queue itself) or 0 on error
proc ehci_alloc_transfer stdcall uses edi, \
buffer:dword, size:dword, flags:dword, td:dword, direction:dword
locals
origTD dd ?
packetSize dd ? ; must be last variable, see usb_init_transfer
endl
; 1. Save original value of td:
; it will be useful for rollback if something would fail.
mov eax, [td]
mov [origTD], eax
; One transfer descriptor can describe up to 5 pages.
; In the worst case (when the buffer is something*1000h+0FFFh)
; this corresponds to 4001h bytes. If the requested size is
; greater, we should split the transfer into several descriptors.
; Boundaries to split must be multiples of endpoint transfer size
; to avoid short packets except in the end of the transfer.
cmp [size], 4001h
jbe .lastpacket
; 2. While the remaining data cannot fit in one descriptor,
; allocate full descriptors (of maximal possible size).
; 2a. Calculate size of one descriptor: must be a multiple of transfer size
; and must be not greater than 4001h.
movzx ecx, word [ebx+ehci_pipe.Token+2-sizeof.ehci_pipe]
and ecx, (1 shl 11) - 1
mov eax, 4001h
xor edx, edx
mov edi, eax
div ecx
sub edi, edx
mov [packetSize], edi
.fullpackets:
call ehci_alloc_packet
test eax, eax
jz .fail
mov [td], eax
add [buffer], edi
sub [size], edi
cmp [size], 4001h
ja .fullpackets
; 3. The remaining data can fit in one packet;
; allocate the last descriptor with size = size of remaining data.
.lastpacket:
mov eax, [size]
mov [packetSize], eax
call ehci_alloc_packet
test eax, eax
jz .fail
; 9. Update flags in the last packet.
mov edx, [flags]
mov [ecx+ehci_gtd.Flags-sizeof.ehci_gtd], edx
; 10. Fill AlternateNextTD field in all allocated TDs.
; If the caller says that short transfer is ok, the queue must advance to
; the next descriptor, which is in eax.
; Otherwise, the queue should stop, so make AlternateNextTD point to
; always-inactive descriptor StopQueueTD.
push eax
test dl, 1
jz .disable_short
sub eax, sizeof.ehci_gtd
jmp @f
.disable_short:
mov eax, [ebx+usb_pipe.Controller]
add eax, ehci_controller.StopQueueTD - sizeof.ehci_controller
@@:
call [GetPhysAddr]
mov edx, [origTD]
@@:
cmp edx, [esp]
jz @f
mov [edx+ehci_gtd.AlternateNextTD-sizeof.ehci_gtd], eax
mov edx, [edx+usb_gtd.NextVirt]
jmp @b
@@:
pop eax
ret
.fail:
mov edi, ehci_hardware_func
mov eax, [td]
invoke usbhc_api.usb_undo_tds, [origTD]
xor eax, eax
ret
endp
; Helper procedure for ehci_alloc_transfer.
; Allocates and initializes one transfer descriptor.
; ebx = pipe, other parameters are passed through the stack;
; fills the current last descriptor and
; returns eax = next descriptor (not filled).
proc ehci_alloc_packet
; inherit some variables from the parent ehci_alloc_transfer
virtual at ebp-8
.origTD dd ?
.packetSize dd ?
rd 2
.buffer dd ?
.transferSize dd ?
.Flags dd ?
.td dd ?
.direction dd ?
end virtual
; 1. Allocate the next TD.
call ehci_alloc_td
test eax, eax
jz .nothing
; 2. Initialize controller-independent parts of both TDs.
push eax
invoke usbhc_api.usb_init_transfer
pop eax
; 3. Copy PID to the new descriptor.
mov edx, [ecx+ehci_gtd.Token-sizeof.ehci_gtd]
mov [eax+ehci_gtd.Token-sizeof.ehci_gtd], edx
mov [eax+ehci_gtd.NextTD-sizeof.ehci_gtd], 1
mov [eax+ehci_gtd.AlternateNextTD-sizeof.ehci_gtd], 1
; 4. Save the returned value (next descriptor).
push eax
; 5. Store the physical address of the next descriptor.
sub eax, sizeof.ehci_gtd
call [GetPhysAddr]
mov [ecx+ehci_gtd.NextTD-sizeof.ehci_gtd], eax
; 6. For zero-length transfers, store zero in all fields for buffer addresses.
; Otherwise, fill them with real values.
xor eax, eax
mov [ecx+ehci_gtd.Flags-sizeof.ehci_gtd], eax
repeat 10
mov [ecx+ehci_gtd.BufferPointers-sizeof.ehci_gtd+(%-1)*4], eax
end repeat
cmp [.packetSize], eax
jz @f
mov eax, [.buffer]
call [GetPhysAddr]
mov [ecx+ehci_gtd.BufferPointers-sizeof.ehci_gtd], eax
and eax, 0xFFF
mov edx, [.packetSize]
add edx, eax
sub edx, 0x1000
jbe @f
mov eax, [.buffer]
add eax, 0x1000
call [GetPgAddr]
mov [ecx+ehci_gtd.BufferPointers+4-sizeof.ehci_gtd], eax
sub edx, 0x1000
jbe @f
mov eax, [.buffer]
add eax, 0x2000
call [GetPgAddr]
mov [ecx+ehci_gtd.BufferPointers+8-sizeof.ehci_gtd], eax
sub edx, 0x1000
jbe @f
mov eax, [.buffer]
add eax, 0x3000
call [GetPgAddr]
mov [ecx+ehci_gtd.BufferPointers+12-sizeof.ehci_gtd], eax
sub edx, 0x1000
jbe @f
mov eax, [.buffer]
add eax, 0x4000
call [GetPgAddr]
mov [ecx+ehci_gtd.BufferPointers+16-sizeof.ehci_gtd], eax
@@:
; 7. Fill Token field:
; set Status = 0 (inactive, ehci_insert_transfer would mark everything active);
; keep current PID if [.direction] is zero, use two lower bits of [.direction]
; otherwise shifted as (0|1|2) -> (2|0|1);
; set error counter to 3;
; set current page to 0;
; do not interrupt on complete (ehci_insert_transfer sets this bit where needed);
; set DataToggle to bit 2 of [.direction].
mov eax, [ecx+ehci_gtd.Token-sizeof.ehci_gtd]
and eax, 300h ; keep PID code
mov edx, [.direction]
test edx, edx
jz .haspid
and edx, 3
dec edx
jns @f
add edx, 3
@@:
mov ah, dl
mov edx, [.direction]
and edx, not 3
shl edx, 29
or eax, edx
.haspid:
or eax, 0C00h
mov edx, [.packetSize]
shl edx, 16
or eax, edx
mov [ecx+ehci_gtd.Token-sizeof.ehci_gtd], eax
; 4. Restore the returned value saved in step 2.
pop eax
.nothing:
ret
endp
; This procedure is called from several places in main USB code
; and activates the transfer which was previously allocated by
; ehci_alloc_transfer.
; ecx -> last descriptor for the transfer, ebx -> usb_pipe
proc ehci_insert_transfer
or byte [ecx+ehci_gtd.Token+1-sizeof.ehci_gtd], 80h ; set IOC bit
mov eax, [esp+4]
.activate:
or byte [eax+ehci_gtd.Token-sizeof.ehci_gtd], 80h ; set Active bit
cmp eax, ecx
mov eax, [eax+usb_gtd.NextVirt]
jnz .activate
ret
endp
; This function is called from ehci_process_deferred when
; reset signalling for a new device needs to be finished.
proc ehci_port_reset_done
movzx ecx, [esi+usb_controller.ResettingPort]
and dword [edi+EhciPortsReg+ecx*4], not 12Ah
invoke GetTimerTicks
mov [esi+usb_controller.ResetTime], eax
mov [esi+usb_controller.ResettingStatus], 2
; DEBUGF 1,'K : EHCI %x: reset port %d done\n',esi,ecx
ret
endp
; This function is called from ehci_process_deferred when
; a new device has been reset, recovered after reset and needs to be configured.
proc ehci_port_init
; 1. Get the status and set it to zero.
; If reset has been failed (device disconnected during reset),
; continue to next device (if there is one).
xor eax, eax
xchg al, [esi+usb_controller.ResettingStatus]
test al, al
jns @f
jmp [usbhc_api.usb_test_pending_port]
@@:
; 2. Get the port status. High-speed devices should be now enabled,
; full-speed devices are left disabled;
; if the port is disabled, release it to a companion and continue to
; next device (if there is one).
movzx ecx, [esi+usb_controller.ResettingPort]
mov eax, [edi+EhciPortsReg+ecx*4]
DEBUGF 1,'K : EHCI %x status of port %d is %x\n',esi,ecx,eax
test al, 4
jnz @f
; DEBUGF 1,'K : USB port disabled after reset, status = %x\n',eax
dbgstr 'releasing to companion'
or ah, 20h
mov [edi+EhciPortsReg+ecx*4], eax
jmp [usbhc_api.usb_test_pending_port]
@@:
; 3. Call the worker procedure to notify the protocol layer
; about new EHCI device. It is high-speed.
movi eax, USB_SPEED_HS
call ehci_new_device
test eax, eax
jnz .nothing
; 4. If something at the protocol layer has failed
; (no memory, no bus address), disable the port and stop the initialization.
.disable_exit:
and dword [edi+EhciPortsReg+ecx*4], not (4 or 2Ah)
jmp [usbhc_api.usb_test_pending_port]
.nothing:
ret
endp
; This procedure is called from ehci_port_init and from hub support code
; when a new device is connected and has been reset.
; It calls usb_new_device at the protocol layer with correct parameters.
; in: esi -> usb_controller, eax = speed.
proc ehci_new_device
push ebx ecx ; save used registers (ecx is important for ehci_port_init)
; 1. Store the speed for the protocol layer.
mov [esi+usb_controller.ResettingSpeed], al
; 2. Shift speed bits to the proper place in ehci_pipe.Token.
shl eax, 12
; 3. For high-speed devices, go to step 5 with edx = 0.
xor edx, edx
cmp ah, USB_SPEED_HS shl (12-8)
jz .common
; 4. For low-speed and full-speed devices, fill address:port
; of the last high-speed hub (the closest to the device hub)
; for split transactions, and set ControlEndpoint bit in eax;
; ehci_init_pipe assumes that the parent pipe is a control pipe.
push eax
movzx ecx, [esi+usb_controller.ResettingPort]
mov edx, [esi+usb_controller.ResettingHub]
invoke usbhc_api.usb_get_tt
inc ecx
mov edx, [edx+ehci_pipe.Token-sizeof.ehci_pipe]
shl ecx, 23
and edx, 7Fh
shl edx, 16
or edx, ecx ; ehci_pipe.Flags
pop eax
or eax, 1 shl 27 ; ehci_pipe.Token
.common:
; 5. Create pseudo-pipe in the stack.
; See ehci_init_pipe: only .Controller, .Token, .Flags fields are used.
push esi ; usb_pipe.Controller
mov ecx, esp
sub esp, sizeof.ehci_pipe - ehci_pipe.Flags - 4
push edx ; ehci_pipe.Flags
push eax ; ehci_pipe.Token
; 6. Notify the protocol layer.
invoke usbhc_api.usb_new_device
; 7. Cleanup the stack after step 5 and return.
add esp, sizeof.ehci_pipe - ehci_pipe.Flags + 8
pop ecx ebx ; restore used registers
ret
endp
; This procedure is called in the USB thread from usb_thread_proc,
; processes regular actions and those actions which can't be safely done
; from interrupt handler.
; Returns maximal time delta before the next call.
proc ehci_process_deferred
push ebx edi ; save used registers to be stdcall
mov edi, [esi+ehci_controller.MMIOBase2-sizeof.ehci_controller]
; 1. Get the mask of events to process.
xor eax, eax
xchg eax, [esi+ehci_controller.DeferredActions-sizeof.ehci_controller]
push eax
; 2. Initialize the return value.
push -1
; Handle roothub events.
; 3a. Test whether there are such events.
test al, 4
jz .skip_roothub
; Status of some port has changed. Loop over all ports.
; 3b. Prepare for the loop: start from port 0.
xor ecx, ecx
.portloop:
; 3c. Get the port status and changes of it.
; If there are no changes, just continue to the next port.
mov eax, [edi+EhciPortsReg+ecx*4]
test al, 2Ah
jz .nextport
; 3d. Clear change bits and read the status again.
; (It is possible, although quite unlikely, that some event occurs between
; the first read and the clearing, invalidating the old status. If an event
; occurs after the clearing, we will not miss it, looking in the next scan.
mov [edi+EhciPortsReg+ecx*4], eax
mov ebx, eax
mov eax, [edi+EhciPortsReg+ecx*4]
DEBUGF 1,'K : EHCI %x: status of port %d changed to %x\n',esi,ecx,ebx
; 3e. Handle overcurrent.
; Note: that needs work.
test bl, 20h ; overcurrent change
jz .noovercurrent
test al, 10h ; overcurrent active
jz .noovercurrent
DEBUGF 1,'K : overcurrent at port %d\n',ecx
.noovercurrent:
; 3f. Handle changing of connection status.
test bl, 2
jz .nocsc
; There was a connect or disconnect event at this port.
; 3g. Disconnect the old device on this port, if any.
; If the port was resetting, indicate fail; later stages will process it.
; Ignore connect event immediately after resetting.
cmp [esi+usb_controller.ResettingHub], 0
jnz .csc.noreset
cmp cl, [esi+usb_controller.ResettingPort]
jnz .csc.noreset
cmp [esi+usb_controller.ResettingStatus], 2
jnz @f
test al, 1
jnz .nextport
@@:
mov [esi+usb_controller.ResettingStatus], -1
.csc.noreset:
bts [esi+usb_controller.NewDisconnected], ecx
; 3h. Change connected status. For the connection event, also store
; the connection time; any further processing is permitted only after
; USB_CONNECT_DELAY ticks.
test al, 1
jz .disconnect
invoke GetTimerTicks
mov [esi+usb_controller.ConnectedTime+ecx*4], eax
bts [esi+usb_controller.NewConnected], ecx
jmp .nextport
.disconnect:
btr [esi+usb_controller.NewConnected], ecx
jmp .nextport
.nocsc:
; 3i. Handle port disabling.
; Note: that needs work.
test al, 8
jz @f
test al, 4
jz @f
DEBUGF 1,'K : port %d disabled\n',ecx
@@:
; 3j. Continue the loop for the next port.
.nextport:
inc ecx
cmp ecx, [esi+usb_controller.NumPorts]
jb .portloop
.skip_roothub:
; 4. Process disconnect events. This should be done after step 3
; (which includes the first stage of disconnect processing).
invoke usbhc_api.usb_disconnect_stage2
; 5. Check for previously connected devices.
; If there is a connected device which was connected less than
; USB_CONNECT_DELAY ticks ago, plan to wake up when the delay will be over.
; Otherwise, call ehci_new_port.
; This should be done after step 3.
xor ecx, ecx
cmp [esi+usb_controller.NewConnected], ecx
jz .skip_newconnected
.portloop2:
bt [esi+usb_controller.NewConnected], ecx
jnc .noconnect
invoke GetTimerTicks
sub eax, [esi+usb_controller.ConnectedTime+ecx*4]
sub eax, USB_CONNECT_DELAY
jge .connected
neg eax
cmp [esp], eax
jb .nextport2
mov [esp], eax
jmp .nextport2
.connected:
btr [esi+usb_controller.NewConnected], ecx
call ehci_new_port
jmp .portloop2
.noconnect:
.nextport2:
inc ecx
cmp ecx, [esi+usb_controller.NumPorts]
jb .portloop2
.skip_newconnected:
; 6. Process wait lists.
; 6a. Periodic endpoints.
; If a request is pending >8 microframes, satisfy it.
; If a request is pending <=8 microframes, schedule next wakeup in 0.01s.
mov eax, [esi+usb_controller.WaitPipeRequestPeriodic]
cmp eax, [esi+usb_controller.ReadyPipeHeadPeriodic]
jz .noperiodic
mov edx, [edi+EhciFrameIndexReg]
sub edx, [esi+usb_controller.StartWaitFrame]
and edx, 0x3FFF
cmp edx, 8
jbe @f
mov [esi+usb_controller.ReadyPipeHeadPeriodic], eax
jmp .noperiodic
@@:
pop eax
push 1 ; wakeup in 0.01 sec for next test
.noperiodic:
; 6b. Asynchronous endpoints.
; Satisfy a request when InterruptOnAsyncAdvance fired.
test byte [esp+4], 20h
jz @f
; dbgstr 'async advance int'
mov eax, [esi+usb_controller.WaitPipeRequestAsync]
mov [esi+usb_controller.ReadyPipeHeadAsync], eax
@@:
; Some hardware in some (rarely) conditions set the status bit,
; but just does not generate the corresponding interrupt.
; Force checking the status here.
mov eax, [esi+usb_controller.WaitPipeRequestAsync]
cmp [esi+usb_controller.ReadyPipeHeadAsync], eax
jz .noasync
spin_lock_irq [esi+usb_controller.WaitSpinlock]
mov edx, [edi+EhciStatusReg]
test dl, 20h
jz @f
mov dword [edi+EhciStatusReg], 20h
and dword [esi+ehci_controller.DeferredActions-sizeof.ehci_controller], not 20h
dbgstr 'warning: async advance int missed'
mov [esi+usb_controller.ReadyPipeHeadAsync], eax
spin_unlock_irq [esi+usb_controller.WaitSpinlock]
jmp .noasync
@@:
spin_unlock_irq [esi+usb_controller.WaitSpinlock]
cmp dword [esp], 100
jb .noasync
mov dword [esp], 100
.noasync:
; 7. Finalize transfers processed by hardware.
; It is better to perform this step after step 4 (disconnect events),
; although not strictly obligatory. This way, an active transfer aborted
; due to disconnect would be handled with more specific USB_STATUS_CLOSED,
; not USB_STATUS_NORESPONSE.
test byte [esp+4], 3
jz @f
call ehci_process_updated_schedule
@@:
; 8. Test whether reset signalling has been started and should be stopped now.
; This must be done after step 7, because completion of some transfer could
; result in resetting a new port.
.test_reset:
; 8a. Test whether reset signalling is active.
cmp [esi+usb_controller.ResettingStatus], 1
jnz .no_reset_in_progress
; 8b. Yep. Test whether it should be stopped.
invoke GetTimerTicks
sub eax, [esi+usb_controller.ResetTime]
sub eax, USB_RESET_TIME
jge .reset_done
; 8c. Not yet, but initiate wakeup in -eax ticks and exit this step.
neg eax
cmp [esp], eax
jb .skip_reset
mov [esp], eax
jmp .skip_reset
.reset_done:
; 8d. Yep, call the worker function and proceed to 8e.
call ehci_port_reset_done
.no_reset_in_progress:
; 8e. Test whether reset process is done, either successful or failed.
cmp [esi+usb_controller.ResettingStatus], 0
jz .skip_reset
; 8f. Yep. Test whether it should be stopped.
invoke GetTimerTicks
sub eax, [esi+usb_controller.ResetTime]
sub eax, USB_RESET_RECOVERY_TIME
jge .reset_recovery_done
; 8g. Not yet, but initiate wakeup in -eax ticks and exit this step.
neg eax
cmp [esp], eax
jb .skip_reset
mov [esp], eax
jmp .skip_reset
.reset_recovery_done:
; 8h. Yep, call the worker function. This could initiate another reset,
; so return to the beginning of this step.
call ehci_port_init
jmp .test_reset
.skip_reset:
; 9. Process wait-done notifications, test for new wait requests.
; Note: that must be done after steps 4 and 7 which could create new requests.
; 9a. Call the worker function.
invoke usbhc_api.usb_process_wait_lists
; 9b. If it reports that an asynchronous endpoint should be removed,
; doorbell InterruptOnAsyncAdvance and schedule wakeup in 1s
; (sometimes it just does not fire).
test al, 1 shl CONTROL_PIPE
jz @f
mov edx, [esi+usb_controller.WaitPipeListAsync]
mov [esi+usb_controller.WaitPipeRequestAsync], edx
or dword [edi+EhciCommandReg], 1 shl 6
; dbgstr 'async advance doorbell'
cmp dword [esp], 100
jb @f
mov dword [esp], 100
@@:
; 9c. If it reports that a periodic endpoint should be removed,
; save the current frame and schedule wakeup in 0.01 sec.
test al, 1 shl INTERRUPT_PIPE
jz @f
mov eax, [esi+usb_controller.WaitPipeListPeriodic]
mov [esi+usb_controller.WaitPipeRequestPeriodic], eax
mov edx, [edi+EhciFrameIndexReg]
mov [esi+usb_controller.StartWaitFrame], edx
mov dword [esp], 1 ; wakeup in 0.01 sec for next test
@@:
; 10. Pop the return value, restore the stack after step 1 and return.
pop eax
pop ecx
pop edi ebx ; restore used registers to be stdcall
ret
endp
; This procedure is called in the USB thread from ehci_process_deferred
; when EHCI IRQ handler has signalled that new IOC-packet was processed.
; It scans all lists for completed packets and calls ehci_process_finalized_td
; for those packets.
proc ehci_process_updated_schedule
; Important note: we cannot hold the list lock during callbacks,
; because callbacks sometimes open and/or close pipes and thus acquire/release
; the corresponding lock itself.
; Fortunately, pipes can be finally freed only by another step of
; ehci_process_deferred, so all pipes existing at the start of this function
; will be valid while this function is running. Some pipes can be removed
; from the corresponding list, some pipes can be inserted; insert/remove
; functions guarantee that traversing one list yields all pipes that were in
; that list at the beginning of the traversing (possibly with some new pipes,
; possibly without some new pipes, that doesn't matter).
push edi
; 1. Process all Periodic lists.
lea edi, [esi+ehci_controller.IntEDs-sizeof.ehci_controller+ehci_static_ep.SoftwarePart]
lea ebx, [esi+ehci_controller.IntEDs+63*sizeof.ehci_static_ep-sizeof.ehci_controller+ehci_static_ep.SoftwarePart]
@@:
call ehci_process_updated_list
cmp edi, ebx
jnz @b
; 2. Process the Control list.
add edi, ehci_controller.ControlDelta
call ehci_process_updated_list
; 3. Process the Bulk list.
call ehci_process_updated_list
; 4. Return.
pop edi
ret
endp
; This procedure is called from ehci_process_updated_schedule, see comments there.
; It processes one list, esi -> usb_controller, edi -> usb_static_ep,
; and advances edi to next head.
proc ehci_process_updated_list
push ebx
; 1. Perform the external loop over all pipes.
mov ebx, [edi+usb_static_ep.NextVirt]
.loop:
cmp ebx, edi
jz .done
; store pointer to the next pipe in the stack
push [ebx+usb_static_ep.NextVirt]
; 2. For every pipe, perform the internal loop over all descriptors.
; All descriptors are organized in the queue; we process items from the start
; of the queue until a) the last descriptor (not the part of the queue itself)
; or b) an active (not yet processed by the hardware) descriptor is reached.
lea ecx, [ebx+usb_pipe.Lock]
invoke MutexLock
mov ebx, [ebx+usb_pipe.LastTD]
push ebx
mov ebx, [ebx+usb_gtd.NextVirt]
.tdloop:
; 3. For every descriptor, test active flag and check for end-of-queue;
; if either of conditions holds, exit from the internal loop.
cmp ebx, [esp]
jz .tddone
cmp byte [ebx+ehci_gtd.Token-sizeof.ehci_gtd], 0
js .tddone
; Release the queue lock while processing one descriptor:
; callback function could (and often would) schedule another transfer.
push ecx
invoke MutexUnlock
call ehci_process_updated_td
pop ecx
invoke MutexLock
jmp .tdloop
.tddone:
invoke MutexUnlock
pop ebx
; End of internal loop, restore pointer to the next pipe
; and continue the external loop.
pop ebx
jmp .loop
.done:
pop ebx
add edi, sizeof.ehci_static_ep
ret
endp
; This procedure is called from ehci_process_updated_list, which is itself
; called from ehci_process_updated_schedule, see comments there.
; It processes one completed descriptor.
; in: ebx -> usb_gtd, out: ebx -> next usb_gtd.
proc ehci_process_updated_td
; mov eax, [ebx+usb_gtd.Pipe]
; cmp [eax+usb_pipe.Type], INTERRUPT_PIPE
; jnz @f
; DEBUGF 1,'K : finalized TD for pipe %x:\n',eax
; lea eax, [ebx-sizeof.ehci_gtd]
; DEBUGF 1,'K : %x %x %x %x\n',[eax],[eax+4],[eax+8],[eax+12]
; DEBUGF 1,'K : %x %x %x %x\n',[eax+16],[eax+20],[eax+24],[eax+28]
;@@:
; 1. Remove this descriptor from the list of descriptors for this pipe.
invoke usbhc_api.usb_unlink_td
; 2. Calculate actual number of bytes transferred.
mov eax, [ebx+ehci_gtd.Token-sizeof.ehci_gtd]
lea edx, [eax+eax]
shr edx, 17
sub edx, [ebx+usb_gtd.Length]
neg edx
; 3. Check whether we need some special processing beyond notifying the driver.
; Transfer errors require special processing.
; Short packets require special processing if
; a) this is not the last descriptor for transfer stage
; (in this case we need to process subsequent descriptors for the stage too)
; or b) the caller considers short transfers to be an error.
; ehci_alloc_transfer sets bit 0 of ehci_gtd.Flags to 0 if short packet
; in this descriptor requires special processing and to 1 otherwise.
; If special processing is not needed, advance to 4 with ecx = 0.
; Otherwise, go to 6.
xor ecx, ecx
test al, 40h
jnz .error
test byte [ebx+ehci_gtd.Flags-sizeof.ehci_gtd], 1
jnz .notify
cmp edx, [ebx+usb_gtd.Length]
jnz .special
.notify:
; 4. Either the descriptor in ebx was processed without errors,
; or all necessary error actions were taken and ebx points to the last
; related descriptor.
invoke usbhc_api.usb_process_gtd
; 5. Free the current descriptor and return the next one.
push [ebx+usb_gtd.NextVirt]
stdcall ehci_free_td, ebx
pop ebx
ret
.error:
push ebx
sub ebx, sizeof.ehci_gtd
DEBUGF 1,'K : TD failed:\n'
DEBUGF 1,'K : %x %x %x %x\n',[ebx],[ebx+4],[ebx+8],[ebx+12]
DEBUGF 1,'K : %x %x %x %x\n',[ebx+16],[ebx+20],[ebx+24],[ebx+28]
pop ebx
DEBUGF 1,'K : pipe now:\n'
mov ecx, [ebx+usb_gtd.Pipe]
sub ecx, sizeof.ehci_pipe
DEBUGF 1,'K : %x %x %x %x\n',[ecx],[ecx+4],[ecx+8],[ecx+12]
DEBUGF 1,'K : %x %x %x %x\n',[ecx+16],[ecx+20],[ecx+24],[ecx+28]
DEBUGF 1,'K : %x %x %x %x\n',[ecx+32],[ecx+36],[ecx+40],[ecx+44]
.special:
; 6. Special processing is needed.
; 6a. Save the status and length.
push edx
push eax
; 6b. Traverse the list of descriptors looking for the final descriptor
; for this transfer. Free and unlink non-final descriptors.
; Final descriptor will be freed in step 5.
.look_final:
invoke usbhc_api.usb_is_final_packet
jnc .found_final
push [ebx+usb_gtd.NextVirt]
stdcall ehci_free_td, ebx
pop ebx
invoke usbhc_api.usb_unlink_td
jmp .look_final
.found_final:
; 6c. Restore the status saved in 6a and transform it to the error code.
; Notes:
; * any USB transaction error results in Halted bit; if it is not set,
; but we are here, it must be due to short packet;
; * babble is considered a fatal USB transaction error,
; other errors just lead to retrying the transaction;
; if babble is detected, return the corresponding error;
; * if several non-fatal errors have occured during transaction retries,
; all corresponding bits are set. In this case, return some error code,
; the order is quite arbitrary.
pop eax ; status
movi ecx, USB_STATUS_UNDERRUN
test al, 40h ; not Halted?
jz .know_error
mov cl, USB_STATUS_OVERRUN
test al, 10h ; Babble detected?
jnz .know_error
mov cl, USB_STATUS_BUFOVERRUN
test al, 20h ; Data Buffer error?
jnz .know_error
mov cl, USB_STATUS_NORESPONSE
test al, 8 ; Transaction Error?
jnz .know_error
mov cl, USB_STATUS_STALL
.know_error:
; 6d. If error code is USB_STATUS_UNDERRUN and the last TD allows short packets,
; it is not an error; in this case, go to 4 with ecx = 0.
cmp ecx, USB_STATUS_UNDERRUN
jnz @f
test byte [ebx+ehci_gtd.Flags-sizeof.ehci_gtd], 1
jz @f
xor ecx, ecx
pop edx ; length
jmp .notify
@@:
; 6e. Abort the entire transfer.
; There are two cases: either there is only one transfer stage
; (everything except control transfers), then ebx points to the last TD and
; all previous TD were unlinked and dismissed (if possible),
; or there are several stages (a control transfer) and ebx points to the last
; TD of Data or Status stage (usb_is_final_packet does not stop in Setup stage,
; because Setup stage can not produce short packets); for Data stage, we need
; to unlink and free (if possible) one more TD and advance ebx to the next one.
cmp [ebx+usb_gtd.Callback], 0
jnz .normal
push ecx
push [ebx+usb_gtd.NextVirt]
stdcall ehci_free_td, ebx
pop ebx
invoke usbhc_api.usb_unlink_td
pop ecx
.normal:
; 6f. For bulk/interrupt transfers we have no choice but halt the queue,
; the driver should intercede (through some API which is not written yet).
; Control pipes normally recover at the next SETUP transaction (first stage
; of any control transfer), so we hope on the best and just advance the queue
; to the next transfer. (According to the standard, "A control pipe may also
; support functional stall as well, but this is not recommended.").
mov edx, [ebx+usb_gtd.Pipe]
mov eax, [ebx+ehci_gtd.NextTD-sizeof.ehci_gtd]
or al, 1
mov [edx+ehci_pipe.Overlay.NextTD-sizeof.ehci_pipe], eax
mov [edx+ehci_pipe.Overlay.AlternateNextTD-sizeof.ehci_pipe], eax
cmp [edx+usb_pipe.Type], CONTROL_PIPE
jz .control
; Bulk/interrupt transfer; halt the queue.
mov [edx+ehci_pipe.Overlay.Token-sizeof.ehci_pipe], 40h
pop edx
jmp .notify
; Control transfer.
.control:
and [edx+ehci_pipe.Overlay.Token-sizeof.ehci_pipe], 0
dec [edx+ehci_pipe.Overlay.NextTD-sizeof.ehci_pipe]
pop edx
jmp .notify
endp
; This procedure unlinks the pipe from the corresponding pipe list.
; esi -> usb_controller, ebx -> usb_pipe
proc ehci_unlink_pipe
cmp [ebx+usb_pipe.Type], INTERRUPT_PIPE
jnz @f
test word [ebx+ehci_pipe.Flags-sizeof.ehci_pipe+2], 3FFFh
jnz .interrupt_fs
call ehci_hs_interrupt_list_unlink
jmp .interrupt_common
.interrupt_fs:
call ehci_fs_interrupt_list_unlink
.interrupt_common:
@@:
ret
endp
; This procedure temporarily removes the given pipe from hardware queue.
; esi -> usb_controller, ebx -> usb_pipe
proc ehci_disable_pipe
mov eax, [ebx+ehci_pipe.NextQH-sizeof.ehci_pipe]
mov ecx, [ebx+usb_pipe.PrevVirt]
mov edx, esi
sub edx, ecx
cmp edx, sizeof.ehci_controller
jb .prev_is_static
mov [ecx+ehci_pipe.NextQH-sizeof.ehci_pipe], eax
ret
.prev_is_static:
mov [ecx+ehci_static_ep.NextQH-ehci_static_ep.SoftwarePart], eax
ret
endp
; This procedure reinserts the given pipe to hardware queue
; after ehci_disable_pipe, with clearing transfer queue.
; esi -> usb_controller, ebx -> usb_pipe
; edx -> current descriptor, eax -> new last descriptor
proc ehci_enable_pipe
; 1. Clear transfer queue.
; 1a. Clear status bits so that the controller will try to advance the queue
; without doing anything, keep DataToggle and PID bits.
and [ebx+ehci_pipe.Overlay.Token-sizeof.ehci_pipe], 80000000h
; 1b. Set [Alternate]NextTD to physical address of the new last descriptor.
sub eax, sizeof.ehci_gtd
invoke GetPhysAddr
mov [ebx+ehci_pipe.HeadTD-sizeof.ehci_pipe], eax
mov [ebx+ehci_pipe.Overlay.NextTD-sizeof.ehci_pipe], eax
mov [ebx+ehci_pipe.Overlay.AlternateNextTD-sizeof.ehci_pipe], eax
; 2. Reinsert the pipe to hardware queue.
lea eax, [ebx-sizeof.ehci_pipe]
invoke GetPhysAddr
inc eax
inc eax
mov ecx, [ebx+usb_pipe.PrevVirt]
mov edx, esi
sub edx, ecx
cmp edx, sizeof.ehci_controller
jb .prev_is_static
mov edx, [ecx+ehci_pipe.NextQH-sizeof.ehci_pipe]
mov [ebx+ehci_pipe.NextQH-sizeof.ehci_pipe], edx
mov [ecx+ehci_pipe.NextQH-sizeof.ehci_pipe], eax
ret
.prev_is_static:
mov edx, [ecx+ehci_static_ep.NextQH-ehci_static_ep.SoftwarePart]
mov [ebx+ehci_pipe.NextQH-sizeof.ehci_pipe], edx
mov [ecx+ehci_static_ep.NextQH-ehci_static_ep.SoftwarePart], eax
ret
endp
proc ehci_alloc_td
push ebx
mov ebx, ehci_gtd_mutex
invoke usbhc_api.usb_allocate_common, (sizeof.ehci_gtd + sizeof.usb_gtd + 1Fh) and not 1Fh
test eax, eax
jz @f
add eax, sizeof.ehci_gtd
@@:
pop ebx
ret
endp
; This procedure is called from several places from main USB code and
; frees all additional data associated with the transfer descriptor.
; EHCI has no additional data, so just free ehci_gtd structure.
proc ehci_free_td
sub dword [esp+4], sizeof.ehci_gtd
jmp [usbhc_api.usb_free_common]
endp
include 'ehci_scheduler.inc'
section '.data' readable writable
include '../peimport.inc'
include_debug_strings
IncludeIGlobals
IncludeUGlobals
align 4
usbhc_api usbhc_func