mirror of
https://github.com/KolibriOS/kolibrios.git
synced 2025-01-01 19:24:24 +03:00
2336060a0c
git-svn-id: svn://kolibrios.org@1906 a494cfbc-eb01-0410-851d-a64ba20cac60
152 lines
2.9 KiB
C
152 lines
2.9 KiB
C
/* tanhl.c
|
||
*
|
||
* Hyperbolic tangent, long double precision
|
||
*
|
||
*
|
||
*
|
||
* SYNOPSIS:
|
||
*
|
||
* long double x, y, tanhl();
|
||
*
|
||
* y = tanhl( x );
|
||
*
|
||
*
|
||
*
|
||
* DESCRIPTION:
|
||
*
|
||
* Returns hyperbolic tangent of argument in the range MINLOGL to
|
||
* MAXLOGL.
|
||
*
|
||
* A rational function is used for |x| < 0.625. The form
|
||
* x + x**3 P(x)/Q(x) of Cody _& Waite is employed.
|
||
* Otherwise,
|
||
* tanh(x) = sinh(x)/cosh(x) = 1 - 2/(exp(2x) + 1).
|
||
*
|
||
*
|
||
*
|
||
* ACCURACY:
|
||
*
|
||
* Relative error:
|
||
* arithmetic domain # trials peak rms
|
||
* IEEE -2,2 30000 1.3e-19 2.4e-20
|
||
*
|
||
*/
|
||
|
||
/*
|
||
Cephes Math Library Release 2.7: May, 1998
|
||
Copyright 1984, 1987, 1989, 1998 by Stephen L. Moshier
|
||
*/
|
||
|
||
/*
|
||
Modified for mingw
|
||
2002-07-22 Danny Smith <dannysmith@users.sourceforge.net>
|
||
*/
|
||
|
||
#ifdef __MINGW32__
|
||
#include "cephes_mconf.h"
|
||
#else
|
||
#include "mconf.h"
|
||
#endif
|
||
|
||
#ifndef _SET_ERRNO
|
||
#define _SET_ERRNO(x)
|
||
#endif
|
||
|
||
#ifdef UNK
|
||
static long double P[] = {
|
||
-6.8473739392677100872869E-5L,
|
||
-9.5658283111794641589011E-1L,
|
||
-8.4053568599672284488465E1L,
|
||
-1.3080425704712825945553E3L,
|
||
};
|
||
static long double Q[] = {
|
||
/* 1.0000000000000000000000E0L,*/
|
||
9.6259501838840336946872E1L,
|
||
1.8218117903645559060232E3L,
|
||
3.9241277114138477845780E3L,
|
||
};
|
||
#endif
|
||
|
||
#ifdef IBMPC
|
||
static unsigned short P[] = {
|
||
0xd2a4,0x1b0c,0x8f15,0x8f99,0xbff1, XPD
|
||
0x5959,0x9111,0x9cc7,0xf4e2,0xbffe, XPD
|
||
0xb576,0xef5e,0x6d57,0xa81b,0xc005, XPD
|
||
0xe3be,0xbfbd,0x5cbc,0xa381,0xc009, XPD
|
||
};
|
||
static unsigned short Q[] = {
|
||
/*0x0000,0x0000,0x0000,0x8000,0x3fff,*/
|
||
0x687f,0xce24,0xdd6c,0xc084,0x4005, XPD
|
||
0x3793,0xc95f,0xfa2f,0xe3b9,0x4009, XPD
|
||
0xd5a2,0x1f9c,0x0b1b,0xf542,0x400a, XPD
|
||
};
|
||
#endif
|
||
|
||
#ifdef MIEEE
|
||
static long P[] = {
|
||
0xbff10000,0x8f998f15,0x1b0cd2a4,
|
||
0xbffe0000,0xf4e29cc7,0x91115959,
|
||
0xc0050000,0xa81b6d57,0xef5eb576,
|
||
0xc0090000,0xa3815cbc,0xbfbde3be,
|
||
};
|
||
static long Q[] = {
|
||
/*0x3fff0000,0x80000000,0x00000000,*/
|
||
0x40050000,0xc084dd6c,0xce24687f,
|
||
0x40090000,0xe3b9fa2f,0xc95f3793,
|
||
0x400a0000,0xf5420b1b,0x1f9cd5a2,
|
||
};
|
||
#endif
|
||
|
||
#ifndef __MINGW32__
|
||
extern long double MAXLOGL;
|
||
#ifdef ANSIPROT
|
||
extern long double fabsl ( long double );
|
||
extern long double expl ( long double );
|
||
extern long double polevll ( long double, void *, int );
|
||
extern long double p1evll ( long double, void *, int );
|
||
#else
|
||
long double fabsl(), expl(), polevll(), p1evll();
|
||
#endif
|
||
#endif /* __MINGW32__ */
|
||
|
||
long double tanhl(x)
|
||
long double x;
|
||
{
|
||
long double s, z;
|
||
|
||
#ifdef MINUSZERO
|
||
if( x == 0.0L )
|
||
return(x);
|
||
#endif
|
||
if (isnanl(x))
|
||
{
|
||
_SET_ERRNO (EDOM);
|
||
return x;
|
||
}
|
||
|
||
z = fabsl(x);
|
||
if( z > 0.5L * MAXLOGL )
|
||
{
|
||
_SET_ERRNO (ERANGE);
|
||
if( x > 0 )
|
||
return( 1.0L );
|
||
else
|
||
return( -1.0L );
|
||
}
|
||
if( z >= 0.625L )
|
||
{
|
||
s = expl(2.0*z);
|
||
z = 1.0L - 2.0/(s + 1.0L);
|
||
if( x < 0 )
|
||
z = -z;
|
||
}
|
||
else
|
||
{
|
||
s = x * x;
|
||
z = polevll( s, P, 3 )/p1evll(s, Q, 3);
|
||
z = x * s * z;
|
||
z = x + z;
|
||
}
|
||
return( z );
|
||
}
|