mirror of
https://github.com/KolibriOS/kolibrios.git
synced 2024-12-17 20:32:35 +03:00
2336060a0c
git-svn-id: svn://kolibrios.org@1906 a494cfbc-eb01-0410-851d-a64ba20cac60
266 lines
4.5 KiB
C
266 lines
4.5 KiB
C
/* gammaf.c
|
|
*
|
|
* Gamma function
|
|
*
|
|
*
|
|
*
|
|
* SYNOPSIS:
|
|
*
|
|
* float x, y, __tgammaf_r();
|
|
* int* sgngamf;
|
|
* y = __tgammaf_r( x, sgngamf );
|
|
*
|
|
* float x, y, tgammaf();
|
|
* y = tgammaf( x);
|
|
*
|
|
*
|
|
* DESCRIPTION:
|
|
*
|
|
* Returns gamma function of the argument. The result is
|
|
* correctly signed. In the reentrant version the sign (+1 or -1)
|
|
* is returned in the variable referenced by sgngamf.
|
|
*
|
|
* Arguments between 0 and 10 are reduced by recurrence and the
|
|
* function is approximated by a polynomial function covering
|
|
* the interval (2,3). Large arguments are handled by Stirling's
|
|
* formula. Negative arguments are made positive using
|
|
* a reflection formula.
|
|
*
|
|
*
|
|
* ACCURACY:
|
|
*
|
|
* Relative error:
|
|
* arithmetic domain # trials peak rms
|
|
* IEEE 0,-33 100,000 5.7e-7 1.0e-7
|
|
* IEEE -33,0 100,000 6.1e-7 1.2e-7
|
|
*
|
|
*
|
|
*/
|
|
|
|
/*
|
|
Cephes Math Library Release 2.7: July, 1998
|
|
Copyright 1984, 1987, 1989, 1992, 1998 by Stephen L. Moshier
|
|
*/
|
|
|
|
|
|
/*
|
|
* 26-11-2002 Modified for mingw.
|
|
* Danny Smith <dannysmith@users.sourceforge.net>
|
|
*/
|
|
|
|
|
|
#ifndef __MINGW32__
|
|
#include "mconf.h"
|
|
#else
|
|
#include "cephes_mconf.h"
|
|
#endif
|
|
|
|
/* define MAXGAM 34.84425627277176174 */
|
|
|
|
/* Stirling's formula for the gamma function
|
|
* gamma(x) = sqrt(2 pi) x^(x-.5) exp(-x) ( 1 + 1/x P(1/x) )
|
|
* .028 < 1/x < .1
|
|
* relative error < 1.9e-11
|
|
*/
|
|
static const float STIR[] = {
|
|
-2.705194986674176E-003,
|
|
3.473255786154910E-003,
|
|
8.333331788340907E-002,
|
|
};
|
|
static const float MAXSTIR = 26.77;
|
|
static const float SQTPIF = 2.50662827463100050242; /* sqrt( 2 pi ) */
|
|
|
|
#ifndef __MINGW32__
|
|
|
|
extern float MAXLOGF, MAXNUMF, PIF;
|
|
|
|
#ifdef ANSIC
|
|
float expf(float);
|
|
float logf(float);
|
|
float powf( float, float );
|
|
float sinf(float);
|
|
float gammaf(float);
|
|
float floorf(float);
|
|
static float stirf(float);
|
|
float polevlf( float, float *, int );
|
|
float p1evlf( float, float *, int );
|
|
#else
|
|
float expf(), logf(), powf(), sinf(), floorf();
|
|
float polevlf(), p1evlf();
|
|
static float stirf();
|
|
#endif
|
|
|
|
#else /* __MINGW32__ */
|
|
static float stirf(float);
|
|
#endif
|
|
|
|
/* Gamma function computed by Stirling's formula,
|
|
* sqrt(2 pi) x^(x-.5) exp(-x) (1 + 1/x P(1/x))
|
|
* The polynomial STIR is valid for 33 <= x <= 172.
|
|
*/
|
|
static float stirf( float x )
|
|
{
|
|
float y, w, v;
|
|
|
|
w = 1.0/x;
|
|
w = 1.0 + w * polevlf( w, STIR, 2 );
|
|
y = expf( -x );
|
|
if( x > MAXSTIR )
|
|
{ /* Avoid overflow in pow() */
|
|
v = powf( x, 0.5 * x - 0.25 );
|
|
y *= v;
|
|
y *= v;
|
|
}
|
|
else
|
|
{
|
|
y = powf( x, x - 0.5 ) * y;
|
|
}
|
|
y = SQTPIF * y * w;
|
|
return( y );
|
|
}
|
|
|
|
|
|
/* gamma(x+2), 0 < x < 1 */
|
|
static const float P[] = {
|
|
1.536830450601906E-003,
|
|
5.397581592950993E-003,
|
|
4.130370201859976E-003,
|
|
7.232307985516519E-002,
|
|
8.203960091619193E-002,
|
|
4.117857447645796E-001,
|
|
4.227867745131584E-001,
|
|
9.999999822945073E-001,
|
|
};
|
|
|
|
float __tgammaf_r( float x, int* sgngamf)
|
|
{
|
|
float p, q, z, nz;
|
|
int i, direction, negative;
|
|
|
|
#ifdef NANS
|
|
if( isnan(x) )
|
|
return(x);
|
|
#endif
|
|
#ifdef INFINITIES
|
|
#ifdef NANS
|
|
if( x == INFINITYF )
|
|
return(x);
|
|
if( x == -INFINITYF )
|
|
return(NANF);
|
|
#else
|
|
if( !isfinite(x) )
|
|
return(x);
|
|
#endif
|
|
#endif
|
|
|
|
*sgngamf = 1;
|
|
negative = 0;
|
|
nz = 0.0;
|
|
if( x < 0.0 )
|
|
{
|
|
negative = 1;
|
|
q = -x;
|
|
p = floorf(q);
|
|
if( p == q )
|
|
{
|
|
gsing:
|
|
_SET_ERRNO(EDOM);
|
|
mtherr( "tgammaf", SING );
|
|
#ifdef INFINITIES
|
|
return (INFINITYF);
|
|
#else
|
|
return (MAXNUMF);
|
|
#endif
|
|
}
|
|
i = p;
|
|
if( (i & 1) == 0 )
|
|
*sgngamf = -1;
|
|
nz = q - p;
|
|
if( nz > 0.5 )
|
|
{
|
|
p += 1.0;
|
|
nz = q - p;
|
|
}
|
|
nz = q * sinf( PIF * nz );
|
|
if( nz == 0.0 )
|
|
{
|
|
_SET_ERRNO(ERANGE);
|
|
mtherr( "tgamma", OVERFLOW );
|
|
#ifdef INFINITIES
|
|
return( *sgngamf * INFINITYF);
|
|
#else
|
|
return( *sgngamf * MAXNUMF);
|
|
#endif
|
|
}
|
|
if( nz < 0 )
|
|
nz = -nz;
|
|
x = q;
|
|
}
|
|
if( x >= 10.0 )
|
|
{
|
|
z = stirf(x);
|
|
}
|
|
if( x < 2.0 )
|
|
direction = 1;
|
|
else
|
|
direction = 0;
|
|
z = 1.0;
|
|
while( x >= 3.0 )
|
|
{
|
|
x -= 1.0;
|
|
z *= x;
|
|
}
|
|
/*
|
|
while( x < 0.0 )
|
|
{
|
|
if( x > -1.E-4 )
|
|
goto Small;
|
|
z *=x;
|
|
x += 1.0;
|
|
}
|
|
*/
|
|
while( x < 2.0 )
|
|
{
|
|
if( x < 1.e-4 )
|
|
goto Small;
|
|
z *=x;
|
|
x += 1.0;
|
|
}
|
|
|
|
if( direction )
|
|
z = 1.0/z;
|
|
|
|
if( x == 2.0 )
|
|
return(z);
|
|
|
|
x -= 2.0;
|
|
p = z * polevlf( x, P, 7 );
|
|
|
|
gdone:
|
|
|
|
if( negative )
|
|
{
|
|
p = *sgngamf * PIF/(nz * p );
|
|
}
|
|
return(p);
|
|
|
|
Small:
|
|
if( x == 0.0 )
|
|
{
|
|
goto gsing;
|
|
}
|
|
else
|
|
{
|
|
p = z / ((1.0 + 0.5772156649015329 * x) * x);
|
|
goto gdone;
|
|
}
|
|
}
|
|
|
|
/* This is the C99 version */
|
|
|
|
float tgammaf(float x)
|
|
{
|
|
int local_sgngamf=0;
|
|
return (__tgammaf_r(x, &local_sgngamf));
|
|
}
|