mirror of
https://github.com/KolibriOS/kolibrios.git
synced 2024-12-17 20:32:35 +03:00
2336060a0c
git-svn-id: svn://kolibrios.org@1906 a494cfbc-eb01-0410-851d-a64ba20cac60
180 lines
3.1 KiB
C
180 lines
3.1 KiB
C
/* __powil.c
|
|
*
|
|
* Real raised to integer power, long double precision
|
|
*
|
|
*
|
|
*
|
|
* SYNOPSIS:
|
|
*
|
|
* long double x, y, __powil();
|
|
* int n;
|
|
*
|
|
* y = __powil( x, n );
|
|
*
|
|
*
|
|
*
|
|
* DESCRIPTION:
|
|
*
|
|
* Returns argument x raised to the nth power.
|
|
* The routine efficiently decomposes n as a sum of powers of
|
|
* two. The desired power is a product of two-to-the-kth
|
|
* powers of x. Thus to compute the 32767 power of x requires
|
|
* 28 multiplications instead of 32767 multiplications.
|
|
*
|
|
*
|
|
*
|
|
* ACCURACY:
|
|
*
|
|
*
|
|
* Relative error:
|
|
* arithmetic x domain n domain # trials peak rms
|
|
* IEEE .001,1000 -1022,1023 50000 4.3e-17 7.8e-18
|
|
* IEEE 1,2 -1022,1023 20000 3.9e-17 7.6e-18
|
|
* IEEE .99,1.01 0,8700 10000 3.6e-16 7.2e-17
|
|
*
|
|
* Returns INFINITY on overflow, zero on underflow.
|
|
*
|
|
*/
|
|
|
|
/* __powil.c */
|
|
|
|
/*
|
|
Cephes Math Library Release 2.2: December, 1990
|
|
Copyright 1984, 1990 by Stephen L. Moshier
|
|
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
|
|
*/
|
|
|
|
/*
|
|
Modified for mingw
|
|
2002-07-22 Danny Smith <dannysmith@users.sourceforge.net>
|
|
*/
|
|
|
|
#ifdef __MINGW32__
|
|
#include "cephes_mconf.h"
|
|
#else
|
|
#include "mconf.h"
|
|
extern long double MAXNUML, MAXLOGL, MINLOGL;
|
|
extern long double LOGE2L;
|
|
#ifdef ANSIPROT
|
|
extern long double frexpl ( long double, int * );
|
|
#else
|
|
long double frexpl();
|
|
#endif
|
|
#endif /* __MINGW32__ */
|
|
|
|
#ifndef _SET_ERRNO
|
|
#define _SET_ERRNO(x)
|
|
#endif
|
|
|
|
long double __powil( x, nn )
|
|
long double x;
|
|
int nn;
|
|
{
|
|
long double w, y;
|
|
long double s;
|
|
int n, e, sign, asign, lx;
|
|
|
|
if( x == 0.0L )
|
|
{
|
|
if( nn == 0 )
|
|
return( 1.0L );
|
|
else if( nn < 0 )
|
|
return( INFINITYL );
|
|
else
|
|
return( 0.0L );
|
|
}
|
|
|
|
if( nn == 0 )
|
|
return( 1.0L );
|
|
|
|
|
|
if( x < 0.0L )
|
|
{
|
|
asign = -1;
|
|
x = -x;
|
|
}
|
|
else
|
|
asign = 0;
|
|
|
|
|
|
if( nn < 0 )
|
|
{
|
|
sign = -1;
|
|
n = -nn;
|
|
}
|
|
else
|
|
{
|
|
sign = 1;
|
|
n = nn;
|
|
}
|
|
|
|
/* Overflow detection */
|
|
|
|
/* Calculate approximate logarithm of answer */
|
|
s = x;
|
|
s = frexpl( s, &lx );
|
|
e = (lx - 1)*n;
|
|
if( (e == 0) || (e > 64) || (e < -64) )
|
|
{
|
|
s = (s - 7.0710678118654752e-1L) / (s + 7.0710678118654752e-1L);
|
|
s = (2.9142135623730950L * s - 0.5L + lx) * nn * LOGE2L;
|
|
}
|
|
else
|
|
{
|
|
s = LOGE2L * e;
|
|
}
|
|
|
|
if( s > MAXLOGL )
|
|
{
|
|
mtherr( "__powil", OVERFLOW );
|
|
_SET_ERRNO(ERANGE);
|
|
y = INFINITYL;
|
|
goto done;
|
|
}
|
|
|
|
if( s < MINLOGL )
|
|
{
|
|
mtherr( "__powil", UNDERFLOW );
|
|
_SET_ERRNO(ERANGE);
|
|
return(0.0L);
|
|
}
|
|
/* Handle tiny denormal answer, but with less accuracy
|
|
* since roundoff error in 1.0/x will be amplified.
|
|
* The precise demarcation should be the gradual underflow threshold.
|
|
*/
|
|
if( s < (-MAXLOGL+2.0L) )
|
|
{
|
|
x = 1.0L/x;
|
|
sign = -sign;
|
|
}
|
|
|
|
/* First bit of the power */
|
|
if( n & 1 )
|
|
y = x;
|
|
|
|
else
|
|
{
|
|
y = 1.0L;
|
|
asign = 0;
|
|
}
|
|
|
|
w = x;
|
|
n >>= 1;
|
|
while( n )
|
|
{
|
|
w = w * w; /* arg to the 2-to-the-kth power */
|
|
if( n & 1 ) /* if that bit is set, then include in product */
|
|
y *= w;
|
|
n >>= 1;
|
|
}
|
|
|
|
|
|
done:
|
|
|
|
if( asign )
|
|
y = -y; /* odd power of negative number */
|
|
if( sign < 0 )
|
|
y = 1.0L/y;
|
|
return(y);
|
|
}
|