haiku/src/kernel/core/khash.c
Axel Dörfler d92e4b19e4 Completely removed the buggy, inflexible, and incomplete new_hash_table
implementation.
Some cleanups of the other code.


git-svn-id: file:///srv/svn/repos/haiku/trunk/current@2112 a95241bf-73f2-0310-859d-f6bbb57e9c96
2002-11-29 08:30:20 +00:00

245 lines
5.2 KiB
C

/* Generic hash table
**
** Copyright 2001, Travis Geiselbrecht. All rights reserved.
** Distributed under the terms of the NewOS License.
*/
#include <KernelExport.h>
#include <malloc.h>
#include <debug.h>
#include <Errors.h>
#include <string.h>
#include <khash.h>
#define TRACE_HASH 0
#if TRACE_HASH
# define TRACE(x) dprintf x
#else
# define TRACE(x) ;
#endif
// ToDo: the hashtable is not expanded when necessary (no load factor, no nothing)
// Could try to use pools instead of malloc() for the elements - might be
// faster than the current approach.
struct hash_table {
struct hash_element **table;
int next_ptr_offset;
uint32 table_size;
int num_elements;
int flags;
int (*compare_func)(void *e, const void *key);
uint32 (*hash_func)(void *e, const void *key, uint32 range);
};
// XXX gross hack
#define NEXT_ADDR(t, e) ((void *)(((unsigned long)(e)) + (t)->next_ptr_offset))
#define NEXT(t, e) ((void *)(*(unsigned long *)NEXT_ADDR(t, e)))
#define PUT_IN_NEXT(t, e, val) (*(unsigned long *)NEXT_ADDR(t, e) = (long)(val))
static inline void *
next_element(hash_table *table, void *element)
{
// ToDo: should we use this instead of the NEXT() macro?
return (void *)(*(unsigned long *)NEXT_ADDR(table, element));
}
struct hash_table *
hash_init(uint32 table_size, int next_ptr_offset,
int compare_func(void *e, const void *key),
uint32 hash_func(void *e, const void *key, uint32 range))
{
struct hash_table *t;
unsigned int i;
if (compare_func == NULL || hash_func == NULL) {
dprintf("hash_init() called with NULL function pointer\n");
return NULL;
}
t = (struct hash_table *)malloc(sizeof(struct hash_table));
if (t == NULL)
return NULL;
t->table = (struct hash_element **)malloc(sizeof(void *) * table_size);
if (t->table == NULL) {
free(t);
return NULL;
}
for (i = 0; i < table_size; i++)
t->table[i] = NULL;
t->table_size = table_size;
t->next_ptr_offset = next_ptr_offset;
t->flags = 0;
t->num_elements = 0;
t->compare_func = compare_func;
t->hash_func = hash_func;
TRACE(("hash_init: created table %p, next_ptr_offset %d, compare_func %p, hash_func %p\n",
t, next_ptr_offset, compare_func, hash_func));
return t;
}
int
hash_uninit(struct hash_table *table)
{
ASSERT(table->num_elements == 0);
free(table->table);
free(table);
return 0;
}
status_t
hash_insert(struct hash_table *table, void *element)
{
uint32 hash;
ASSERT(table != NULL && element != NULL);
TRACE(("hash_insert: table 0x%x, element 0x%x\n", table, element));
hash = table->hash_func(element, NULL, table->table_size);
PUT_IN_NEXT(table, element, table->table[hash]);
table->table[hash] = (struct hash_element *)element;
table->num_elements++;
// ToDo: resize hash table if it's grown too much!
return 0;
}
status_t
hash_remove(struct hash_table *table, void *_element)
{
uint32 hash = table->hash_func(_element, NULL, table->table_size);
void *element, *lastElement = NULL;
for (element = table->table[hash]; element != NULL; lastElement = element, element = NEXT(table, element)) {
if (element == _element) {
if (lastElement != NULL) {
// connect the previous entry with the next one
PUT_IN_NEXT(table, lastElement, NEXT(table, element));
} else
table->table[hash] = (struct hash_element *)NEXT(table, element);
table->num_elements--;
return B_OK;
}
}
return B_ERROR;
}
void *
hash_find(struct hash_table *table, void *searchedElement)
{
uint32 hash = table->hash_func(searchedElement, NULL, table->table_size);
void *element;
for (element = table->table[hash]; element != NULL; element = NEXT(table, element)) {
if (element == searchedElement)
return element;
}
return NULL;
}
void *
hash_lookup(struct hash_table *table, const void *key)
{
uint32 hash = table->hash_func(NULL, key, table->table_size);
void *element;
for (element = table->table[hash]; element != NULL; element = NEXT(table, element)) {
if (table->compare_func(element, key) == 0)
return element;
}
return NULL;
}
struct hash_iterator *
hash_open(struct hash_table *table, struct hash_iterator *iterator)
{
if (iterator == NULL) {
iterator = (struct hash_iterator *)malloc(sizeof(struct hash_iterator));
if (iterator == NULL)
return NULL;
}
hash_rewind(table, iterator);
return iterator;
}
void
hash_close(struct hash_table *table, struct hash_iterator *iterator, bool freeIterator)
{
if (freeIterator)
free(iterator);
}
void
hash_rewind(struct hash_table *table, struct hash_iterator *iterator)
{
iterator->current = NULL;
iterator->bucket = -1;
}
void *
hash_next(struct hash_table *table, struct hash_iterator *iterator)
{
uint32 index;
restart:
if (iterator->current == NULL) {
// get next bucket
for (index = (uint32)(iterator->bucket + 1); index < table->table_size; index++) {
if (table->table[index]) {
iterator->bucket = index;
iterator->current = table->table[index];
break;
}
}
} else {
iterator->current = NEXT(table, iterator->current);
if (!iterator->current)
goto restart;
}
return iterator->current;
}
uint32
hash_hash_string(const char *string)
{
uint32 hash = 0;
char c;
// we assume hash to be at least 32 bits
while ((c = *string++) != 0) {
hash ^= hash >> 28;
hash <<= 4;
hash ^= c;
}
return hash;
}