haiku/src/kits/media/SoundConsumer.cpp
Axel Dörfler 332cc6bc3b 64 bit fixes for libmedia.so, ActivityMonitor, and Sudoku.
* Alex, I feel your pain :-)
2012-11-30 13:16:38 +01:00

701 lines
20 KiB
C++

/******************************************************************************
/
/ File: SoundConsumer.cpp
/
/ Description: Record sound from some sound-producing Node.
/
/ Copyright 1998-1999, Be Incorporated, All Rights Reserved
/
******************************************************************************/
#include "SoundConsumer.h"
#include <new>
#include <stdio.h>
#include <OS.h>
#include <scheduler.h>
#include <Buffer.h>
#include <TimeSource.h>
#include "AutoDeleter.h"
using std::nothrow;
namespace BPrivate {
// If we don't mind the format changing to another format while
// running, we can define this to 1. Look for the symbol down in the source.
#define ACCEPT_ANY_FORMAT_CHANGE 0
// Compiling with NDEBUG means "release" -- it also turns off assert() and
// other such debugging aids. By contrast, DEBUG turns on extra debugging
// in some programs.
#if !NDEBUG
#define TRACE_SOUNDCONSUMER
#endif
// Comment out the FPRINTF part of these lines to reduce verbiage.
// Enabling MESSAGE will kill performance on slower machines, because it
// prints for each message received (including each buffer).
#ifdef TRACE_SOUNDCONSUMER
#define NODE fprintf
#define MESSAGE fprintf
#else
#define NODE(x...)
#define MESSAGE(x...)
#endif
// This structure is the body of a request that we use to
// implement SetHooks().
struct set_hooks_q {
port_id reply;
void * cookie;
SoundProcessFunc process;
SoundNotifyFunc notify;
};
// All incoming buffers and Media Kit requests arrive at a
// media node in the form of messages (which are generally
// dispatched for you by your superclasses' HandleMessage
// implementations). Each message has a 'type' which is
// analagous to a BMessage's 'what' field. We'll define our
// own private message types for our SoundConsumer and
// SoundProducer to use. The BeOS reserves a range,
// 0x60000000 to 0x7fffffff, for us to use.
enum {
MSG_QUIT_NOW = 0x60000000L,
MSG_CHANGE_HOOKS
};
SoundConsumer::SoundConsumer(
const char * name,
SoundProcessFunc recordFunc,
SoundNotifyFunc notifyFunc,
void * cookie) :
BMediaNode(name ? name : "SoundConsumer"),
BBufferConsumer(B_MEDIA_RAW_AUDIO)
{
NODE(stderr, "SoundConsumer::SoundConsumer(%p, %p, %p, %p)\n", name,
recordFunc, notifyFunc, cookie);
if (!name) name = "SoundConsumer";
// Set up the hook functions.
m_recordHook = recordFunc;
m_notifyHook = notifyFunc;
m_cookie = cookie;
// Create the port that we publish as our Control Port.
char pname[32];
sprintf(pname, "%.20s Control", name);
m_port = create_port(10, pname);
// Initialize our single media_input. Make sure it knows
// the Control Port associated with the destination, and
// the index of the destination (since we only have one,
// that's trivial).
m_input.destination.port = m_port;
m_input.destination.id = 1;
sprintf(m_input.name, "%.20s Input", name);
// Set up the timing variables that we'll be using.
m_trTimeout = 0LL;
m_tpSeekAt = 0;
m_tmSeekTo = 0;
m_delta = 0;
m_seeking = false;
// Create, and run, the thread that we use to service
// the Control Port.
sprintf(pname, "%.20s Service", name);
m_thread = spawn_thread(ThreadEntry, pname, 110, this);
resume_thread(m_thread);
}
SoundConsumer::~SoundConsumer()
{
NODE(stderr, "SoundConsumer::~SoundConsumer()\n");
// Signal to our thread that it's time to go home.
write_port(m_port, MSG_QUIT_NOW, 0, 0);
status_t s;
while (wait_for_thread(m_thread, &s) == B_INTERRUPTED)
NODE(stderr, "wait_for_thread() B_INTERRUPTED\n");
delete_port(m_port);
}
status_t
SoundConsumer::SetHooks(SoundProcessFunc recordFunc, SoundNotifyFunc notifyFunc,
void* cookie)
{
// SetHooks needs to be synchronized with the service thread, else we may
// call the wrong hook function with the wrong cookie, which would be bad.
// Rather than do locking, which is expensive, we streamline the process
// by sending our service thread a request to change the hooks, and waiting
// for the acknowledge.
status_t err = B_OK;
set_hooks_q cmd;
cmd.process = recordFunc;
cmd.notify = notifyFunc;
cmd.cookie = cookie;
// If we're not in the service thread, we need to round-trip a message.
if (find_thread(0) != m_thread) {
cmd.reply = create_port(1, "SetHooks reply");
// Send the private message to our service thread.
err = write_port(ControlPort(), MSG_CHANGE_HOOKS, &cmd, sizeof(cmd));
if (err >= 0) {
int32 code;
// Wait for acknowledge from the service thread.
err = read_port_etc(cmd.reply, &code, 0, 0, B_TIMEOUT, 6000000LL);
if (err > 0) err = 0;
NODE(stderr, "SoundConsumer::SetHooks read reply: %#" B_PRIx32
"\n", err);
}
// Clean up.
delete_port(cmd.reply);
} else {
// Within the service thread, it's OK to just go ahead and do the
// change.
DoHookChange(&cmd);
}
return err;
}
// #pragma mark -BMediaNode-derived methods
port_id
SoundConsumer::ControlPort() const
{
return m_port;
}
BMediaAddOn*
SoundConsumer::AddOn(int32 * internal_id) const
{
// This object is instantiated inside an application.
// Therefore, it has no add-on.
if (internal_id) *internal_id = 0;
return 0;
}
void
SoundConsumer::Start(bigtime_t performance_time)
{
// Since we are a consumer and just blindly accept buffers that are
// thrown at us, we don't need to do anything special in Start()/Stop().
// If we were (also) a producer, we'd have to be more elaborate.
// The only thing we do is immediately perform any queued Seek based on
// the start time, which is the right thing to do (seeing as we were
// Seek()-ed when we weren't started).
if (m_seeking) {
m_delta = performance_time - m_tmSeekTo;
m_seeking = false;
}
if (m_notifyHook)
(*m_notifyHook)(m_cookie, B_WILL_START, performance_time);
else
Notify(B_WILL_START, performance_time);
}
void
SoundConsumer::Stop(bigtime_t performance_time, bool immediate)
{
// Since we are a consumer and just blindly accept buffers that are
// thrown at us, we don't need to do anything special in Start()/Stop().
// If we were (also) a producer, we'd have to be more elaborate.
// Note that this is not strictly in conformance with The Rules,
// but since this is not an add-on Node for use with any application;
// it's a Node over which we have complete control, we can live with
// treating buffers received before the start time or after the stop
// time as any other buffer.
if (m_notifyHook)
(*m_notifyHook)(m_cookie, B_WILL_STOP, performance_time, immediate);
else
Notify(B_WILL_STOP, performance_time, immediate);
}
void
SoundConsumer::Seek(bigtime_t media_time, bigtime_t performance_time)
{
// Seek() on a consumer just serves to offset the time stamp
// of received buffers passed to our Record hook function.
// In the hook function, you may wish to save those time stamps
// to disk or otherwise store them. You may also want to
// synchronize this node's media time with an upstream
// producer's media time to make this offset meaningful.
if (m_notifyHook)
(*m_notifyHook)(m_cookie, B_WILL_SEEK, performance_time, media_time);
else
Notify(B_WILL_SEEK, performance_time, media_time);
m_tpSeekAt = performance_time;
m_tmSeekTo = media_time;
m_seeking = true;
}
void
SoundConsumer::SetRunMode(run_mode mode)
{
if (mode == BMediaNode::B_OFFLINE) {
// BMediaNode::B_OFFLINE means we don't need to run in
// real time. So, we shouldn't run as a real time
// thread.
int32 new_prio = suggest_thread_priority(B_OFFLINE_PROCESSING);
set_thread_priority(m_thread, new_prio);
} else {
// We're running in real time, so we'd better have
// a big enough thread priority to handle it!
// Here's where those magic scheduler values
// come from:
//
// * In the worst case, we process one buffer per
// reschedule (we get rescheduled when we go to
// look for a message on our Control Port), so
// in order to keep up with the incoming buffers,
// the duration of one buffer becomes our
// scheduling period. If we don't know anything
// about the buffers, we pick a reasonable
// default.
// * We're a simple consumer, so we don't have to
// be too picky about the jitter. Half a period
// of jitter means that we'd have to get two
// consecutive worst-case reschedules before
// we'd fall behind.
// * The amount of time we spend processing is
// our ProcessingLatency().
bigtime_t period = 10000;
if (buffer_duration(m_input.format.u.raw_audio) > 0)
period = buffer_duration(m_input.format.u.raw_audio);
// assuming we're running for 500 us or less per buffer
int32 new_prio = suggest_thread_priority(B_AUDIO_RECORDING,
period, period / 2, ProcessingLatency());
set_thread_priority(m_thread, new_prio);
}
}
void
SoundConsumer::TimeWarp(bigtime_t at_real_time, bigtime_t to_performance_time)
{
// Since buffers will come pre-time-stamped, we only need to look
// at them, so we can ignore the time warp as a consumer.
if (m_notifyHook) {
(*m_notifyHook)(m_cookie, B_WILL_TIMEWARP, at_real_time,
to_performance_time);
} else
Notify(B_WILL_TIMEWARP, at_real_time, to_performance_time);
}
void
SoundConsumer::Preroll()
{
// There is nothing for us to do in Preroll()
}
void
SoundConsumer::SetTimeSource(BTimeSource* /* time_source */)
{
// We don't need to do anything special to take note of the
// fact that the time source changed, because we get our timing
// information from the buffers we receive.
}
status_t
SoundConsumer::HandleMessage(int32 message, const void* data, size_t size)
{
// Check with each of our superclasses to see if they
// understand the message. If none of them do, call
// BMediaNode::HandleBadMessage().
if (BBufferConsumer::HandleMessage(message, data, size) < 0
&& BMediaNode::HandleMessage(message, data, size) < 0) {
HandleBadMessage(message, data, size);
return B_ERROR;
}
return B_OK;
}
// #pragma mark - BBufferConsumer-derived methods
status_t
SoundConsumer::AcceptFormat(const media_destination& dest, media_format* format)
{
// We only accept formats aimed at our single input.
if (dest != m_input.destination)
return B_MEDIA_BAD_DESTINATION;
if (format->type <= 0) {
// If no format is specified, we say we want raw audio.
format->type = B_MEDIA_RAW_AUDIO;
format->u.raw_audio = media_raw_audio_format::wildcard;
} else if (format->type != B_MEDIA_RAW_AUDIO) {
// If a non-raw-audio format is specified, we tell the world what
// we want, and that the specified format was unacceptable to us.
format->type = B_MEDIA_RAW_AUDIO;
format->u.raw_audio = media_raw_audio_format::wildcard;
return B_MEDIA_BAD_FORMAT;
}
#if !ACCEPT_ANY_FORMAT_CHANGE
// If we're already connected, and this format doesn't go with the
// format in effect, we dont' accept this new format.
if (!format_is_compatible(*format, m_input.format)) {
*format = m_input.format;
return B_MEDIA_BAD_FORMAT;
}
#endif
// I guess we're OK by now, because we have no particular needs as
// far as frame rate, sample format, etc go.
return B_OK;
}
status_t
SoundConsumer::GetNextInput(int32* cookie, media_input* out_input)
{
NODE(stderr, "SoundConsumer: GetNextInput()\n");
// The "next" is kind of misleading, since it's also used for
// getting the first (and only) input.
if (*cookie == 0) {
if (m_input.source == media_source::null) {
// If there's no current connection, make sure we return a
// reasonable format telling the world we accept any raw audio.
m_input.format.type = B_MEDIA_RAW_AUDIO;
m_input.format.u.raw_audio = media_raw_audio_format::wildcard;
m_input.node = Node();
m_input.destination.port = ControlPort();
m_input.destination.id = 1;
}
*out_input = m_input;
*cookie = 1;
return B_OK;
}
// There's only one input.
return B_BAD_INDEX;
}
void
SoundConsumer::DisposeInputCookie(int32 /* cookie */)
{
// We didn't allocate any memory or set any state in GetNextInput()
// so this function is a no-op.
}
void
SoundConsumer::BufferReceived(BBuffer* buffer)
{
NODE(stderr, "SoundConsumer::BufferReceived()\n");
// Whee, a buffer! Update the seek info, if necessary.
if (m_seeking && buffer->Header()->start_time >= m_tpSeekAt) {
m_delta = m_tpSeekAt - m_tmSeekTo;
m_seeking = false;
}
// If there is a record hook, let the interested party have at it!
if (m_recordHook) {
(*m_recordHook)(m_cookie, buffer->Header()->start_time-m_delta,
buffer->Data(), buffer->Header()->size_used,
m_input.format.u.raw_audio);
} else {
Record(buffer->Header()->start_time-m_delta, buffer->Data(),
buffer->Header()->size_used, m_input.format.u.raw_audio);
}
// Buffers should ALWAYS be recycled, else whomever is producing them
// will starve.
buffer->Recycle();
}
void
SoundConsumer::ProducerDataStatus(const media_destination& for_whom,
int32 status, bigtime_t at_media_time)
{
if (for_whom != m_input.destination)
return;
// Tell whomever is interested that the upstream producer will or won't
// send more data in the immediate future.
if (m_notifyHook) {
(*m_notifyHook)(m_cookie, B_PRODUCER_DATA_STATUS, status,
at_media_time);
} else
Notify(B_PRODUCER_DATA_STATUS, status, at_media_time);
}
status_t
SoundConsumer::GetLatencyFor(const media_destination& for_whom,
bigtime_t* out_latency, media_node_id* out_timesource)
{
// We only accept requests for the one-and-only input of our Node.
if (for_whom != m_input.destination)
return B_MEDIA_BAD_DESTINATION;
// Tell the world about our latency information (overridable by user).
*out_latency = TotalLatency();
*out_timesource = TimeSource()->Node().node;
return B_OK;
}
status_t
SoundConsumer::Connected(const media_source& producer,
const media_destination& where, const media_format& with_format,
media_input* out_input)
{
NODE(stderr, "SoundConsumer::Connected()\n");
// Only accept connection requests when we're not already connected.
if (m_input.source != media_source::null)
return B_MEDIA_BAD_DESTINATION;
// Only accept connection requests on the one-and-only available input.
if (where != m_input.destination)
return B_MEDIA_BAD_DESTINATION;
// Other than that, we accept pretty much anything. The format has been
// pre-cleared through AcceptFormat(), and we accept any format anyway.
m_input.source = producer;
m_input.format = with_format;
// Tell whomever is interested that there's now a connection.
if (m_notifyHook)
(*m_notifyHook)(m_cookie, B_CONNECTED, m_input.name);
else
Notify(B_CONNECTED, m_input.name);
// This is the most important line -- return our connection information
// to the world so it can use it!
*out_input = m_input;
return B_OK;
}
void
SoundConsumer::Disconnected(const media_source& producer,
const media_destination& where)
{
// We can't disconnect something which isn't us.
if (where != m_input.destination)
return;
// We can't disconnect from someone who isn't connected to us.
if (producer != m_input.source)
return;
// Tell the interested party that it's time to leave.
if (m_notifyHook)
(*m_notifyHook)(m_cookie, B_DISCONNECTED);
else
Notify(B_DISCONNECTED);
// Mark ourselves as not-connected.
m_input.source = media_source::null;
}
status_t
SoundConsumer::FormatChanged(const media_source& producer,
const media_destination& consumer, int32 from_change_count,
const media_format& format)
{
NODE(stderr, "SoundConsumer::Connected()\n");
// The up-stream guy feels like changing the format. If we can accept
// arbitrary format changes, we just say "OK". If, however, we're recording
// to a file, that's not such a good idea; we only accept format changes
// that are compatible with the format we're already using. You set this
// behaviour at compile time by defining ACCEPT_ANY_FORMAT_CHANGE to 1 or
// 0.
status_t err = B_OK;
#if ACCEPT_ANY_FORMAT_CHANGE
media_format fmt(format);
err = AcceptFormat(m_input.destination, &fmt);
#else
if (m_input.source != media_source::null) {
err = format_is_compatible(format, m_input.format) ? B_OK
: B_MEDIA_BAD_FORMAT;
}
#endif
if (err >= B_OK) {
m_input.format = format;
if (m_notifyHook) {
(*m_notifyHook)(m_cookie, B_FORMAT_CHANGED,
&m_input.format.u.raw_audio);
} else
Notify(B_FORMAT_CHANGED, &m_input.format.u.raw_audio);
}
return err;
}
void
SoundConsumer::DoHookChange(void* msg)
{
// Tell the old guy we're changing the hooks ...
if (m_notifyHook)
(*m_notifyHook)(m_cookie, B_HOOKS_CHANGED);
else
Notify(B_HOOKS_CHANGED);
// ... and then do it.
set_hooks_q * ptr = (set_hooks_q *)msg;
m_recordHook = ptr->process;
m_notifyHook = ptr->notify;
m_cookie = ptr->cookie;
}
status_t
SoundConsumer::ThreadEntry(void* cookie)
{
SoundConsumer* consumer = (SoundConsumer*)cookie;
consumer->ServiceThread();
return 0;
}
void
SoundConsumer::ServiceThread()
{
// The Big Bad ServiceThread receives messages aimed at this
// Node and dispatches them (typically to HandleMessage()).
// If we were a Producer, we might have to do finicky timing and
// queued Start()/Stop() processing in here. But we ain't.
// A media kit message will never be bigger than B_MEDIA_MESSAGE_SIZE.
// Avoid wasing stack space by dynamically allocating at start.
char* msg = new (nothrow) char[B_MEDIA_MESSAGE_SIZE];
if (msg == NULL)
return;
// Make sure we clean up this data when we exit the function.
ArrayDeleter<char> _(msg);
int bad = 0;
while (true) {
// Call read_port_etc() with a timeout derived from a virtual function,
// to allow clients to do special processing if necessary.
bigtime_t timeout = Timeout();
int32 code = 0;
status_t err = read_port_etc(m_port, &code, msg, B_MEDIA_MESSAGE_SIZE,
B_TIMEOUT, timeout);
MESSAGE(stderr, "SoundConsumer::ServiceThread() port %" B_PRId32
" message %#" B_PRIx32 "\n", m_port, code);
// If we received a message, err will be the size of the message
// (including 0).
if (err >= B_OK) {
// Real messages reset the timeout time.
m_trTimeout = 0;
bad = 0;
if (code == MSG_QUIT_NOW) {
// Check for our private stop message.
if (m_notifyHook)
(*m_notifyHook)(m_cookie, B_NODE_DIES, 0);
else
Notify(B_NODE_DIES, 0);
break;
} else if (code == MSG_CHANGE_HOOKS) {
// Else check for our private change-hooks message.
DoHookChange(msg);
// Write acknowledge to waiting thread.
write_port(((set_hooks_q *)msg)->reply, 0, 0, 0);
} else {
// Else it has to be a regular media kit message;
// go ahead and dispatch it.
HandleMessage(code, msg, err);
}
} else if (err == B_TIMED_OUT) {
// Timing out means that there was no buffer. Tell the interested
// party.
if (m_notifyHook)
(*m_notifyHook)(m_cookie, B_OP_TIMED_OUT, timeout);
else
Notify(B_OP_TIMED_OUT, timeout);
} else {
// Other errors are bad.
MESSAGE(stderr, "SoundConsumer: error %#" B_PRIx32 "\n", err);
bad++;
// If we receive three bad reads with no good messages inbetween,
// things are probably not going to improve (like the port
// disappeared or something) so we call it a day.
if (bad > 3) {
if (m_notifyHook)
(*m_notifyHook)(m_cookie, B_NODE_DIES, bad, err, code, msg);
else
Notify(B_NODE_DIES, bad, err, code, msg);
break;
}
}
}
}
bigtime_t
SoundConsumer::Timeout()
{
// Timeout() is called for each call to read_port_etc() in the service
// thread to figure out a reasonable time-out value. The default behaviour
// we've picked is to exponentially back off from one second and upwards.
// While it's true that 44 back-offs will run us out of precision in a
// bigtime_t, the time to actually reach 44 consecutive back-offs is longer
// than the expected market longevity of just about any piece of real
// estate. Is that the sound of an impending year-fifteen-million software
// problem? :-)
m_trTimeout = (m_trTimeout < 1000000) ? 1000000 : m_trTimeout*2;
return m_trTimeout;
}
bigtime_t
SoundConsumer::ProcessingLatency()
{
// We're saying it takes us 500 us to process each buffer. If all we do is
// copy the data, it probably takes much less than that, but it doesn't
// hurt to be slightly conservative.
return 500LL;
}
bigtime_t
SoundConsumer::TotalLatency()
{
// Had we been a producer that passes buffers on, we'd have to
// include downstream latency in this value. But we are not.
return ProcessingLatency();
}
// #pragma mark -
void
SoundConsumer::Record(bigtime_t /*time*/, const void* /*data*/,
size_t /*size*/, const media_raw_audio_format& /*format*/)
{
// If there is no record hook installed, we instead call this function
// for received buffers.
}
void
SoundConsumer::Notify(int32 /*cause*/, ...)
{
// If there is no notification hook installed, we instead call this
// function for giving notification of various events.
}
}