haiku/headers/private/interface/clipping.h
Stefano Ceccherini 61c93e14bc Researched and removed a TODO item
git-svn-id: file:///srv/svn/repos/haiku/trunk/current@8358 a95241bf-73f2-0310-859d-f6bbb57e9c96
2004-07-09 07:13:03 +00:00

148 lines
3.2 KiB
C

#ifndef __CLIPPING_H
#define __CLIPPING_H
#include <Region.h>
#include <SupportDefs.h>
/* Some methods to manipulate clipping_rects.
basically you can do almost everything you do with
BRects, just that clipping_rects can only have integer
coordinates (a thing that makes these perfect for drawing
calculations).
*/
// Returns the union of the given rects.
static inline clipping_rect
union_rect(clipping_rect r1, clipping_rect r2)
{
clipping_rect rect;
rect.left = min_c(r1.left, r2.left);
rect.top = min_c(r1.top, r2.top);
rect.right = max_c(r1.right, r2.right);
rect.bottom = max_c(r1.bottom, r2.bottom);
return rect;
}
// Returns the intersection of the given rects.
// The caller should check if the returned rect is valid. If it isn't valid,
// then the two rectangles don't intersect.
static inline clipping_rect
sect_rect(clipping_rect r1, clipping_rect r2)
{
clipping_rect rect;
rect.left = max_c(r1.left, r2.left);
rect.top = max_c(r1.top, r2.top);
rect.right = min_c(r1.right, r2.right);
rect.bottom = min_c(r1.bottom, r2.bottom);
return rect;
}
// Adds the given offsets to the given rect.
static inline void
offset_rect(clipping_rect &rect, int32 x, int32 y)
{
rect.left += x;
rect.top += y;
rect.right += x;
rect.bottom += y;
}
// Converts the given clipping_rect to a BRect
static inline BRect
to_BRect(clipping_rect rect)
{
return BRect((float)rect.left, (float)rect.top, (float)rect.right, (float)rect.bottom);
}
// Converts the given BRect to a clipping_rect.
static inline clipping_rect
to_clipping_rect(BRect rect)
{
clipping_rect clipRect;
clipRect.left = (int32)floor(rect.left);
clipRect.top = (int32)floor(rect.top);
clipRect.right = (int32)ceil(rect.right);
clipRect.bottom = (int32)ceil(rect.bottom);
return clipRect;
}
// Checks if the given point lies in the given rect's area
static inline bool
point_in(clipping_rect rect, int32 px, int32 py)
{
if (px >= rect.left && px <= rect.right
&& py >= rect.top && py <= rect.bottom)
return true;
return false;
}
// Same as above, but it accepts a BPoint parameter
static inline bool
point_in(clipping_rect rect, BPoint pt)
{
if (pt.x >= rect.left && pt.x <= rect.right
&& pt.y >= rect.top && pt.y <= rect.bottom)
return true;
return false;
}
// Checks if the rect is valid
static inline bool
valid_rect(clipping_rect rect)
{
if (rect.left <= rect.right && rect.top <= rect.bottom)
return true;
return false;
}
// Checks if the two rects intersect.
static inline bool
rects_intersect(clipping_rect rectA, clipping_rect rectB)
{
// We behave like BRect::Intersects() does:
// we return false if one of the two rects is not valid
if (!valid_rect(rectA) || !valid_rect(rectB))
return false;
// TODO: Is there a better algorithm ?
// the one we used is faster than
// ' return valid_rect(sect_rect(rectA, rectB)); ', though.
return !(rectA.left > rectB.right || rectA.top > rectB.bottom
|| rectA.right < rectB.left || rectA.bottom < rectB.top);
}
// Returns the width of the given rect.
static inline int32
rect_width(clipping_rect rect)
{
return rect.right - rect.left;
}
// Returns the height of the given rect.
static inline int32
rect_height(clipping_rect rect)
{
return rect.bottom - rect.top;
}
#endif // __CLIPPING_H