03bab65450
arch_timer_set_hardware_timer(). This was harmless, at least with our current x86 timers implementation, since they checked for minimum timeouts. Very small cleanup (now that the file is compiled as C++). git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@35505 a95241bf-73f2-0310-859d-f6bbb57e9c96
303 lines
6.6 KiB
C++
303 lines
6.6 KiB
C++
/*
|
|
* Copyright 2002-2009, Haiku. All rights reserved.
|
|
* Distributed under the terms of the MIT License.
|
|
*
|
|
* Copyright 2001, Travis Geiselbrecht. All rights reserved.
|
|
* Distributed under the terms of the NewOS License.
|
|
*/
|
|
|
|
/*! Policy info for timers */
|
|
|
|
#include <timer.h>
|
|
|
|
#include <OS.h>
|
|
|
|
#include <arch/timer.h>
|
|
#include <boot/kernel_args.h>
|
|
#include <cpu.h>
|
|
#include <smp.h>
|
|
#include <thread.h>
|
|
#include <util/AutoLock.h>
|
|
|
|
|
|
struct per_cpu_timer_data {
|
|
spinlock lock;
|
|
timer* volatile events;
|
|
timer* volatile current_event;
|
|
vint32 current_event_in_progress;
|
|
};
|
|
|
|
static per_cpu_timer_data sPerCPU[B_MAX_CPU_COUNT];
|
|
|
|
|
|
//#define TRACE_TIMER
|
|
#ifdef TRACE_TIMER
|
|
# define TRACE(x) dprintf x
|
|
#else
|
|
# define TRACE(x) ;
|
|
#endif
|
|
|
|
|
|
status_t
|
|
timer_init(kernel_args *args)
|
|
{
|
|
TRACE(("timer_init: entry\n"));
|
|
|
|
return arch_init_timer(args);
|
|
}
|
|
|
|
|
|
/*! NOTE: expects interrupts to be off */
|
|
static void
|
|
add_event_to_list(timer *event, timer * volatile *list)
|
|
{
|
|
timer *next;
|
|
timer *last = NULL;
|
|
|
|
// stick it in the event list
|
|
for (next = *list; next; last = next, next = (timer *)next->next) {
|
|
if ((bigtime_t)next->schedule_time >= (bigtime_t)event->schedule_time)
|
|
break;
|
|
}
|
|
|
|
if (last != NULL) {
|
|
event->next = last->next;
|
|
last->next = event;
|
|
} else {
|
|
event->next = next;
|
|
*list = event;
|
|
}
|
|
}
|
|
|
|
|
|
int32
|
|
timer_interrupt()
|
|
{
|
|
timer *event;
|
|
spinlock *spinlock;
|
|
per_cpu_timer_data& cpuData = sPerCPU[smp_get_current_cpu()];
|
|
int32 rc = B_HANDLED_INTERRUPT;
|
|
|
|
TRACE(("timer_interrupt: time %lld, cpu %ld\n", system_time(),
|
|
smp_get_current_cpu()));
|
|
|
|
spinlock = &cpuData.lock;
|
|
|
|
acquire_spinlock(spinlock);
|
|
|
|
event = cpuData.events;
|
|
while (event != NULL && ((bigtime_t)event->schedule_time < system_time())) {
|
|
// this event needs to happen
|
|
int mode = event->flags;
|
|
|
|
cpuData.events = (timer *)event->next;
|
|
cpuData.current_event = event;
|
|
cpuData.current_event_in_progress = 1;
|
|
event->schedule_time = 0;
|
|
|
|
release_spinlock(spinlock);
|
|
|
|
TRACE(("timer_interrupt: calling hook %p for event %p\n", event->hook,
|
|
event));
|
|
|
|
// call the callback
|
|
// note: if the event is not periodic, it is ok
|
|
// to delete the event structure inside the callback
|
|
if (event->hook) {
|
|
bool callHook = true;
|
|
|
|
// we may need to acquire the thread spinlock
|
|
if ((mode & B_TIMER_ACQUIRE_THREAD_LOCK) != 0) {
|
|
GRAB_THREAD_LOCK();
|
|
|
|
// If the event has been cancelled in the meantime, we don't
|
|
// call the hook anymore.
|
|
if (cpuData.current_event == NULL)
|
|
callHook = false;
|
|
}
|
|
|
|
if (callHook)
|
|
rc = event->hook(event);
|
|
|
|
if ((mode & B_TIMER_ACQUIRE_THREAD_LOCK) != 0)
|
|
RELEASE_THREAD_LOCK();
|
|
}
|
|
|
|
cpuData.current_event_in_progress = 0;
|
|
|
|
acquire_spinlock(spinlock);
|
|
|
|
if ((mode & ~B_TIMER_FLAGS) == B_PERIODIC_TIMER
|
|
&& cpuData.current_event != NULL) {
|
|
// we need to adjust it and add it back to the list
|
|
bigtime_t scheduleTime = system_time() + event->period;
|
|
if (scheduleTime == 0) {
|
|
// if we wrapped around and happen to hit zero, set
|
|
// it to one, since zero represents not scheduled
|
|
scheduleTime = 1;
|
|
}
|
|
event->schedule_time = (int64)scheduleTime;
|
|
add_event_to_list(event, &cpuData.events);
|
|
}
|
|
|
|
cpuData.current_event = NULL;
|
|
|
|
event = cpuData.events;
|
|
}
|
|
|
|
// setup the next hardware timer
|
|
if (cpuData.events != NULL) {
|
|
bigtime_t timeout = (bigtime_t)cpuData.events->schedule_time
|
|
- system_time();
|
|
if (timeout <= 0)
|
|
timeout = 1;
|
|
arch_timer_set_hardware_timer(timeout);
|
|
}
|
|
|
|
release_spinlock(spinlock);
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
status_t
|
|
add_timer(timer *event, timer_hook hook, bigtime_t period, int32 flags)
|
|
{
|
|
bigtime_t scheduleTime;
|
|
bigtime_t currentTime = system_time();
|
|
cpu_status state;
|
|
|
|
if (event == NULL || hook == NULL || period < 0)
|
|
return B_BAD_VALUE;
|
|
|
|
TRACE(("add_timer: event %p\n", event));
|
|
|
|
scheduleTime = period;
|
|
if ((flags & ~B_TIMER_FLAGS) != B_ONE_SHOT_ABSOLUTE_TIMER)
|
|
scheduleTime += currentTime;
|
|
if (scheduleTime == 0)
|
|
scheduleTime = 1;
|
|
|
|
event->schedule_time = (int64)scheduleTime;
|
|
event->period = period;
|
|
event->hook = hook;
|
|
event->flags = flags;
|
|
|
|
state = disable_interrupts();
|
|
int currentCPU = smp_get_current_cpu();
|
|
per_cpu_timer_data& cpuData = sPerCPU[currentCPU];
|
|
acquire_spinlock(&cpuData.lock);
|
|
|
|
add_event_to_list(event, &cpuData.events);
|
|
event->cpu = currentCPU;
|
|
|
|
// if we were stuck at the head of the list, set the hardware timer
|
|
if (event == cpuData.events)
|
|
arch_timer_set_hardware_timer(scheduleTime - currentTime);
|
|
|
|
release_spinlock(&cpuData.lock);
|
|
restore_interrupts(state);
|
|
|
|
return B_OK;
|
|
}
|
|
|
|
|
|
bool
|
|
cancel_timer(timer *event)
|
|
{
|
|
TRACE(("cancel_timer: event %p\n", event));
|
|
|
|
InterruptsLocker _;
|
|
|
|
// lock the right CPU spinlock
|
|
int cpu = event->cpu;
|
|
SpinLocker spinLocker;
|
|
while (true) {
|
|
if (cpu >= B_MAX_CPU_COUNT)
|
|
return false;
|
|
|
|
spinLocker.SetTo(sPerCPU[cpu].lock, false);
|
|
if (cpu == event->cpu)
|
|
break;
|
|
|
|
// cpu field changed while we were trying to lock
|
|
spinLocker.Unlock();
|
|
cpu = event->cpu;
|
|
}
|
|
|
|
per_cpu_timer_data& cpuData = sPerCPU[cpu];
|
|
|
|
timer *current = cpuData.events;
|
|
|
|
if (event != cpuData.current_event) {
|
|
// The timer hook is not yet being executed.
|
|
timer *last = NULL;
|
|
|
|
while (current != NULL) {
|
|
if (current == event) {
|
|
// we found it
|
|
if (current == cpuData.events)
|
|
cpuData.events = current->next;
|
|
else
|
|
last->next = current->next;
|
|
current->next = NULL;
|
|
// break out of the whole thing
|
|
break;
|
|
}
|
|
last = current;
|
|
current = current->next;
|
|
}
|
|
|
|
// If not found, we assume this was a one-shot timer and has already
|
|
// fired.
|
|
if (current == NULL)
|
|
return true;
|
|
|
|
// invalidate CPU field
|
|
event->cpu = 0xffff;
|
|
|
|
// If on the current CPU, also reset the hardware timer.
|
|
if (cpu == smp_get_current_cpu()) {
|
|
if (cpuData.events == NULL)
|
|
arch_timer_clear_hardware_timer();
|
|
else {
|
|
arch_timer_set_hardware_timer(
|
|
(bigtime_t)cpuData.events->schedule_time - system_time());
|
|
}
|
|
}
|
|
|
|
return false;
|
|
} else {
|
|
// The timer hook is currently being executed. We clear the current
|
|
// event so that timer_interrupt() will not reschedule periodic timers.
|
|
cpuData.current_event = NULL;
|
|
current = event;
|
|
|
|
// Unless this is a kernel-private timer that also requires the thread
|
|
// lock to be held while calling the event hook, we'll have to wait
|
|
// for the hook to complete. When called from the timer hook we don't
|
|
// wait either, of course.
|
|
if ((event->flags & B_TIMER_ACQUIRE_THREAD_LOCK) == 0
|
|
|| cpu == smp_get_current_cpu()) {
|
|
spinLocker.Unlock();
|
|
|
|
while (cpuData.current_event_in_progress == 1) {
|
|
PAUSE();
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
spin(bigtime_t microseconds)
|
|
{
|
|
bigtime_t time = system_time();
|
|
|
|
while ((system_time() - time) < microseconds) {
|
|
PAUSE();
|
|
}
|
|
}
|