d018f3568f
The syscall is not yet connected, and the code has not yet been tested. git-svn-id: file:///srv/svn/repos/haiku/trunk/current@7179 a95241bf-73f2-0310-859d-f6bbb57e9c96
1833 lines
41 KiB
C
1833 lines
41 KiB
C
/* Threading routines */
|
|
|
|
/*
|
|
** Copyright 2002-2004, The OpenBeOS Team. All rights reserved.
|
|
** Distributed under the terms of the OpenBeOS License.
|
|
**
|
|
** Copyright 2001-2002, Travis Geiselbrecht. All rights reserved.
|
|
** Distributed under the terms of the NewOS License.
|
|
*/
|
|
|
|
#include <OS.h>
|
|
|
|
#include <thread.h>
|
|
#include <team.h>
|
|
#include <khash.h>
|
|
#include <int.h>
|
|
#include <smp.h>
|
|
#include <cpu.h>
|
|
#include <arch/vm.h>
|
|
#include <user_runtime.h>
|
|
#include <boot/kernel_args.h>
|
|
#include <kimage.h>
|
|
#include <ksignal.h>
|
|
#include <syscalls.h>
|
|
#include <tls.h>
|
|
|
|
#include <sys/resource.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
//#define TRACE_THREAD
|
|
#ifdef TRACE_THREAD
|
|
# define TRACE(x) dprintf x
|
|
#else
|
|
# define TRACE(x) ;
|
|
#endif
|
|
|
|
|
|
#define THREAD_MAX_MESSAGE_SIZE 65536
|
|
|
|
static status_t receive_data_etc(thread_id *_sender, void *buffer, size_t bufferSize, int32 flags);
|
|
|
|
struct thread_key {
|
|
thread_id id;
|
|
};
|
|
|
|
// global
|
|
spinlock thread_spinlock = 0;
|
|
|
|
// thread list
|
|
static struct thread *sIdleThreads[B_MAX_CPU_COUNT];
|
|
static void *sThreadHash = NULL;
|
|
static thread_id sNextThreadID = 1;
|
|
|
|
static sem_id sSnoozeSem = -1;
|
|
|
|
// death stacks - used temporarily as a thread cleans itself up
|
|
struct death_stack {
|
|
region_id area;
|
|
addr_t address;
|
|
bool in_use;
|
|
};
|
|
static struct death_stack *sDeathStacks;
|
|
static unsigned int sNumDeathStacks;
|
|
static unsigned int volatile sDeathStackBitmap;
|
|
static sem_id sDeathStackSem;
|
|
|
|
// The dead queue is used as a pool from which to retrieve and reuse previously
|
|
// allocated thread structs when creating a new thread. It should be gone once
|
|
// the slab allocator is in.
|
|
struct thread_queue dead_q;
|
|
|
|
static void thread_kthread_entry(void);
|
|
static void thread_kthread_exit(void);
|
|
|
|
|
|
static void
|
|
insert_thread_into_team(struct team *p, struct thread *t)
|
|
{
|
|
t->team_next = p->thread_list;
|
|
p->thread_list = t;
|
|
p->num_threads++;
|
|
if (p->num_threads == 1) {
|
|
// this was the first thread
|
|
p->main_thread = t;
|
|
}
|
|
t->team = p;
|
|
}
|
|
|
|
|
|
static void
|
|
remove_thread_from_team(struct team *p, struct thread *t)
|
|
{
|
|
struct thread *temp, *last = NULL;
|
|
|
|
for (temp = p->thread_list; temp != NULL; temp = temp->team_next) {
|
|
if (temp == t) {
|
|
if (last == NULL)
|
|
p->thread_list = temp->team_next;
|
|
else
|
|
last->team_next = temp->team_next;
|
|
|
|
p->num_threads--;
|
|
break;
|
|
}
|
|
last = temp;
|
|
}
|
|
}
|
|
|
|
|
|
static int
|
|
thread_struct_compare(void *_t, const void *_key)
|
|
{
|
|
struct thread *t = _t;
|
|
const struct thread_key *key = _key;
|
|
|
|
if (t->id == key->id)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
static uint32
|
|
thread_struct_hash(void *_t, const void *_key, uint32 range)
|
|
{
|
|
struct thread *t = _t;
|
|
const struct thread_key *key = _key;
|
|
|
|
if (t != NULL)
|
|
return t->id % range;
|
|
|
|
return key->id % range;
|
|
}
|
|
|
|
|
|
static struct thread *
|
|
create_thread_struct(const char *name)
|
|
{
|
|
struct thread *t;
|
|
cpu_status state;
|
|
char temp[64];
|
|
|
|
state = disable_interrupts();
|
|
GRAB_THREAD_LOCK();
|
|
t = thread_dequeue(&dead_q);
|
|
RELEASE_THREAD_LOCK();
|
|
restore_interrupts(state);
|
|
|
|
if (t == NULL) {
|
|
t = (struct thread *)malloc(sizeof(struct thread));
|
|
if (t == NULL)
|
|
goto err;
|
|
}
|
|
|
|
strlcpy(t->name, name, B_OS_NAME_LENGTH);
|
|
|
|
t->id = atomic_add(&sNextThreadID, 1);
|
|
t->team = NULL;
|
|
t->cpu = NULL;
|
|
t->sem_blocking = -1;
|
|
t->fault_handler = 0;
|
|
t->page_faults_allowed = 1;
|
|
t->kernel_stack_region_id = -1;
|
|
t->kernel_stack_base = 0;
|
|
t->user_stack_region_id = -1;
|
|
t->user_stack_base = 0;
|
|
t->user_local_storage = 0;
|
|
t->kernel_errno = 0;
|
|
t->team_next = NULL;
|
|
t->queue_next = NULL;
|
|
t->priority = -1;
|
|
t->args1 = NULL; t->args2 = NULL;
|
|
t->sig_pending = 0;
|
|
t->sig_block_mask = 0;
|
|
memset(t->sig_action, 0, 32 * sizeof(struct sigaction));
|
|
t->in_kernel = true;
|
|
t->user_time = 0;
|
|
t->kernel_time = 0;
|
|
t->last_time = 0;
|
|
t->last_time_type = KERNEL_TIME;
|
|
t->return_code = 0;
|
|
t->return_flags = 0;
|
|
|
|
sprintf(temp, "thread_0x%lx_retcode_sem", t->id);
|
|
t->return_code_sem = create_sem(0, temp);
|
|
if (t->return_code_sem < 0)
|
|
goto err1;
|
|
|
|
sprintf(temp, "%s data write sem", t->name);
|
|
t->msg.write_sem = create_sem(1, temp);
|
|
if (t->msg.write_sem < 0)
|
|
goto err2;
|
|
|
|
sprintf(temp, "%s data read sem", t->name);
|
|
t->msg.read_sem = create_sem(0, temp);
|
|
if (t->msg.read_sem < 0)
|
|
goto err3;
|
|
|
|
if (arch_thread_init_thread_struct(t) < 0)
|
|
goto err4;
|
|
|
|
return t;
|
|
|
|
err4:
|
|
delete_sem_etc(t->msg.read_sem, -1, false);
|
|
err3:
|
|
delete_sem_etc(t->msg.write_sem, -1, false);
|
|
err2:
|
|
delete_sem_etc(t->return_code_sem, -1, false);
|
|
err1:
|
|
free(t);
|
|
err:
|
|
return NULL;
|
|
}
|
|
|
|
|
|
static void
|
|
delete_thread_struct(struct thread *t)
|
|
{
|
|
if (t->return_code_sem >= 0)
|
|
delete_sem_etc(t->return_code_sem, -1, false);
|
|
if (t->msg.write_sem >= 0)
|
|
delete_sem_etc(t->msg.write_sem, -1, false);
|
|
if (t->msg.read_sem >= 0)
|
|
delete_sem_etc(t->msg.read_sem, -1, false);
|
|
free(t);
|
|
}
|
|
|
|
|
|
/** Initializes the thread and jumps to its userspace entry point.
|
|
* This function is called at creation time of every user thread,
|
|
* but not for the team's main threads.
|
|
*/
|
|
|
|
static int
|
|
_create_user_thread_kentry(void)
|
|
{
|
|
struct thread *thread = thread_get_current_thread();
|
|
|
|
// a signal may have been delivered here
|
|
// thread_atkernel_exit();
|
|
// start tracking kernel & user time
|
|
thread->last_time = system_time();
|
|
thread->last_time_type = KERNEL_TIME;
|
|
thread->in_kernel = false;
|
|
|
|
// jump to the entry point in user space
|
|
arch_thread_enter_uspace(thread, (addr_t)thread->entry, thread->args1, thread->args2);
|
|
|
|
// never get here
|
|
return 0;
|
|
}
|
|
|
|
|
|
/** Initializes the thread and calls it kernel space entry point.
|
|
*/
|
|
|
|
static int
|
|
_create_kernel_thread_kentry(void)
|
|
{
|
|
struct thread *thread = thread_get_current_thread();
|
|
int (*func)(void *args);
|
|
|
|
// start tracking kernel & user time
|
|
thread->last_time = system_time();
|
|
thread->last_time_type = KERNEL_TIME;
|
|
|
|
// call the entry function with the appropriate args
|
|
func = (void *)thread->entry;
|
|
|
|
return func(thread->args1);
|
|
}
|
|
|
|
|
|
static thread_id
|
|
create_thread(const char *name, team_id teamID, thread_func entry, void *args1, void *args2, int32 priority, bool kernel)
|
|
{
|
|
struct thread *t;
|
|
struct team *team;
|
|
cpu_status state;
|
|
char stack_name[64];
|
|
bool abort = false;
|
|
addr_t mainThreadStackBase = USER_STACK_REGION + USER_STACK_REGION_SIZE;
|
|
|
|
t = create_thread_struct(name);
|
|
if (t == NULL)
|
|
return ENOMEM;
|
|
|
|
t->priority = priority == -1 ? B_NORMAL_PRIORITY : priority;
|
|
// ToDo: revisit this one - the thread might go to early to B_THREAD_SUSPENDED
|
|
// t->state = THREAD_STATE_BIRTH;
|
|
t->state = B_THREAD_SUSPENDED; // Is this right?
|
|
t->next_state = B_THREAD_SUSPENDED;
|
|
|
|
state = disable_interrupts();
|
|
GRAB_THREAD_LOCK();
|
|
|
|
// insert into global list
|
|
hash_insert(sThreadHash, t);
|
|
RELEASE_THREAD_LOCK();
|
|
|
|
GRAB_TEAM_LOCK();
|
|
// look at the team, make sure it's not being deleted
|
|
team = team_get_team_struct_locked(teamID);
|
|
if (team != NULL && team->state != TEAM_STATE_DEATH)
|
|
insert_thread_into_team(team, t);
|
|
else
|
|
abort = true;
|
|
|
|
if (!kernel && team->main_thread)
|
|
mainThreadStackBase = team->main_thread->user_stack_base;
|
|
|
|
RELEASE_TEAM_LOCK();
|
|
if (abort) {
|
|
GRAB_THREAD_LOCK();
|
|
hash_remove(sThreadHash, t);
|
|
RELEASE_THREAD_LOCK();
|
|
}
|
|
restore_interrupts(state);
|
|
if (abort) {
|
|
delete_thread_struct(t);
|
|
return B_BAD_TEAM_ID;
|
|
}
|
|
|
|
sprintf(stack_name, "%s_kstack", name);
|
|
t->kernel_stack_region_id = create_area(stack_name, (void **)&t->kernel_stack_base,
|
|
B_ANY_KERNEL_ADDRESS, KSTACK_SIZE, B_FULL_LOCK, B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA);
|
|
|
|
if (t->kernel_stack_region_id < 0)
|
|
panic("_create_thread: error creating kernel stack!\n");
|
|
|
|
t->args1 = args1;
|
|
t->args2 = args2;
|
|
t->entry = entry;
|
|
|
|
if (kernel) {
|
|
// this sets up an initial kthread stack that runs the entry
|
|
|
|
// Note: whatever function wants to set up a user stack later for this thread
|
|
// must initialize the TLS for it
|
|
arch_thread_init_kthread_stack(t, &_create_kernel_thread_kentry, &thread_kthread_entry, &thread_kthread_exit);
|
|
} else {
|
|
// create user stack
|
|
|
|
// ToDo: make this better. For now just keep trying to create a stack
|
|
// until we find a spot.
|
|
// -> implement B_BASE_ADDRESS for create_area() and use that one!
|
|
// (we can then also eliminate the mainThreadStackBase variable)
|
|
|
|
// ToDo: should we move the stack creation to _create_user_thread_kentry()?
|
|
|
|
// the stack will be between USER_STACK_REGION and the main thread stack area
|
|
// (the user stack of the main thread is created in team_create_team())
|
|
t->user_stack_base = USER_STACK_REGION;
|
|
|
|
while (t->user_stack_base < mainThreadStackBase) {
|
|
sprintf(stack_name, "%s_stack%ld", team->name, t->id);
|
|
t->user_stack_region_id = create_area_etc(team, stack_name,
|
|
(void **)&t->user_stack_base, B_EXACT_ADDRESS,
|
|
STACK_SIZE + TLS_SIZE, B_NO_LOCK, B_READ_AREA | B_WRITE_AREA);
|
|
if (t->user_stack_region_id >= 0)
|
|
break;
|
|
|
|
t->user_stack_base += STACK_SIZE + TLS_SIZE;
|
|
}
|
|
if (t->user_stack_region_id < 0)
|
|
panic("_create_thread: unable to create user stack!\n");
|
|
|
|
// now that the TLS area is allocated, initialize TLS
|
|
arch_thread_init_tls(t);
|
|
|
|
// copy the user entry over to the args field in the thread struct
|
|
// the function this will call will immediately switch the thread into
|
|
// user space.
|
|
arch_thread_init_kthread_stack(t, &_create_user_thread_kentry, &thread_kthread_entry, &thread_kthread_exit);
|
|
}
|
|
|
|
t->state = B_THREAD_SUSPENDED;
|
|
|
|
return t->id;
|
|
}
|
|
|
|
|
|
static const char *
|
|
state_to_text(int state)
|
|
{
|
|
switch (state) {
|
|
case B_THREAD_READY:
|
|
return "READY";
|
|
case B_THREAD_RUNNING:
|
|
return "RUNNING";
|
|
case B_THREAD_WAITING:
|
|
return "WAITING";
|
|
case B_THREAD_SUSPENDED:
|
|
return "SUSPEND";
|
|
case THREAD_STATE_FREE_ON_RESCHED:
|
|
return "DEATH";
|
|
default:
|
|
return "UNKNOWN";
|
|
}
|
|
}
|
|
|
|
|
|
static struct thread *last_thread_dumped = NULL;
|
|
|
|
static void
|
|
_dump_thread_info(struct thread *t)
|
|
{
|
|
dprintf("THREAD: %p\n", t);
|
|
dprintf("id: 0x%lx\n", t->id);
|
|
dprintf("name: '%s'\n", t->name);
|
|
dprintf("all_next: %p\nteam_next: %p\nq_next: %p\n",
|
|
t->all_next, t->team_next, t->queue_next);
|
|
dprintf("priority: 0x%x\n", t->priority);
|
|
dprintf("state: %s\n", state_to_text(t->state));
|
|
dprintf("next_state: %s\n", state_to_text(t->next_state));
|
|
dprintf("cpu: %p ", t->cpu);
|
|
if (t->cpu)
|
|
dprintf("(%d)\n", t->cpu->info.cpu_num);
|
|
else
|
|
dprintf("\n");
|
|
dprintf("sig_pending: 0x%lx\n", t->sig_pending);
|
|
dprintf("in_kernel: %d\n", t->in_kernel);
|
|
dprintf("sem_blocking: 0x%lx\n", t->sem_blocking);
|
|
dprintf("sem_count: 0x%x\n", t->sem_count);
|
|
dprintf("sem_deleted_retcode: 0x%x\n", t->sem_deleted_retcode);
|
|
dprintf("sem_errcode: 0x%x\n", t->sem_errcode);
|
|
dprintf("sem_flags: 0x%x\n", t->sem_flags);
|
|
dprintf("fault_handler: %p\n", (void *)t->fault_handler);
|
|
dprintf("args: %p %p\n", t->args1, t->args2);
|
|
dprintf("entry: %p\n", (void *)t->entry);
|
|
dprintf("team: %p\n", t->team);
|
|
dprintf("return_code_sem: 0x%lx\n", t->return_code_sem);
|
|
dprintf("kernel_stack_region_id: 0x%lx\n", t->kernel_stack_region_id);
|
|
dprintf("kernel_stack_base: %p\n", (void *)t->kernel_stack_base);
|
|
dprintf("user_stack_region_id: 0x%lx\n", t->user_stack_region_id);
|
|
dprintf("user_stack_base: %p\n", (void *)t->user_stack_base);
|
|
dprintf("user_local_storage: %p\n", (void *)t->user_local_storage);
|
|
dprintf("kernel_errno: %d\n", t->kernel_errno);
|
|
dprintf("kernel_time: %Ld\n", t->kernel_time);
|
|
dprintf("user_time: %Ld\n", t->user_time);
|
|
dprintf("architecture dependant section:\n");
|
|
arch_thread_dump_info(&t->arch_info);
|
|
|
|
last_thread_dumped = t;
|
|
}
|
|
|
|
|
|
static int
|
|
dump_thread_info(int argc, char **argv)
|
|
{
|
|
struct thread *t;
|
|
int id = -1;
|
|
struct hash_iterator i;
|
|
|
|
if (argc < 2) {
|
|
dprintf("thread: not enough arguments\n");
|
|
return 0;
|
|
}
|
|
|
|
// if the argument looks like a hex number, treat it as such
|
|
if (strlen(argv[1]) > 2 && argv[1][0] == '0' && argv[1][1] == 'x')
|
|
id = strtoul(argv[1], NULL, 16);
|
|
else
|
|
id = atoi(argv[1]);
|
|
|
|
// walk through the thread list, trying to match name or id
|
|
hash_open(sThreadHash, &i);
|
|
while ((t = hash_next(sThreadHash, &i)) != NULL) {
|
|
if ((t->name && strcmp(argv[1], t->name) == 0) || t->id == id) {
|
|
_dump_thread_info(t);
|
|
break;
|
|
}
|
|
}
|
|
hash_close(sThreadHash, &i, false);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
dump_thread_list(int argc, char **argv)
|
|
{
|
|
struct thread *t;
|
|
struct hash_iterator i;
|
|
|
|
hash_open(sThreadHash, &i);
|
|
while ((t = hash_next(sThreadHash, &i)) != NULL) {
|
|
dprintf("%p", t);
|
|
if (t->name != NULL)
|
|
dprintf("\t%32s", t->name);
|
|
else
|
|
dprintf("\t%32s", "<NULL>");
|
|
dprintf("\t0x%lx", t->id);
|
|
dprintf("\t%16s", state_to_text(t->state));
|
|
if (t->cpu)
|
|
dprintf("\t%d", t->cpu->info.cpu_num);
|
|
else
|
|
dprintf("\tNOCPU");
|
|
dprintf("\t0x%lx\n", t->kernel_stack_base);
|
|
}
|
|
hash_close(sThreadHash, &i, false);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
dump_next_thread_in_q(int argc, char **argv)
|
|
{
|
|
struct thread *t = last_thread_dumped;
|
|
|
|
if (t == NULL) {
|
|
dprintf("no thread previously dumped. Examine a thread first.\n");
|
|
return 0;
|
|
}
|
|
|
|
dprintf("next thread in queue after thread @ %p\n", t);
|
|
if (t->queue_next != NULL)
|
|
_dump_thread_info(t->queue_next);
|
|
else
|
|
dprintf("NULL\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
dump_next_thread_in_all_list(int argc, char **argv)
|
|
{
|
|
struct thread *t = last_thread_dumped;
|
|
|
|
if (t == NULL) {
|
|
dprintf("no thread previously dumped. Examine a thread first.\n");
|
|
return 0;
|
|
}
|
|
|
|
dprintf("next thread in global list after thread @ %p\n", t);
|
|
if (t->all_next != NULL)
|
|
_dump_thread_info(t->all_next);
|
|
else
|
|
dprintf("NULL\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
dump_next_thread_in_team(int argc, char **argv)
|
|
{
|
|
struct thread *t = last_thread_dumped;
|
|
|
|
if (t == NULL) {
|
|
dprintf("no thread previously dumped. Examine a thread first.\n");
|
|
return 0;
|
|
}
|
|
|
|
dprintf("next thread in team after thread @ %p\n", t);
|
|
if (t->team_next != NULL)
|
|
_dump_thread_info(t->team_next);
|
|
else
|
|
dprintf("NULL\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
get_death_stack(void)
|
|
{
|
|
cpu_status state;
|
|
unsigned int bit;
|
|
int i;
|
|
|
|
acquire_sem(sDeathStackSem);
|
|
|
|
// grap the thread lock, find a free spot and release
|
|
state = disable_interrupts();
|
|
GRAB_THREAD_LOCK();
|
|
bit = sDeathStackBitmap;
|
|
bit = (~bit)&~((~bit)-1);
|
|
sDeathStackBitmap |= bit;
|
|
RELEASE_THREAD_LOCK();
|
|
|
|
// sanity checks
|
|
if (!bit)
|
|
panic("get_death_stack: couldn't find free stack!\n");
|
|
|
|
if (bit & (bit - 1))
|
|
panic("get_death_stack: impossible bitmap result!\n");
|
|
|
|
// bit to number
|
|
for (i = -1; bit; i++) {
|
|
bit >>= 1;
|
|
}
|
|
|
|
TRACE(("get_death_stack: returning 0x%lx\n", sDeathStacks[i].address));
|
|
|
|
return i;
|
|
}
|
|
|
|
|
|
static void
|
|
put_death_stack_and_reschedule(unsigned int index)
|
|
{
|
|
TRACE(("put_death_stack...: passed %d\n", index));
|
|
|
|
if (index >= sNumDeathStacks)
|
|
panic("put_death_stack: passed invalid stack index %d\n", index);
|
|
|
|
if (!(sDeathStackBitmap & (1 << index)))
|
|
panic("put_death_stack: passed invalid stack index %d\n", index);
|
|
|
|
disable_interrupts();
|
|
GRAB_THREAD_LOCK();
|
|
|
|
sDeathStackBitmap &= ~(1 << index);
|
|
|
|
release_sem_etc(sDeathStackSem, 1, B_DO_NOT_RESCHEDULE);
|
|
|
|
scheduler_reschedule();
|
|
}
|
|
|
|
|
|
// this function gets run by a new thread before anything else
|
|
|
|
static void
|
|
thread_kthread_entry(void)
|
|
{
|
|
// simulates the thread spinlock release that would occur if the thread had been
|
|
// rescheded from. The resched didn't happen because the thread is new.
|
|
RELEASE_THREAD_LOCK();
|
|
enable_interrupts(); // this essentially simulates a return-from-interrupt
|
|
}
|
|
|
|
|
|
// used to pass messages between thread_exit and thread_exit2
|
|
|
|
struct thread_exit_args {
|
|
struct thread *t;
|
|
region_id old_kernel_stack;
|
|
int int_state;
|
|
unsigned int death_stack;
|
|
sem_id death_sem;
|
|
};
|
|
|
|
|
|
static void
|
|
thread_exit2(void *_args)
|
|
{
|
|
struct thread_exit_args args;
|
|
|
|
// copy the arguments over, since the source is probably on the kernel stack we're about to delete
|
|
memcpy(&args, _args, sizeof(struct thread_exit_args));
|
|
|
|
// restore the interrupts
|
|
enable_interrupts();
|
|
// ToDo: was:
|
|
// restore_interrupts(args.int_state);
|
|
// we probably don't want to let the interrupts disabled at this point??
|
|
|
|
TRACE(("thread_exit2, running on death stack 0x%lx\n", args.t->kernel_stack_base));
|
|
|
|
// delete the old kernel stack region
|
|
TRACE(("thread_exit2: deleting old kernel stack id 0x%lx for thread 0x%lx\n",
|
|
args.old_kernel_stack, args.t->id));
|
|
|
|
delete_area(args.old_kernel_stack);
|
|
|
|
// remove this thread from all of the global lists
|
|
TRACE(("thread_exit2: removing thread 0x%lx from global lists\n", args.t->id));
|
|
|
|
disable_interrupts();
|
|
GRAB_TEAM_LOCK();
|
|
remove_thread_from_team(team_get_kernel_team(), args.t);
|
|
RELEASE_TEAM_LOCK();
|
|
GRAB_THREAD_LOCK();
|
|
hash_remove(sThreadHash, args.t);
|
|
RELEASE_THREAD_LOCK();
|
|
|
|
// ToDo: is this correct at this point?
|
|
//restore_interrupts(args.int_state);
|
|
|
|
TRACE(("thread_exit2: done removing thread from lists\n"));
|
|
|
|
if (args.death_sem >= 0)
|
|
release_sem_etc(args.death_sem, 1, B_DO_NOT_RESCHEDULE);
|
|
|
|
// set the next state to be gone. Will return the thread structure to a ready pool upon reschedule
|
|
args.t->next_state = THREAD_STATE_FREE_ON_RESCHED;
|
|
|
|
// return the death stack and reschedule one last time
|
|
put_death_stack_and_reschedule(args.death_stack);
|
|
// never get to here
|
|
panic("thread_exit2: made it where it shouldn't have!\n");
|
|
}
|
|
|
|
|
|
void
|
|
thread_exit(void)
|
|
{
|
|
cpu_status state;
|
|
struct thread *t = thread_get_current_thread();
|
|
struct team *team = t->team;
|
|
thread_id mainParentThread = -1;
|
|
bool delete_team = false;
|
|
unsigned int death_stack;
|
|
sem_id cached_death_sem;
|
|
status_t status;
|
|
|
|
if (!are_interrupts_enabled())
|
|
dprintf("thread_exit() called with interrupts disabled!\n");
|
|
|
|
TRACE(("thread 0x%lx exiting %s w/return code 0x%x\n", t->id,
|
|
t->return_flags & THREAD_RETURN_INTERRUPTED ? "due to signal" : "normally",
|
|
(int)t->return_code));
|
|
|
|
// boost our priority to get this over with
|
|
t->priority = B_URGENT_DISPLAY_PRIORITY;
|
|
|
|
// shutdown the thread messaging
|
|
|
|
status = acquire_sem_etc(t->msg.write_sem, 1, B_RELATIVE_TIMEOUT, 0);
|
|
if (status == B_WOULD_BLOCK) {
|
|
// there is data waiting for us, so let us eat it
|
|
thread_id sender;
|
|
|
|
delete_sem(t->msg.write_sem);
|
|
// first, let's remove all possibly waiting writers
|
|
receive_data_etc(&sender, NULL, 0, B_RELATIVE_TIMEOUT);
|
|
} else {
|
|
// we probably own the semaphore here, and we're the last to do so
|
|
delete_sem(t->msg.write_sem);
|
|
}
|
|
// now we can safely remove the msg.read_sem
|
|
delete_sem(t->msg.read_sem);
|
|
|
|
// Cancel previously installed alarm timer, if any
|
|
cancel_timer(&t->alarm);
|
|
|
|
// delete the user stack region first
|
|
if (team->_aspace_id >= 0 && t->user_stack_region_id >= 0) {
|
|
region_id rid = t->user_stack_region_id;
|
|
t->user_stack_region_id = -1;
|
|
delete_area_etc(team, rid);
|
|
}
|
|
|
|
if (team != team_get_kernel_team()) {
|
|
// remove this thread from the current team and add it to the kernel
|
|
// put the thread into the kernel team until it dies
|
|
state = disable_interrupts();
|
|
GRAB_TEAM_LOCK();
|
|
|
|
remove_thread_from_team(team, t);
|
|
insert_thread_into_team(team_get_kernel_team(), t);
|
|
|
|
if (team->main_thread == t) {
|
|
// this was main thread in this team
|
|
delete_team = true;
|
|
|
|
// remember who our parent was so we can send a signal
|
|
mainParentThread = team->parent->main_thread->id;
|
|
|
|
team_remove_team(team);
|
|
}
|
|
RELEASE_TEAM_LOCK();
|
|
// swap address spaces, to make sure we're running on the kernel's pgdir
|
|
vm_aspace_swap(team_get_kernel_team()->kaspace);
|
|
restore_interrupts(state);
|
|
|
|
TRACE(("thread_exit: thread 0x%lx now a kernel thread!\n", t->id));
|
|
}
|
|
|
|
// delete the team if we're its main thread
|
|
if (delete_team) {
|
|
team_delete_team(team);
|
|
|
|
send_signal_etc(mainParentThread, SIGCHLD, B_DO_NOT_RESCHEDULE);
|
|
cached_death_sem = -1;
|
|
} else
|
|
cached_death_sem = team->death_sem;
|
|
|
|
// delete the sem that others will use to wait on us and get the retcode
|
|
{
|
|
sem_id s = t->return_code_sem;
|
|
|
|
t->return_code_sem = -1;
|
|
delete_sem_etc(s, t->return_code, t->return_flags & THREAD_RETURN_INTERRUPTED ? true : false);
|
|
}
|
|
|
|
death_stack = get_death_stack();
|
|
{
|
|
struct thread_exit_args args;
|
|
|
|
args.t = t;
|
|
args.old_kernel_stack = t->kernel_stack_region_id;
|
|
args.death_stack = death_stack;
|
|
args.death_sem = cached_death_sem;
|
|
|
|
// disable the interrupts. Must remain disabled until the kernel stack pointer can be officially switched
|
|
args.int_state = disable_interrupts();
|
|
|
|
// set the new kernel stack officially to the death stack, wont be really switched until
|
|
// the next function is called. This bookkeeping must be done now before a context switch
|
|
// happens, or the processor will interrupt to the old stack
|
|
t->kernel_stack_region_id = sDeathStacks[death_stack].area;
|
|
t->kernel_stack_base = sDeathStacks[death_stack].address;
|
|
|
|
// we will continue in thread_exit2(), on the new stack
|
|
arch_thread_switch_kstack_and_call(t, t->kernel_stack_base + KSTACK_SIZE, thread_exit2, &args);
|
|
}
|
|
|
|
panic("never can get here\n");
|
|
}
|
|
|
|
|
|
static void
|
|
thread_kthread_exit(void)
|
|
{
|
|
struct thread *t = thread_get_current_thread();
|
|
|
|
t->return_flags = THREAD_RETURN_EXIT;
|
|
thread_exit();
|
|
}
|
|
|
|
|
|
struct thread *
|
|
thread_get_thread_struct(thread_id id)
|
|
{
|
|
struct thread *t;
|
|
cpu_status state;
|
|
|
|
state = disable_interrupts();
|
|
GRAB_THREAD_LOCK();
|
|
|
|
t = thread_get_thread_struct_locked(id);
|
|
|
|
RELEASE_THREAD_LOCK();
|
|
restore_interrupts(state);
|
|
|
|
return t;
|
|
}
|
|
|
|
|
|
struct thread *
|
|
thread_get_thread_struct_locked(thread_id id)
|
|
{
|
|
struct thread_key key;
|
|
|
|
key.id = id;
|
|
|
|
return hash_lookup(sThreadHash, &key);
|
|
}
|
|
|
|
|
|
// called in the int handler code when a thread enters the kernel for any reason
|
|
|
|
void
|
|
thread_atkernel_entry(void)
|
|
{
|
|
cpu_status state;
|
|
struct thread *t;
|
|
bigtime_t now;
|
|
|
|
t = thread_get_current_thread();
|
|
|
|
TRACE(("thread_atkernel_entry: entry thread 0x%lx\n", t->id));
|
|
|
|
state = disable_interrupts();
|
|
|
|
// track user time
|
|
now = system_time();
|
|
t->user_time += now - t->last_time;
|
|
t->last_time = now;
|
|
t->last_time_type = KERNEL_TIME;
|
|
|
|
t->in_kernel = true;
|
|
|
|
restore_interrupts(state);
|
|
}
|
|
|
|
|
|
// called when a thread exits kernel space to user space
|
|
|
|
void
|
|
thread_atkernel_exit(void)
|
|
{
|
|
cpu_status state;
|
|
int global_resched;
|
|
struct thread *t;
|
|
bigtime_t now;
|
|
|
|
TRACE(("thread_atkernel_exit: entry\n"));
|
|
|
|
t = thread_get_current_thread();
|
|
|
|
state = disable_interrupts();
|
|
GRAB_THREAD_LOCK();
|
|
|
|
global_resched = handle_signals(t, state);
|
|
|
|
t->in_kernel = false;
|
|
|
|
// track kernel time
|
|
now = system_time();
|
|
t->kernel_time += now - t->last_time;
|
|
t->last_time = now;
|
|
t->last_time_type = USER_TIME;
|
|
|
|
RELEASE_THREAD_LOCK();
|
|
restore_interrupts(state);
|
|
|
|
if (global_resched)
|
|
smp_send_broadcast_ici(SMP_MSG_RESCHEDULE, 0, 0, 0, NULL, SMP_MSG_FLAG_SYNC);
|
|
}
|
|
|
|
|
|
// #pragma mark -
|
|
// private kernel exported functions
|
|
|
|
|
|
/** insert a thread onto the tail of a queue
|
|
*/
|
|
|
|
void
|
|
thread_enqueue(struct thread *thread, struct thread_queue *queue)
|
|
{
|
|
thread->queue_next = NULL;
|
|
if (queue->head == NULL) {
|
|
queue->head = thread;
|
|
queue->tail = thread;
|
|
} else {
|
|
queue->tail->queue_next = thread;
|
|
queue->tail = thread;
|
|
}
|
|
}
|
|
|
|
|
|
struct thread *
|
|
thread_lookat_queue(struct thread_queue *queue)
|
|
{
|
|
return queue->head;
|
|
}
|
|
|
|
|
|
struct thread *
|
|
thread_dequeue(struct thread_queue *queue)
|
|
{
|
|
struct thread *thread = queue->head;
|
|
|
|
if (thread != NULL) {
|
|
queue->head = thread->queue_next;
|
|
if (queue->tail == thread)
|
|
queue->tail = NULL;
|
|
}
|
|
return thread;
|
|
}
|
|
|
|
|
|
struct thread *
|
|
thread_dequeue_id(struct thread_queue *q, thread_id thr_id)
|
|
{
|
|
struct thread *t;
|
|
struct thread *last = NULL;
|
|
|
|
t = q->head;
|
|
while (t != NULL) {
|
|
if (t->id == thr_id) {
|
|
if (last == NULL)
|
|
q->head = t->queue_next;
|
|
else
|
|
last->queue_next = t->queue_next;
|
|
|
|
if (q->tail == t)
|
|
q->tail = last;
|
|
break;
|
|
}
|
|
last = t;
|
|
t = t->queue_next;
|
|
}
|
|
return t;
|
|
}
|
|
|
|
|
|
status_t
|
|
thread_init(kernel_args *ka)
|
|
{
|
|
struct thread *t;
|
|
unsigned int i;
|
|
|
|
TRACE(("thread_init: entry\n"));
|
|
|
|
// create the thread hash table
|
|
sThreadHash = hash_init(15, (addr_t)&t->all_next - (addr_t)t,
|
|
&thread_struct_compare, &thread_struct_hash);
|
|
|
|
// zero out the dead thread structure q
|
|
memset(&dead_q, 0, sizeof(dead_q));
|
|
|
|
// allocate snooze sem
|
|
sSnoozeSem = create_sem(0, "snooze sem");
|
|
if (sSnoozeSem < 0) {
|
|
panic("error creating snooze sem\n");
|
|
return sSnoozeSem;
|
|
}
|
|
|
|
// create an idle thread for each cpu
|
|
for (i = 0; i < ka->num_cpus; i++) {
|
|
char temp[64];
|
|
vm_region *region;
|
|
|
|
sprintf(temp, "idle_thread%d", i);
|
|
t = create_thread_struct(temp);
|
|
if (t == NULL) {
|
|
panic("error creating idle thread struct\n");
|
|
return ENOMEM;
|
|
}
|
|
t->team = team_get_kernel_team();
|
|
t->priority = B_IDLE_PRIORITY;
|
|
t->state = B_THREAD_RUNNING;
|
|
t->next_state = B_THREAD_READY;
|
|
sprintf(temp, "idle_thread%d_kstack", i);
|
|
t->kernel_stack_region_id = find_area(temp);
|
|
region = vm_get_region_by_id(t->kernel_stack_region_id);
|
|
if (!region)
|
|
panic("error finding idle kstack region\n");
|
|
|
|
t->kernel_stack_base = region->base;
|
|
vm_put_region(region);
|
|
hash_insert(sThreadHash, t);
|
|
insert_thread_into_team(t->team, t);
|
|
sIdleThreads[i] = t;
|
|
if (i == 0)
|
|
arch_thread_set_current_thread(t);
|
|
t->cpu = &cpu[i];
|
|
}
|
|
|
|
// create a set of death stacks
|
|
sNumDeathStacks = smp_get_num_cpus();
|
|
if (sNumDeathStacks > 8*sizeof(sDeathStackBitmap)) {
|
|
/*
|
|
* clamp values for really beefy machines
|
|
*/
|
|
sNumDeathStacks = 8*sizeof(sDeathStackBitmap);
|
|
}
|
|
sDeathStackBitmap = 0;
|
|
sDeathStacks = (struct death_stack *)malloc(sNumDeathStacks * sizeof(struct death_stack));
|
|
if (sDeathStacks == NULL) {
|
|
panic("error creating death stacks\n");
|
|
return B_NO_MEMORY;
|
|
}
|
|
{
|
|
char temp[64];
|
|
|
|
for (i = 0; i < sNumDeathStacks; i++) {
|
|
sprintf(temp, "death_stack%d", i);
|
|
sDeathStacks[i].area = create_area(temp, (void **)&sDeathStacks[i].address,
|
|
B_ANY_KERNEL_ADDRESS, KSTACK_SIZE, B_FULL_LOCK, B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA);
|
|
if (sDeathStacks[i].area < 0) {
|
|
panic("error creating death stacks\n");
|
|
return sDeathStacks[i].area;
|
|
}
|
|
sDeathStacks[i].in_use = false;
|
|
}
|
|
}
|
|
sDeathStackSem = create_sem(sNumDeathStacks, "death_stack_noavail_sem");
|
|
|
|
// set up some debugger commands
|
|
add_debugger_command("threads", &dump_thread_list, "list all threads");
|
|
add_debugger_command("thread", &dump_thread_info, "list info about a particular thread");
|
|
add_debugger_command("next_q", &dump_next_thread_in_q, "dump the next thread in the queue of last thread viewed");
|
|
add_debugger_command("next_all", &dump_next_thread_in_all_list, "dump the next thread in the global list of the last thread viewed");
|
|
add_debugger_command("next_team", &dump_next_thread_in_team, "dump the next thread in the team of the last thread viewed");
|
|
|
|
return B_OK;
|
|
}
|
|
|
|
|
|
status_t
|
|
thread_per_cpu_init(int32 cpu_num)
|
|
{
|
|
arch_thread_set_current_thread(sIdleThreads[cpu_num]);
|
|
return B_OK;
|
|
}
|
|
|
|
|
|
thread_id
|
|
spawn_kernel_thread_etc(thread_func function, const char *name, int32 priority, void *arg, team_id team)
|
|
{
|
|
return create_thread(name, team, function, arg, NULL, priority, true);
|
|
}
|
|
|
|
|
|
// #pragma mark -
|
|
// public kernel exported functions
|
|
|
|
|
|
status_t
|
|
kill_thread(thread_id id)
|
|
{
|
|
status_t status = send_signal_etc(id, SIGKILLTHR, B_DO_NOT_RESCHEDULE);
|
|
if (status < 0)
|
|
return status;
|
|
|
|
if (id != thread_get_current_thread()->id)
|
|
wait_for_thread(id, NULL);
|
|
|
|
return status;
|
|
}
|
|
|
|
|
|
static status_t
|
|
send_data_etc(thread_id tid, int32 code, const void *buffer, size_t buffer_size, int32 flags)
|
|
{
|
|
struct thread *target;
|
|
sem_id cached_sem;
|
|
cpu_status state;
|
|
status_t rv;
|
|
cbuf *data;
|
|
|
|
state = disable_interrupts();
|
|
GRAB_THREAD_LOCK();
|
|
target = thread_get_thread_struct_locked(tid);
|
|
if (!target) {
|
|
RELEASE_THREAD_LOCK();
|
|
restore_interrupts(state);
|
|
return B_BAD_THREAD_ID;
|
|
}
|
|
cached_sem = target->msg.write_sem;
|
|
RELEASE_THREAD_LOCK();
|
|
restore_interrupts(state);
|
|
|
|
if (buffer_size > THREAD_MAX_MESSAGE_SIZE)
|
|
return B_NO_MEMORY;
|
|
|
|
rv = acquire_sem_etc(cached_sem, 1, flags, 0);
|
|
if (rv == B_INTERRUPTED)
|
|
// We got interrupted by a signal
|
|
return rv;
|
|
if (rv != B_OK)
|
|
// Any other acquisition problems may be due to thread deletion
|
|
return B_BAD_THREAD_ID;
|
|
|
|
if (buffer_size > 0) {
|
|
data = cbuf_get_chain(buffer_size);
|
|
if (!data)
|
|
return B_NO_MEMORY;
|
|
rv = cbuf_user_memcpy_to_chain(data, 0, buffer, buffer_size);
|
|
if (rv < 0) {
|
|
cbuf_free_chain(data);
|
|
return B_NO_MEMORY;
|
|
}
|
|
} else
|
|
data = NULL;
|
|
|
|
state = disable_interrupts();
|
|
GRAB_THREAD_LOCK();
|
|
|
|
// The target thread could have been deleted at this point
|
|
target = thread_get_thread_struct_locked(tid);
|
|
if (!target) {
|
|
RELEASE_THREAD_LOCK();
|
|
restore_interrupts(state);
|
|
cbuf_free_chain(data);
|
|
return B_BAD_THREAD_ID;
|
|
}
|
|
|
|
// Save message informations
|
|
target->msg.sender = thread_get_current_thread()->id;
|
|
target->msg.code = code;
|
|
target->msg.size = buffer_size;
|
|
target->msg.buffer = data;
|
|
cached_sem = target->msg.read_sem;
|
|
|
|
RELEASE_THREAD_LOCK();
|
|
restore_interrupts(state);
|
|
|
|
release_sem(cached_sem);
|
|
|
|
return B_OK;
|
|
}
|
|
|
|
|
|
status_t
|
|
send_data(thread_id thread, int32 code, const void *buffer, size_t bufferSize)
|
|
{
|
|
return send_data_etc(thread, code, buffer, bufferSize, 0);
|
|
}
|
|
|
|
|
|
static status_t
|
|
receive_data_etc(thread_id *_sender, void *buffer, size_t bufferSize, int32 flags)
|
|
{
|
|
struct thread *thread = thread_get_current_thread();
|
|
status_t status;
|
|
size_t size;
|
|
int32 code;
|
|
|
|
status = acquire_sem_etc(thread->msg.read_sem, 1, flags, 0);
|
|
if (status < B_OK)
|
|
return status;
|
|
|
|
if (buffer != NULL && bufferSize != 0) {
|
|
size = min(bufferSize, thread->msg.size);
|
|
status = cbuf_user_memcpy_from_chain(buffer, thread->msg.buffer, 0, size);
|
|
if (status < B_OK) {
|
|
cbuf_free_chain(thread->msg.buffer);
|
|
release_sem(thread->msg.write_sem);
|
|
return status;
|
|
}
|
|
}
|
|
|
|
*_sender = thread->msg.sender;
|
|
code = thread->msg.code;
|
|
|
|
cbuf_free_chain(thread->msg.buffer);
|
|
release_sem(thread->msg.write_sem);
|
|
|
|
return code;
|
|
}
|
|
|
|
|
|
status_t
|
|
receive_data(thread_id *sender, void *buffer, size_t bufferSize)
|
|
{
|
|
return receive_data_etc(sender, buffer, bufferSize, 0);
|
|
}
|
|
|
|
|
|
bool
|
|
has_data(thread_id thread)
|
|
{
|
|
int32 count;
|
|
|
|
if (get_sem_count(thread_get_current_thread()->msg.read_sem, &count) != B_OK)
|
|
return false;
|
|
|
|
return count == 0 ? false : true;
|
|
}
|
|
|
|
|
|
/** Fills the thread_info structure with information from the specified
|
|
* thread.
|
|
* The thread lock must be held when called.
|
|
*/
|
|
|
|
static void
|
|
fill_thread_info(struct thread *thread, thread_info *info, size_t size)
|
|
{
|
|
info->thread = thread->id;
|
|
info->team = thread->team->id;
|
|
|
|
strlcpy(info->name, thread->name, B_OS_NAME_LENGTH);
|
|
|
|
if (thread->state == B_THREAD_WAITING) {
|
|
if (thread->sem_blocking == sSnoozeSem)
|
|
info->state = B_THREAD_ASLEEP;
|
|
else if (thread->sem_blocking == thread->msg.read_sem)
|
|
info->state = B_THREAD_RECEIVING;
|
|
else
|
|
info->state = B_THREAD_WAITING;
|
|
} else
|
|
info->state = thread->state;
|
|
|
|
info->priority = thread->priority;
|
|
info->sem = thread->sem_blocking;
|
|
info->user_time = thread->user_time;
|
|
info->kernel_time = thread->kernel_time;
|
|
info->stack_base = (void *)thread->user_stack_base;
|
|
info->stack_end = (void *)(thread->user_stack_base + STACK_SIZE);
|
|
}
|
|
|
|
|
|
status_t
|
|
_get_thread_info(thread_id id, thread_info *info, size_t size)
|
|
{
|
|
status_t status = B_OK;
|
|
struct thread *thread;
|
|
cpu_status state;
|
|
|
|
if (info == NULL || size != sizeof(thread_info) || id < B_OK)
|
|
return B_BAD_VALUE;
|
|
|
|
state = disable_interrupts();
|
|
GRAB_THREAD_LOCK();
|
|
|
|
thread = thread_get_thread_struct_locked(id);
|
|
if (thread == NULL) {
|
|
status = B_BAD_VALUE;
|
|
goto err;
|
|
}
|
|
|
|
fill_thread_info(thread, info, size);
|
|
|
|
err:
|
|
RELEASE_THREAD_LOCK();
|
|
restore_interrupts(state);
|
|
|
|
return status;
|
|
}
|
|
|
|
|
|
status_t
|
|
_get_next_thread_info(team_id team, int32 *_cookie, thread_info *info, size_t size)
|
|
{
|
|
status_t status = B_BAD_VALUE;
|
|
struct thread *thread = NULL;
|
|
cpu_status state;
|
|
int slot;
|
|
|
|
if (info == NULL || size != sizeof(thread_info) || team < B_OK)
|
|
return B_BAD_VALUE;
|
|
|
|
if (team == B_CURRENT_TEAM)
|
|
team = team_get_current_team_id();
|
|
else if (!team_is_valid(team))
|
|
return B_BAD_VALUE;
|
|
|
|
slot = *_cookie;
|
|
|
|
state = disable_interrupts();
|
|
GRAB_THREAD_LOCK();
|
|
|
|
if (slot >= sNextThreadID)
|
|
goto err;
|
|
|
|
while (slot < sNextThreadID
|
|
&& (!(thread = thread_get_thread_struct_locked(slot)) || thread->team->id != team))
|
|
slot++;
|
|
|
|
if (thread != NULL && thread->team->id == team) {
|
|
fill_thread_info(thread, info, size);
|
|
|
|
*_cookie = slot + 1;
|
|
status = B_OK;
|
|
}
|
|
|
|
err:
|
|
RELEASE_THREAD_LOCK();
|
|
restore_interrupts(state);
|
|
|
|
return status;
|
|
}
|
|
|
|
|
|
thread_id
|
|
find_thread(const char *name)
|
|
{
|
|
struct hash_iterator iterator;
|
|
struct thread *thread;
|
|
cpu_status state;
|
|
|
|
if (name == NULL)
|
|
return thread_get_current_thread_id();
|
|
|
|
state = disable_interrupts();
|
|
GRAB_THREAD_LOCK();
|
|
|
|
// ToDo: this might not be in the same order as find_thread() in BeOS
|
|
// which could be theoretically problematic.
|
|
// ToDo: scanning the whole list with the thread lock held isn't exactly
|
|
// cheap either - although this function is probably used very rarely.
|
|
|
|
hash_open(sThreadHash, &iterator);
|
|
while ((thread = hash_next(sThreadHash, &iterator)) != NULL) {
|
|
// Search through hash
|
|
if (thread->name != NULL && !strcmp(thread->name, name)) {
|
|
thread_id id = thread->id;
|
|
|
|
RELEASE_THREAD_LOCK();
|
|
restore_interrupts(state);
|
|
return id;
|
|
}
|
|
}
|
|
|
|
RELEASE_THREAD_LOCK();
|
|
restore_interrupts(state);
|
|
|
|
return B_ENTRY_NOT_FOUND;
|
|
}
|
|
|
|
|
|
status_t
|
|
rename_thread(thread_id id, const char *name)
|
|
{
|
|
status_t status = B_OK;
|
|
struct thread *thread;
|
|
|
|
if (name == NULL)
|
|
return B_BAD_VALUE;
|
|
|
|
thread = thread_get_current_thread();
|
|
if (thread->id == id) {
|
|
// it's ourself, so we know we aren't in the run queue, and we can manipulate
|
|
// our structure directly
|
|
strlcpy(thread->name, name, B_OS_NAME_LENGTH);
|
|
} else {
|
|
cpu_status state = disable_interrupts();
|
|
GRAB_THREAD_LOCK();
|
|
|
|
thread = thread_get_thread_struct_locked(id);
|
|
if (thread) {
|
|
strlcpy(thread->name, name, B_OS_NAME_LENGTH);
|
|
} else
|
|
status = B_BAD_THREAD_ID;
|
|
|
|
RELEASE_THREAD_LOCK();
|
|
restore_interrupts(state);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
|
|
status_t
|
|
set_thread_priority(thread_id id, int32 priority)
|
|
{
|
|
struct thread *thread;
|
|
int32 oldPriority;
|
|
|
|
// make sure the passed in priority is within bounds
|
|
if (priority > B_MAX_PRIORITY)
|
|
priority = B_MAX_PRIORITY;
|
|
if (priority < B_MIN_PRIORITY)
|
|
priority = B_MIN_PRIORITY;
|
|
|
|
thread = thread_get_current_thread();
|
|
if (thread->id == id) {
|
|
// it's ourself, so we know we aren't in the run queue, and we can manipulate
|
|
// our structure directly
|
|
oldPriority = thread->priority;
|
|
// note that this might not return the correct value if we are preempted
|
|
// here, and another thread changes our priority before the next line is
|
|
// executed
|
|
thread->priority = priority;
|
|
} else {
|
|
cpu_status state = disable_interrupts();
|
|
GRAB_THREAD_LOCK();
|
|
|
|
thread = thread_get_thread_struct_locked(id);
|
|
if (thread) {
|
|
oldPriority = thread->priority;
|
|
if (thread->state == B_THREAD_READY && thread->priority != priority) {
|
|
// if the thread is in the run queue, we reinsert it at a new position
|
|
// ToDo: this doesn't seem to be necessary: if a thread is already in
|
|
// the run queue, running it once doesn't hurt, and if the priority
|
|
// is now very low, it probably wouldn't have been selected to be in
|
|
// the run queue at all right now, anyway.
|
|
scheduler_remove_from_run_queue(thread);
|
|
thread->priority = priority;
|
|
scheduler_enqueue_in_run_queue(thread);
|
|
} else
|
|
thread->priority = priority;
|
|
} else
|
|
oldPriority = B_BAD_THREAD_ID;
|
|
|
|
RELEASE_THREAD_LOCK();
|
|
restore_interrupts(state);
|
|
}
|
|
|
|
return oldPriority;
|
|
}
|
|
|
|
|
|
status_t
|
|
snooze_etc(bigtime_t timeout, int timebase, uint32 flags)
|
|
{
|
|
status_t status;
|
|
|
|
if (timebase != B_SYSTEM_TIMEBASE)
|
|
return B_BAD_VALUE;
|
|
|
|
status = acquire_sem_etc(sSnoozeSem, 1, B_ABSOLUTE_TIMEOUT | flags, timeout);
|
|
if (status == B_TIMED_OUT || status == B_WOULD_BLOCK)
|
|
return B_OK;
|
|
|
|
return status;
|
|
}
|
|
|
|
|
|
/** snooze() for internal kernel use only; doesn't interrupt on signals.
|
|
*/
|
|
|
|
status_t
|
|
snooze(bigtime_t timeout)
|
|
{
|
|
return snooze_etc(timeout, B_SYSTEM_TIMEBASE, B_RELATIVE_TIMEOUT);
|
|
}
|
|
|
|
|
|
/** snooze_until() for internal kernel use only; doesn't interrupt on signals.
|
|
*/
|
|
|
|
status_t
|
|
snooze_until(bigtime_t timeout, int timebase)
|
|
{
|
|
return snooze_etc(timeout, timebase, B_ABSOLUTE_TIMEOUT);
|
|
}
|
|
|
|
|
|
status_t
|
|
wait_for_thread(thread_id id, status_t *_returnCode)
|
|
{
|
|
sem_id sem;
|
|
cpu_status state;
|
|
struct thread *t;
|
|
int rc;
|
|
|
|
rc = send_signal_etc(id, SIGCONT, 0);
|
|
if (rc != B_OK)
|
|
return rc;
|
|
|
|
state = disable_interrupts();
|
|
GRAB_THREAD_LOCK();
|
|
|
|
t = thread_get_thread_struct_locked(id);
|
|
sem = t != NULL ? t->return_code_sem : B_BAD_THREAD_ID;
|
|
|
|
RELEASE_THREAD_LOCK();
|
|
restore_interrupts(state);
|
|
|
|
rc = acquire_sem(sem);
|
|
|
|
/* This thread died the way it should, dont ripple a non-error up */
|
|
if (rc == B_BAD_SEM_ID) {
|
|
rc = B_NO_ERROR;
|
|
|
|
if (_returnCode) {
|
|
t = thread_get_current_thread();
|
|
TRACE(("wait_for_thread: thread %ld got return code 0x%x\n",
|
|
t->id, t->sem_deleted_retcode));
|
|
*_returnCode = t->sem_deleted_retcode;
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
status_t
|
|
suspend_thread(thread_id id)
|
|
{
|
|
return send_signal_etc(id, SIGSTOP, B_DO_NOT_RESCHEDULE);
|
|
}
|
|
|
|
|
|
status_t
|
|
resume_thread(thread_id id)
|
|
{
|
|
return send_signal_etc(id, SIGCONT, B_DO_NOT_RESCHEDULE);
|
|
}
|
|
|
|
|
|
thread_id
|
|
spawn_kernel_thread(thread_func function, const char *name, int32 priority, void *arg)
|
|
{
|
|
return create_thread(name, team_get_kernel_team()->id, function, arg, NULL, priority, true);
|
|
}
|
|
|
|
|
|
int
|
|
getrlimit(int resource, struct rlimit * rlp)
|
|
{
|
|
if (!rlp)
|
|
return -1;
|
|
|
|
switch (resource) {
|
|
case RLIMIT_NOFILE:
|
|
return vfs_getrlimit(resource, rlp);
|
|
|
|
default:
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
int
|
|
setrlimit(int resource, const struct rlimit * rlp)
|
|
{
|
|
if (!rlp)
|
|
return -1;
|
|
|
|
switch (resource) {
|
|
case RLIMIT_NOFILE:
|
|
return vfs_setrlimit(resource, rlp);
|
|
|
|
default:
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
// #pragma mark -
|
|
// Calls from userland (with extra address checks)
|
|
|
|
|
|
void
|
|
_user_exit_thread(status_t return_value)
|
|
{
|
|
struct thread *thread = thread_get_current_thread();
|
|
|
|
thread->return_code = return_value;
|
|
thread->return_flags = THREAD_RETURN_EXIT;
|
|
|
|
send_signal_etc(thread->id, SIGKILLTHR, B_DO_NOT_RESCHEDULE);
|
|
}
|
|
|
|
|
|
status_t
|
|
_user_kill_thread(thread_id thread)
|
|
{
|
|
return kill_thread(thread);
|
|
}
|
|
|
|
|
|
status_t
|
|
_user_resume_thread(thread_id thread)
|
|
{
|
|
return resume_thread(thread);
|
|
}
|
|
|
|
|
|
status_t
|
|
_user_suspend_thread(thread_id thread)
|
|
{
|
|
return suspend_thread(thread);
|
|
}
|
|
|
|
|
|
status_t
|
|
_user_rename_thread(thread_id thread, const char *userName)
|
|
{
|
|
char name[B_OS_NAME_LENGTH];
|
|
|
|
if (!IS_USER_ADDRESS(userName)
|
|
|| userName == NULL
|
|
|| user_strlcpy(name, userName, B_OS_NAME_LENGTH) < B_OK)
|
|
return B_BAD_ADDRESS;
|
|
|
|
return rename_thread(thread, name);
|
|
}
|
|
|
|
|
|
int32
|
|
_user_set_thread_priority(thread_id thread, int32 newPriority)
|
|
{
|
|
return set_thread_priority(thread, newPriority);
|
|
}
|
|
|
|
|
|
thread_id
|
|
_user_spawn_thread(thread_func entry, const char *userName, int32 priority, void *data1, void *data2)
|
|
{
|
|
char name[B_OS_NAME_LENGTH];
|
|
|
|
if (!IS_USER_ADDRESS(entry) || entry == NULL
|
|
|| !IS_USER_ADDRESS(userName)
|
|
|| user_strlcpy(name, userName, B_OS_NAME_LENGTH) < B_OK)
|
|
return B_BAD_ADDRESS;
|
|
|
|
return create_thread(name, thread_get_current_thread()->team->id, entry, data1, data2, priority, false);
|
|
}
|
|
|
|
|
|
status_t
|
|
_user_snooze_etc(bigtime_t timeout, int timebase, uint32 flags)
|
|
{
|
|
return snooze_etc(timeout, timebase, flags | B_CAN_INTERRUPT);
|
|
}
|
|
|
|
|
|
status_t
|
|
_user_get_thread_info(thread_id id, thread_info *userInfo)
|
|
{
|
|
thread_info info;
|
|
status_t status;
|
|
|
|
if (!IS_USER_ADDRESS(userInfo))
|
|
return B_BAD_ADDRESS;
|
|
|
|
status = _get_thread_info(id, &info, sizeof(thread_info));
|
|
|
|
if (status >= B_OK && user_memcpy(userInfo, &info, sizeof(thread_info)) < B_OK)
|
|
return B_BAD_ADDRESS;
|
|
|
|
return status;
|
|
}
|
|
|
|
|
|
status_t
|
|
_user_get_next_thread_info(team_id team, int32 *userCookie, thread_info *userInfo)
|
|
{
|
|
status_t status;
|
|
thread_info info;
|
|
int32 cookie;
|
|
|
|
if (!IS_USER_ADDRESS(userCookie) || !IS_USER_ADDRESS(userInfo)
|
|
|| user_memcpy(&cookie, userCookie, sizeof(int32)) < B_OK)
|
|
return B_BAD_ADDRESS;
|
|
|
|
status = _get_next_thread_info(team, &cookie, &info, sizeof(thread_info));
|
|
if (status < B_OK)
|
|
return status;
|
|
|
|
if (user_memcpy(userCookie, &cookie, sizeof(int32)) < B_OK
|
|
|| user_memcpy(userInfo, &info, sizeof(thread_info)) < B_OK)
|
|
return B_BAD_ADDRESS;
|
|
|
|
return status;
|
|
}
|
|
|
|
|
|
thread_id
|
|
_user_find_thread(const char *userName)
|
|
{
|
|
char name[B_OS_NAME_LENGTH];
|
|
|
|
if (userName == NULL)
|
|
return find_thread(NULL);
|
|
|
|
if (!IS_USER_ADDRESS(userName)
|
|
|| user_strlcpy(name, userName, sizeof(name)) < B_OK)
|
|
return B_BAD_ADDRESS;
|
|
|
|
return find_thread(name);
|
|
}
|
|
|
|
|
|
status_t
|
|
_user_wait_for_thread(thread_id id, status_t *userReturnCode)
|
|
{
|
|
status_t returnCode;
|
|
status_t status;
|
|
|
|
if (!IS_USER_ADDRESS(userReturnCode))
|
|
return B_BAD_ADDRESS;
|
|
|
|
status = wait_for_thread(id, &returnCode);
|
|
|
|
if (userReturnCode && user_memcpy(userReturnCode, &returnCode, sizeof(status_t)) < B_OK)
|
|
return B_BAD_ADDRESS;
|
|
|
|
return status;
|
|
}
|
|
|
|
|
|
bool
|
|
_user_has_data(thread_id thread)
|
|
{
|
|
return has_data(thread);
|
|
}
|
|
|
|
|
|
status_t
|
|
_user_send_data(thread_id thread, int32 code, const void *buffer, size_t bufferSize)
|
|
{
|
|
if (!IS_USER_ADDRESS(buffer))
|
|
return B_BAD_ADDRESS;
|
|
|
|
return send_data_etc(thread, code, buffer, bufferSize, B_CAN_INTERRUPT);
|
|
// supports userland buffers
|
|
}
|
|
|
|
|
|
status_t
|
|
_user_receive_data(thread_id *_userSender, void *buffer, size_t bufferSize)
|
|
{
|
|
thread_id sender;
|
|
status_t code;
|
|
|
|
if (!IS_USER_ADDRESS(_userSender)
|
|
|| !IS_USER_ADDRESS(buffer))
|
|
return B_BAD_ADDRESS;
|
|
|
|
code = receive_data_etc(&sender, buffer, bufferSize, B_CAN_INTERRUPT);
|
|
// supports userland buffers
|
|
|
|
if (user_memcpy(_userSender, &sender, sizeof(thread_id)) < B_OK)
|
|
return B_BAD_ADDRESS;
|
|
|
|
return code;
|
|
}
|
|
|
|
|
|
// ToDo: the following two functions don't belong here
|
|
|
|
|
|
int
|
|
_user_getrlimit(int resource, struct rlimit *urlp)
|
|
{
|
|
struct rlimit rl;
|
|
int ret;
|
|
|
|
if (urlp == NULL)
|
|
return EINVAL;
|
|
|
|
if (!IS_USER_ADDRESS(urlp))
|
|
return B_BAD_ADDRESS;
|
|
|
|
ret = getrlimit(resource, &rl);
|
|
|
|
if (ret == 0) {
|
|
ret = user_memcpy(urlp, &rl, sizeof(struct rlimit));
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
int
|
|
_user_setrlimit(int resource, const struct rlimit *userResourceLimit)
|
|
{
|
|
struct rlimit resourceLimit;
|
|
|
|
if (userResourceLimit == NULL)
|
|
return EINVAL;
|
|
|
|
if (!IS_USER_ADDRESS(userResourceLimit)
|
|
|| user_memcpy(&resourceLimit, userResourceLimit, sizeof(struct rlimit)) < B_OK)
|
|
return B_BAD_ADDRESS;
|
|
|
|
return setrlimit(resource, &resourceLimit);
|
|
}
|
|
|