haiku/src/system/runtime_loader/images.cpp
Axel Dörfler 3609af391d * Renamed _kern_reserve_heap_address_range() to _kern_reserve_address_range(),
and added a _kern_unreserve_address_range() as well.
* The runtime loader now reserves the space needed for all its areas first
  to make sure there is enough space left for all areas of a single image.
* This also fixes the final part of bug #4008.
* Minor cleanup.


git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@31115 a95241bf-73f2-0310-859d-f6bbb57e9c96
2009-06-19 11:09:21 +00:00

591 lines
14 KiB
C++

/*
* Copyright 2008-2009, Ingo Weinhold, ingo_weinhold@gmx.de.
* Copyright 2003-2009, Axel Dörfler, axeld@pinc-software.de.
* Distributed under the terms of the MIT License.
*
* Copyright 2002, Manuel J. Petit. All rights reserved.
* Copyright 2001, Travis Geiselbrecht. All rights reserved.
* Distributed under the terms of the NewOS License.
*/
#include "images.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <syscalls.h>
#include <vm_defs.h>
#include "add_ons.h"
#include "runtime_loader_private.h"
#define RLD_PROGRAM_BASE 0x00200000
/* keep in sync with app ldscript */
bool gInvalidImageIDs;
static image_queue_t sLoadedImages = {0, 0};
static image_queue_t sDisposableImages = {0, 0};
static uint32 sLoadedImageCount = 0;
//! Remaps the image ID of \a image after fork.
static status_t
update_image_id(image_t* image)
{
int32 cookie = 0;
image_info info;
while (_kern_get_next_image_info(B_CURRENT_TEAM, &cookie, &info,
sizeof(image_info)) == B_OK) {
for (uint32 i = 0; i < image->num_regions; i++) {
if (image->regions[i].vmstart == (addr_t)info.text) {
image->id = info.id;
return B_OK;
}
}
}
FATAL("Could not update image ID %ld after fork()!\n", image->id);
return B_ENTRY_NOT_FOUND;
}
static void
enqueue_image(image_queue_t* queue, image_t* image)
{
image->next = NULL;
image->prev = queue->tail;
if (queue->tail)
queue->tail->next = image;
queue->tail = image;
if (!queue->head)
queue->head = image;
}
static void
dequeue_image(image_queue_t* queue, image_t* image)
{
if (image->next)
image->next->prev = image->prev;
else
queue->tail = image->prev;
if (image->prev)
image->prev->next = image->next;
else
queue->head = image->next;
image->prev = NULL;
image->next = NULL;
}
static image_t*
find_image_in_queue(image_queue_t* queue, const char* name, bool isPath,
uint32 typeMask)
{
for (image_t* image = queue->head; image; image = image->next) {
const char* imageName = isPath ? image->path : image->name;
int length = isPath ? sizeof(image->path) : sizeof(image->name);
if (!strncmp(imageName, name, length)
&& (typeMask & IMAGE_TYPE_TO_MASK(image->type)) != 0) {
return image;
}
}
return NULL;
}
static void
update_image_flags_recursively(image_t* image, uint32 flagsToSet,
uint32 flagsToClear)
{
image_t* queue[sLoadedImageCount];
uint32 count = 0;
uint32 index = 0;
queue[count++] = image;
image->flags |= RFLAG_VISITED;
while (index < count) {
// pop next image
image = queue[index++];
// push dependencies
for (uint32 i = 0; i < image->num_needed; i++) {
image_t* needed = image->needed[i];
if ((needed->flags & RFLAG_VISITED) == 0) {
queue[count++] = needed;
needed->flags |= RFLAG_VISITED;
}
}
}
// update flags
for (uint32 i = 0; i < count; i++) {
queue[i]->flags = (queue[i]->flags | flagsToSet)
& ~(flagsToClear | RFLAG_VISITED);
}
}
static uint32
topological_sort(image_t* image, uint32 slot, image_t** initList,
uint32 sortFlag)
{
uint32 i;
if (image->flags & sortFlag)
return slot;
image->flags |= sortFlag; /* make sure we don't visit this one */
for (i = 0; i < image->num_needed; i++)
slot = topological_sort(image->needed[i], slot, initList, sortFlag);
initList[slot] = image;
return slot + 1;
}
/*! Finds the load address and address specifier of the given image region.
*/
static void
get_image_region_load_address(image_t* image, uint32 index, int32 lastDelta,
bool fixed, addr_t& loadAddress, uint32& addressSpecifier)
{
if (image->dynamic_ptr != 0 && !fixed) {
// relocatable image... we can afford to place wherever
if (index == 0) {
// but only the first segment gets a free ride
loadAddress = RLD_PROGRAM_BASE;
addressSpecifier = B_BASE_ADDRESS;
} else {
loadAddress = image->regions[index].vmstart + lastDelta;
addressSpecifier = B_EXACT_ADDRESS;
}
} else {
// not relocatable, put it where it asks or die trying
loadAddress = image->regions[index].vmstart;
addressSpecifier = B_EXACT_ADDRESS;
}
}
// #pragma mark -
image_t*
create_image(const char* name, const char* path, int regionCount)
{
size_t allocSize = sizeof(image_t)
+ (regionCount - 1) * sizeof(elf_region_t);
image_t* image = (image_t*)malloc(allocSize);
if (image == NULL) {
FATAL("no memory for image %s\n", path);
return NULL;
}
memset(image, 0, allocSize);
strlcpy(image->path, path, sizeof(image->path));
// Make the last component of the supplied name the image name.
// If present, DT_SONAME will replace this name.
const char* lastSlash = strrchr(name, '/');
if (lastSlash != NULL)
strlcpy(image->name, lastSlash + 1, sizeof(image->name));
else
strlcpy(image->name, name, sizeof(image->name));
image->ref_count = 1;
image->num_regions = regionCount;
return image;
}
void
delete_image_struct(image_t* image)
{
#ifdef DEBUG
size_t size = sizeof(image_t)
+ (image->num_regions - 1) * sizeof(elf_region_t);
memset(image->needed, 0xa5, sizeof(image->needed[0]) * image->num_needed);
#endif
free(image->needed);
free(image->versions);
while (RuntimeLoaderSymbolPatcher* patcher
= image->defined_symbol_patchers) {
image->defined_symbol_patchers = patcher->next;
delete patcher;
}
while (RuntimeLoaderSymbolPatcher* patcher
= image->undefined_symbol_patchers) {
image->undefined_symbol_patchers = patcher->next;
delete patcher;
}
#ifdef DEBUG
// overwrite images to make sure they aren't accidently reused anywhere
memset(image, 0xa5, size);
#endif
free(image);
}
void
delete_image(image_t* image)
{
if (image == NULL)
return;
_kern_unregister_image(image->id);
// registered in load_container()
delete_image_struct(image);
}
void
put_image(image_t* image)
{
// If all references to the image are gone, add it to the disposable list
// and remove all dependencies
if (atomic_add(&image->ref_count, -1) == 1) {
size_t i;
dequeue_image(&sLoadedImages, image);
enqueue_image(&sDisposableImages, image);
sLoadedImageCount--;
for (i = 0; i < image->num_needed; i++)
put_image(image->needed[i]);
}
}
status_t
map_image(int fd, char const* path, image_t* image, bool fixed)
{
// cut the file name from the path as base name for the created areas
const char* baseName = strrchr(path, '/');
if (baseName != NULL)
baseName++;
else
baseName = path;
// determine how much space we need for all loaded segments
addr_t reservedAddress = 0;
addr_t loadAddress;
size_t reservedSize = 0;
size_t length = 0;
uint32 addressSpecifier = B_ANY_ADDRESS;
for (uint32 i = 0; i < image->num_regions; i++) {
// for BeOS compatibility: if we load an old BeOS executable, we
// have to relocate it, if possible - we recognize it because the
// vmstart is set to 0 (hopefully always)
if (fixed && image->regions[i].vmstart == 0)
fixed = false;
uint32 regionAddressSpecifier;
get_image_region_load_address(image, i,
loadAddress - image->regions[i - 1].vmstart, fixed,
loadAddress, regionAddressSpecifier);
if (i == 0) {
reservedAddress = loadAddress;
addressSpecifier = regionAddressSpecifier;
}
length += TO_PAGE_SIZE(image->regions[i].vmsize
+ (loadAddress % B_PAGE_SIZE));
size_t size = TO_PAGE_SIZE(loadAddress + image->regions[i].vmsize)
- reservedAddress;
if (size > reservedSize)
reservedSize = size;
}
// Check whether the segments have an unreasonable amount of unused space
// inbetween.
if (reservedSize > length + 8 * 1024)
return B_BAD_DATA;
// reserve that space and allocate the areas from that one
if (_kern_reserve_address_range(&reservedAddress, addressSpecifier,
reservedSize) != B_OK)
return B_NO_MEMORY;
for (uint32 i = 0; i < image->num_regions; i++) {
char regionName[B_OS_NAME_LENGTH];
snprintf(regionName, sizeof(regionName), "%s_seg%lu%s",
baseName, i, (image->regions[i].flags & RFLAG_RW) ? "rw" : "ro");
get_image_region_load_address(image, i, image->regions[i - 1].delta,
fixed, loadAddress, addressSpecifier);
// If the image position is arbitrary, we must let it point to the start
// of the reserved address range.
if (addressSpecifier != B_EXACT_ADDRESS)
loadAddress = reservedAddress;
if ((image->regions[i].flags & RFLAG_ANON) != 0) {
image->regions[i].id = _kern_create_area(regionName,
(void**)&loadAddress, B_EXACT_ADDRESS,
image->regions[i].vmsize, B_NO_LOCK,
B_READ_AREA | B_WRITE_AREA);
if (image->regions[i].id < 0) {
_kern_unreserve_address_range(reservedAddress, reservedSize);
return image->regions[i].id;
}
} else {
image->regions[i].id = _kern_map_file(regionName,
(void**)&loadAddress, B_EXACT_ADDRESS,
image->regions[i].vmsize, B_READ_AREA | B_WRITE_AREA,
REGION_PRIVATE_MAP, false, fd,
PAGE_BASE(image->regions[i].fdstart));
if (image->regions[i].id < 0) {
_kern_unreserve_address_range(reservedAddress, reservedSize);
return image->regions[i].id;
}
TRACE(("\"%s\" at %p, 0x%lx bytes (%s)\n", path,
(void *)loadAddress, image->regions[i].vmsize,
image->regions[i].flags & RFLAG_RW ? "rw" : "read-only"));
// handle trailer bits in data segment
if (image->regions[i].flags & RFLAG_RW) {
addr_t startClearing = loadAddress
+ PAGE_OFFSET(image->regions[i].start)
+ image->regions[i].size;
addr_t toClear = image->regions[i].vmsize
- PAGE_OFFSET(image->regions[i].start)
- image->regions[i].size;
TRACE(("cleared 0x%lx and the following 0x%lx bytes\n",
startClearing, toClear));
memset((void *)startClearing, 0, toClear);
}
}
image->regions[i].delta = loadAddress - image->regions[i].vmstart;
image->regions[i].vmstart = loadAddress;
}
if (image->dynamic_ptr != 0)
image->dynamic_ptr += image->regions[0].delta;
return B_OK;
}
void
unmap_image(image_t* image)
{
for (uint32 i = 0; i < image->num_regions; i++) {
_kern_delete_area(image->regions[i].id);
image->regions[i].id = -1;
}
}
/*! This function will change the protection of all read-only segments to really
be read-only.
The areas have to be read/write first, so that they can be relocated.
*/
void
remap_images()
{
for (image_t* image = sLoadedImages.head; image != NULL;
image = image->next) {
for (uint32 i = 0; i < image->num_regions; i++) {
if ((image->regions[i].flags & RFLAG_RW) == 0
&& (image->regions[i].flags & RFLAG_REMAPPED) == 0) {
// we only need to do this once, so we remember those we've already mapped
if (_kern_set_area_protection(image->regions[i].id,
B_READ_AREA | B_EXECUTE_AREA) == B_OK) {
image->regions[i].flags |= RFLAG_REMAPPED;
}
}
}
}
}
void
register_image(image_t* image, int fd, const char* path)
{
struct stat stat;
image_info info;
// TODO: set these correctly
info.id = 0;
info.type = image->type;
info.sequence = 0;
info.init_order = 0;
info.init_routine = (void (*)())image->init_routine;
info.term_routine = (void (*)())image->term_routine;
if (_kern_read_stat(fd, NULL, false, &stat, sizeof(struct stat)) == B_OK) {
info.device = stat.st_dev;
info.node = stat.st_ino;
} else {
info.device = -1;
info.node = -1;
}
strlcpy(info.name, path, sizeof(info.name));
info.text = (void *)image->regions[0].vmstart;
info.text_size = image->regions[0].vmsize;
info.data = (void *)image->regions[1].vmstart;
info.data_size = image->regions[1].vmsize;
info.api_version = image->api_version;
info.abi = image->abi;
image->id = _kern_register_image(&info, sizeof(image_info));
}
//! After fork, we lazily rebuild the image IDs of all loaded images.
status_t
update_image_ids()
{
for (image_t* image = sLoadedImages.head; image; image = image->next) {
status_t status = update_image_id(image);
if (status != B_OK)
return status;
}
for (image_t* image = sDisposableImages.head; image; image = image->next) {
status_t status = update_image_id(image);
if (status != B_OK)
return status;
}
gInvalidImageIDs = false;
return B_OK;
}
image_queue_t&
get_loaded_images()
{
return sLoadedImages;
}
image_queue_t&
get_disposable_images()
{
return sDisposableImages;
}
uint32
count_loaded_images()
{
return sLoadedImageCount;
}
void
enqueue_loaded_image(image_t* image)
{
enqueue_image(&sLoadedImages, image);
sLoadedImageCount++;
}
void
dequeue_loaded_image(image_t* image)
{
dequeue_image(&sLoadedImages, image);
sLoadedImageCount--;
}
void
dequeue_disposable_image(image_t* image)
{
dequeue_image(&sDisposableImages, image);
}
image_t*
find_loaded_image_by_name(char const* name, uint32 typeMask)
{
bool isPath = strchr(name, '/') != NULL;
return find_image_in_queue(&sLoadedImages, name, isPath, typeMask);
}
image_t*
find_loaded_image_by_id(image_id id, bool ignoreDisposable)
{
if (gInvalidImageIDs) {
// After fork, we lazily rebuild the image IDs of all loaded images
update_image_ids();
}
for (image_t* image = sLoadedImages.head; image; image = image->next) {
if (image->id == id)
return image;
}
if (ignoreDisposable)
return NULL;
for (image_t* image = sDisposableImages.head; image; image = image->next) {
if (image->id == id)
return image;
}
return NULL;
}
void
set_image_flags_recursively(image_t* image, uint32 flags)
{
update_image_flags_recursively(image, flags, 0);
}
void
clear_image_flags_recursively(image_t* image, uint32 flags)
{
update_image_flags_recursively(image, 0, flags);
}
ssize_t
get_sorted_image_list(image_t* image, image_t*** _list, uint32 sortFlag)
{
image_t** list;
list = (image_t**)malloc(sLoadedImageCount * sizeof(image_t*));
if (list == NULL) {
FATAL("memory shortage in get_sorted_image_list()");
*_list = NULL;
return B_NO_MEMORY;
}
memset(list, 0, sLoadedImageCount * sizeof(image_t*));
*_list = list;
return topological_sort(image, 0, list, sortFlag);
}