haiku/src/kernel/core/timer.c
lillo 5cdacbaabb *LOTS* of small changes to make the kernel compatible with Be's KernelExport.h
git-svn-id: file:///srv/svn/repos/haiku/trunk/current@1683 a95241bf-73f2-0310-859d-f6bbb57e9c96
2002-10-26 16:13:36 +00:00

255 lines
5.8 KiB
C

/* Policy info for timers */
/*
** Copyright 2001, Travis Geiselbrecht. All rights reserved.
** Distributed under the terms of the NewOS License.
*/
#include <kernel.h>
#include <console.h>
#include <debug.h>
#include <thread.h>
#include <arch/int.h>
#include <smp.h>
#include <vm.h>
#include <int.h>
#include <timer.h>
#include <Errors.h>
#include <stage2.h>
#include <OS.h>
#include <arch/cpu.h>
#include <arch/timer.h>
#include <arch/smp.h>
static timer * volatile events[SMP_MAX_CPUS] = { NULL, };
static spinlock timer_spinlock[SMP_MAX_CPUS] = { 0, };
int timer_init(kernel_args *ka)
{
dprintf("init_timer: entry\n");
return arch_init_timer(ka);
}
// NOTE: expects interrupts to be off
static void add_event_to_list(timer *event, timer * volatile *list)
{
timer *next;
timer *last = NULL;
// stick it in the event list
for (next = *list; next; last = next, next = (timer *)next->entry.next) {
if ((bigtime_t)next->entry.key >= (bigtime_t)event->entry.key)
break;
}
if (last != NULL) {
(timer *)event->entry.next = (timer *)last->entry.next;
(timer *)last->entry.next = event;
}
else {
(timer *)event->entry.next = next;
*list = event;
}
}
int timer_interrupt()
{
bigtime_t sched_time;
timer *event;
spinlock *spinlock;
int curr_cpu = smp_get_current_cpu();
int rc = B_HANDLED_INTERRUPT;
// dprintf("timer_interrupt: time 0x%x 0x%x, cpu %d\n", system_time(), smp_get_current_cpu());
spinlock = &timer_spinlock[curr_cpu];
acquire_spinlock(spinlock);
restart_scan:
event = events[curr_cpu];
if ((event) && ((bigtime_t)event->entry.key < system_time())) {
// this event needs to happen
int mode = event->flags;
events[curr_cpu] = (timer *)event->entry.next;
event->entry.key = 0;
release_spinlock(spinlock);
// call the callback
// note: if the event is not periodic, it is ok
// to delete the event structure inside the callback
if (event->hook) {
rc = event->hook(event);
// if (event->func(event->data) == INT_RESCHEDULE)
// rc = INT_RESCHEDULE;
}
acquire_spinlock(spinlock);
if (mode == B_PERIODIC_TIMER) {
// we need to adjust it and add it back to the list
sched_time = system_time() + event->period;
if (sched_time == 0)
sched_time = 1; // if we wrapped around and happen
// to hit zero, set it to one, since
// zero represents not scheduled
event->entry.key = (int64)sched_time;
add_event_to_list(event, &events[curr_cpu]);
}
goto restart_scan; // the list may have changed
}
// setup the next hardware timer
if (events[curr_cpu] != NULL)
arch_timer_set_hardware_timer((bigtime_t)events[curr_cpu]->entry.key - system_time());
release_spinlock(spinlock);
return rc;
}
status_t add_timer(timer *t, timer_hook hook, bigtime_t period, int32 flags)
{
bigtime_t sched_time;
bigtime_t curr_time = system_time();
int state;
int curr_cpu;
if ((!t) || (!hook) || (period < 0))
return B_BAD_VALUE;
sched_time = period;
if (flags != B_ONE_SHOT_ABSOLUTE_TIMER)
sched_time += curr_time;
if (sched_time == 0)
sched_time = 1;
t->entry.key = (int64)sched_time;
t->period = period;
t->hook = hook;
t->flags = flags;
state = disable_interrupts();
curr_cpu = smp_get_current_cpu();
acquire_spinlock(&timer_spinlock[curr_cpu]);
add_event_to_list(t, &events[curr_cpu]);
t->cpu = curr_cpu;
// if we were stuck at the head of the list, set the hardware timer
if (t == events[curr_cpu])
arch_timer_set_hardware_timer(sched_time - curr_time);
release_spinlock(&timer_spinlock[curr_cpu]);
restore_interrupts(state);
return B_OK;
}
/* this is a fast path to be called from reschedule and from timer_cancel_event */
/* must always be invoked with interrupts disabled */
int _local_timer_cancel_event(int curr_cpu, timer *event)
{
timer *last = NULL;
timer *e;
acquire_spinlock(&timer_spinlock[curr_cpu]);
e = events[curr_cpu];
while (e != NULL) {
if (e == event) {
// we found it
if (e == events[curr_cpu])
events[curr_cpu] = (timer *)e->entry.next;
else
(timer *)last->entry.next = (timer *)e->entry.next;
e->entry.next = NULL;
// break out of the whole thing
break;
}
last = e;
e = (timer *)e->entry.next;
}
if (events[curr_cpu] == NULL)
arch_timer_clear_hardware_timer();
else
arch_timer_set_hardware_timer((bigtime_t)events[curr_cpu]->entry.key - system_time());
release_spinlock(&timer_spinlock[curr_cpu]);
return (e == event ? 0 : B_ERROR);
}
int local_timer_cancel_event(timer *event)
{
return _local_timer_cancel_event(smp_get_current_cpu(), event);
}
bool cancel_timer(timer *event)
{
int state;
timer *last = NULL;
timer *e;
bool foundit = false;
int num_cpus = smp_get_num_cpus();
int cpu= 0;
int curr_cpu;
// if (event->sched_time == 0)
// return 0; // it's not scheduled
state = disable_interrupts();
curr_cpu = smp_get_current_cpu();
// walk through all of the cpu's timer queues
//
// We start by peeking our own queue, aiming for
// a cheap match. If this fails, we start harassing
// other cpus.
//
if (_local_timer_cancel_event(curr_cpu, event) < 0) {
for (cpu = 0; cpu < num_cpus; cpu++) {
if (cpu== curr_cpu) continue;
acquire_spinlock(&timer_spinlock[cpu]);
e = events[cpu];
while (e != NULL) {
if (e == event) {
// we found it
foundit = true;
if(e == events[cpu])
events[cpu] = (timer *)e->entry.next;
else
(timer *)last->entry.next = (timer *)e->entry.next;
e->entry.next = NULL;
// break out of the whole thing
goto done;
}
last = e;
e = (timer *)e->entry.next;
}
release_spinlock(&timer_spinlock[cpu]);
}
}
done:
if (foundit)
release_spinlock(&timer_spinlock[cpu]);
restore_interrupts(state);
if (foundit && ((bigtime_t)event->entry.key < system_time()))
return true;
return false;
}
void spin(bigtime_t microseconds)
{
bigtime_t time = system_time();
while((system_time() - time) < microseconds)
;
}