haiku/src/system/kernel/fs/devfs.cpp
Axel Dörfler 3e9513aa4a * fs_{write|read}_pages() now has an additional argument "mayBlock".
* the page writer don't allow to block, while all other writers do. This fixes
  bug #1509. The reason the page writer needs this is because it marks several
  pages from different caches as busy.
* Fixed a warning about ASSERT being defined already in BFS, since
  util/DoublyLinkedList.h now includes debug.h.


git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@22434 a95241bf-73f2-0310-859d-f6bbb57e9c96
2007-10-04 12:45:15 +00:00

2481 lines
57 KiB
C++

/*
* Copyright 2002-2007, Axel Dörfler, axeld@pinc-software.de. All rights reserved.
* Distributed under the terms of the MIT License.
*
* Copyright 2001-2002, Travis Geiselbrecht. All rights reserved.
* Distributed under the terms of the NewOS License.
*/
#include "IOScheduler.h"
#include <KernelExport.h>
#include <Drivers.h>
#include <pnp_devfs.h>
#include <NodeMonitor.h>
#include <boot_device.h>
#include <kdevice_manager.h>
#include <KPath.h>
#include <vfs.h>
#include <debug.h>
#include <util/khash.h>
#include <util/AutoLock.h>
#include <elf.h>
#include <lock.h>
#include <vm.h>
#include <arch/cpu.h>
#include <boot/kernel_args.h>
#include <devfs.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <sys/stat.h>
//#define TRACE_DEVFS
#ifdef TRACE_DEVFS
# define TRACE(x) dprintf x
#else
# define TRACE(x)
#endif
struct devfs_partition {
struct devfs_vnode *raw_device;
partition_info info;
};
struct driver_entry;
enum {
kNotScanned = 0,
kBootScan,
kNormalScan,
};
struct devfs_stream {
mode_t type;
union {
struct stream_dir {
struct devfs_vnode *dir_head;
struct list cookies;
int32 scanned;
} dir;
struct stream_dev {
device_node_info *node;
pnp_devfs_driver_info *info;
device_hooks *ops;
struct devfs_partition *partition;
IOScheduler *scheduler;
driver_entry *driver;
} dev;
struct stream_symlink {
const char *path;
size_t length;
} symlink;
} u;
};
struct devfs_vnode {
struct devfs_vnode *all_next;
ino_t id;
char *name;
time_t modification_time;
time_t creation_time;
uid_t uid;
gid_t gid;
struct devfs_vnode *parent;
struct devfs_vnode *dir_next;
struct devfs_stream stream;
};
#define DEVFS_HASH_SIZE 16
struct devfs {
dev_t id;
recursive_lock lock;
int32 next_vnode_id;
hash_table *vnode_hash;
struct devfs_vnode *root_vnode;
hash_table *driver_hash;
};
struct devfs_dir_cookie {
struct list_link link;
struct devfs_vnode *current;
int32 state; // iteration state
};
struct devfs_cookie {
void *device_cookie;
};
// directory iteration states
enum {
ITERATION_STATE_DOT = 0,
ITERATION_STATE_DOT_DOT = 1,
ITERATION_STATE_OTHERS = 2,
ITERATION_STATE_BEGIN = ITERATION_STATE_DOT,
};
struct driver_entry {
driver_entry *next;
const char *path;
dev_t device;
ino_t node;
time_t last_modified;
image_id image;
};
static void get_device_name(struct devfs_vnode *vnode, char *buffer,
size_t size);
static status_t publish_device(struct devfs *fs, const char *path,
device_node_info *deviceNode, pnp_devfs_driver_info *info,
driver_entry *driver, device_hooks *ops, int32 apiVersion);
/* the one and only allowed devfs instance */
static struct devfs *sDeviceFileSystem = NULL;
// #pragma mark - driver private
static uint32
driver_entry_hash(void *_driver, const void *_key, uint32 range)
{
driver_entry *driver = (driver_entry *)_driver;
const ino_t *key = (const ino_t *)_key;
if (driver != NULL)
return driver->node % range;
return (uint64)*key % range;
}
static int
driver_entry_compare(void *_driver, const void *_key)
{
driver_entry *driver = (driver_entry *)_driver;
const ino_t *key = (const ino_t *)_key;
if (driver->node == *key)
return 0;
return -1;
}
static status_t
load_driver(driver_entry *driver)
{
status_t (*init_hardware)(void);
status_t (*init_driver)(void);
const char **devicePaths;
int32 exported = 0;
status_t status;
// load the module
image_id image = driver->image;
if (image < 0) {
image = load_kernel_add_on(driver->path);
if (image < 0)
return image;
}
// for prettier debug output
const char *name = strrchr(driver->path, '/');
if (name == NULL)
name = driver->path;
else
name++;
// For a valid device driver the following exports are required
int32 defaultApiVersion = 1;
int32 *apiVersion = &defaultApiVersion;
if (get_image_symbol(image, "api_version", B_SYMBOL_TYPE_DATA,
(void **)&apiVersion) == B_OK) {
#if B_CUR_DRIVER_API_VERSION != 2
// just in case someone decides to bump up the api version
#error Add checks here for new vs old api version!
#endif
if (*apiVersion > B_CUR_DRIVER_API_VERSION) {
dprintf("%s: api_version %ld not handled\n", name, *apiVersion);
status = B_BAD_VALUE;
goto error1;
}
if (*apiVersion < 1) {
dprintf("%s: api_version invalid\n", name);
status = B_BAD_VALUE;
goto error1;
}
} else
dprintf("%s: api_version missing\n", name);
device_hooks *(*find_device)(const char *);
const char **(*publish_devices)(void);
if (get_image_symbol(image, "publish_devices", B_SYMBOL_TYPE_TEXT,
(void **)&publish_devices) != B_OK
|| get_image_symbol(image, "find_device", B_SYMBOL_TYPE_TEXT,
(void **)&find_device) != B_OK) {
dprintf("%s: mandatory driver symbol(s) missing!\n", name);
status = B_BAD_VALUE;
goto error1;
}
// Init the driver
if (get_image_symbol(image, "init_hardware", B_SYMBOL_TYPE_TEXT,
(void **)&init_hardware) == B_OK
&& (status = init_hardware()) != B_OK) {
dprintf("%s: init_hardware() failed: %s\n", name, strerror(status));
status = ENXIO;
goto error1;
}
if (get_image_symbol(image, "init_driver", B_SYMBOL_TYPE_TEXT,
(void **)&init_driver) == B_OK
&& (status = init_driver()) != B_OK) {
dprintf("%s: init_driver() failed: %s\n", name, strerror(status));
status = ENXIO;
goto error2;
}
// The driver has successfully been initialized, now we can
// finally publish its device entries
// we keep the driver loaded if it exports at least a single interface
// ToDo: we could/should always unload drivers until they will be used for real
// ToDo: this function is probably better kept in devfs, so that it could remember
// the driver stuff (and even keep it loaded if there is enough memory)
devicePaths = publish_devices();
if (devicePaths == NULL) {
dprintf("%s: publish_devices() returned NULL.\n", name);
status = ENXIO;
goto error3;
}
for (; devicePaths[0]; devicePaths++) {
device_hooks *hooks = find_device(devicePaths[0]);
if (hooks != NULL
&& publish_device(sDeviceFileSystem, devicePaths[0],
NULL, NULL, driver, hooks, *apiVersion) == B_OK)
exported++;
}
// we're all done, driver will be kept loaded (for now, see above comment)
if (exported > 0) {
driver->image = image;
return B_OK;
}
status = B_ERROR; // whatever...
error3:
{
status_t (*uninit_driver)(void);
if (get_image_symbol(image, "uninit_driver", B_SYMBOL_TYPE_TEXT,
(void **)&uninit_driver) == B_OK)
uninit_driver();
}
error2:
{
status_t (*uninit_hardware)(void);
if (get_image_symbol(image, "uninit_hardware", B_SYMBOL_TYPE_TEXT,
(void **)&uninit_hardware) == B_OK)
uninit_hardware();
}
error1:
if (driver->image < 0) {
unload_kernel_add_on(image);
driver->image = status;
}
return status;
}
static status_t
add_driver(const char *path, image_id image)
{
// see if we already know this driver
struct stat stat;
if (image >= 0) {
// TODO: Unfortunately only the node ID is the key for the hash table.
// The image ID should be a small number and hopefully the boot FS
// doesn't use small negative values -- if it is inode based, we should
// be relatively safe.
stat.st_dev = -1;
stat.st_ino = -image;
} else {
if (::stat(path, &stat) != 0)
return errno;
}
RecursiveLocker locker(&sDeviceFileSystem->lock);
driver_entry *driver = (driver_entry *)hash_lookup(
sDeviceFileSystem->driver_hash, &stat.st_ino);
if (driver != NULL) {
// we know this driver
// ToDo: test for changes here? Although node monitoring should be enough.
if (driver->image < B_OK)
return driver->image;
return B_OK;
}
// we don't know this driver, create a new entry for it
driver = (driver_entry *)malloc(sizeof(driver_entry));
if (driver == NULL)
return B_NO_MEMORY;
driver->path = strdup(path);
if (driver->path == NULL) {
free(driver);
return B_NO_MEMORY;
}
driver->device = stat.st_dev;
driver->node = stat.st_ino;
driver->image = image;
driver->last_modified = stat.st_mtime;
hash_insert(sDeviceFileSystem->driver_hash, driver);
// Even if loading the driver fails - its entry will stay with us
// so that we don't have to go through it again
return load_driver(driver);
}
/*! This is no longer part of the public kernel API, so we just export the
symbol
*/
status_t load_driver_symbols(const char *driverName);
status_t
load_driver_symbols(const char *driverName)
{
// This is done globally for the whole kernel via the settings file.
// We don't have to do anything here.
return B_OK;
}
static int32
scan_mode(void)
{
// We may scan every device twice:
// - once before there is a boot device,
// - and once when there is one
return gBootDevice >= 0 ? kNormalScan : kBootScan;
}
static status_t
scan_for_drivers(devfs_vnode *dir)
{
KPath path;
if (path.InitCheck() != B_OK)
return B_NO_MEMORY;
get_device_name(dir, path.LockBuffer(), path.BufferSize());
path.UnlockBuffer();
TRACE(("scan_for_drivers: mode %ld: %s\n", scan_mode(), path.Path()));
// scan for drivers at this path
probe_for_device_type(path.Path());
dir->stream.u.dir.scanned = scan_mode();
return B_OK;
}
// #pragma mark - devfs private
static uint32
devfs_vnode_hash(void *_vnode, const void *_key, uint32 range)
{
struct devfs_vnode *vnode = (struct devfs_vnode *)_vnode;
const ino_t *key = (const ino_t *)_key;
if (vnode != NULL)
return vnode->id % range;
return (uint64)*key % range;
}
static int
devfs_vnode_compare(void *_vnode, const void *_key)
{
struct devfs_vnode *vnode = (struct devfs_vnode *)_vnode;
const ino_t *key = (const ino_t *)_key;
if (vnode->id == *key)
return 0;
return -1;
}
static struct devfs_vnode *
devfs_create_vnode(struct devfs *fs, devfs_vnode *parent, const char *name)
{
struct devfs_vnode *vnode;
vnode = (struct devfs_vnode *)malloc(sizeof(struct devfs_vnode));
if (vnode == NULL)
return NULL;
memset(vnode, 0, sizeof(struct devfs_vnode));
vnode->id = fs->next_vnode_id++;
vnode->name = strdup(name);
if (vnode->name == NULL) {
free(vnode);
return NULL;
}
vnode->creation_time = vnode->modification_time = time(NULL);
vnode->uid = geteuid();
vnode->gid = parent ? parent->gid : getegid();
// inherit group from parent if possible
return vnode;
}
static status_t
devfs_delete_vnode(struct devfs *fs, struct devfs_vnode *vnode,
bool force_delete)
{
// cant delete it if it's in a directory or is a directory
// and has children
if (!force_delete
&& ((S_ISDIR(vnode->stream.type) && vnode->stream.u.dir.dir_head != NULL)
|| vnode->dir_next != NULL))
return B_NOT_ALLOWED;
// remove it from the global hash table
hash_remove(fs->vnode_hash, vnode);
if (S_ISCHR(vnode->stream.type)) {
// for partitions, we have to release the raw device
if (vnode->stream.u.dev.partition)
put_vnode(fs->id, vnode->stream.u.dev.partition->raw_device->id);
else
delete vnode->stream.u.dev.scheduler;
// remove API conversion from old to new drivers
if (vnode->stream.u.dev.node == NULL)
free(vnode->stream.u.dev.info);
}
free(vnode->name);
free(vnode);
return B_OK;
}
/** makes sure none of the dircookies point to the vnode passed in */
static void
update_dir_cookies(struct devfs_vnode *dir, struct devfs_vnode *vnode)
{
struct devfs_dir_cookie *cookie = NULL;
while ((cookie = (devfs_dir_cookie *)list_get_next_item(
&dir->stream.u.dir.cookies, cookie)) != NULL) {
if (cookie->current == vnode)
cookie->current = vnode->dir_next;
}
}
static struct devfs_vnode *
devfs_find_in_dir(struct devfs_vnode *dir, const char *path)
{
struct devfs_vnode *vnode;
if (!S_ISDIR(dir->stream.type))
return NULL;
if (!strcmp(path, "."))
return dir;
if (!strcmp(path, ".."))
return dir->parent;
for (vnode = dir->stream.u.dir.dir_head; vnode; vnode = vnode->dir_next) {
//TRACE(("devfs_find_in_dir: looking at entry '%s'\n", vnode->name));
if (strcmp(vnode->name, path) == 0) {
//TRACE(("devfs_find_in_dir: found it at %p\n", vnode));
return vnode;
}
}
return NULL;
}
static status_t
devfs_insert_in_dir(struct devfs_vnode *dir, struct devfs_vnode *vnode)
{
if (!S_ISDIR(dir->stream.type))
return B_BAD_VALUE;
// make sure the directory stays sorted alphabetically
devfs_vnode *node = dir->stream.u.dir.dir_head, *last = NULL;
while (node && strcmp(node->name, vnode->name) < 0) {
last = node;
node = node->dir_next;
}
if (last == NULL) {
// the new vnode is the first entry in the list
vnode->dir_next = dir->stream.u.dir.dir_head;
dir->stream.u.dir.dir_head = vnode;
} else {
// insert after that node
vnode->dir_next = last->dir_next;
last->dir_next = vnode;
}
vnode->parent = dir;
dir->modification_time = time(NULL);
notify_entry_created(sDeviceFileSystem->id, dir->id, vnode->name,
vnode->id);
notify_stat_changed(sDeviceFileSystem->id, dir->id,
B_STAT_MODIFICATION_TIME);
return B_OK;
}
static status_t
devfs_remove_from_dir(struct devfs_vnode *dir, struct devfs_vnode *removeNode)
{
struct devfs_vnode *vnode = dir->stream.u.dir.dir_head;
struct devfs_vnode *lastNode = NULL;
for (; vnode != NULL; lastNode = vnode, vnode = vnode->dir_next) {
if (vnode == removeNode) {
// make sure no dircookies point to this vnode
update_dir_cookies(dir, vnode);
if (lastNode)
lastNode->dir_next = vnode->dir_next;
else
dir->stream.u.dir.dir_head = vnode->dir_next;
vnode->dir_next = NULL;
dir->modification_time = time(NULL);
notify_entry_removed(sDeviceFileSystem->id, dir->id, vnode->name,
vnode->id);
notify_stat_changed(sDeviceFileSystem->id, dir->id,
B_STAT_MODIFICATION_TIME);
return B_OK;
}
}
return B_ENTRY_NOT_FOUND;
}
static status_t
add_partition(struct devfs *fs, struct devfs_vnode *device,
const char *name, const partition_info &info)
{
struct devfs_vnode *partitionNode;
status_t status;
if (!S_ISCHR(device->stream.type))
return B_BAD_VALUE;
// we don't support nested partitions
if (device->stream.u.dev.partition)
return B_BAD_VALUE;
// reduce checks to a minimum - things like negative offsets could be useful
if (info.size < 0)
return B_BAD_VALUE;
// create partition
struct devfs_partition *partition = (struct devfs_partition *)malloc(
sizeof(struct devfs_partition));
if (partition == NULL)
return B_NO_MEMORY;
memcpy(&partition->info, &info, sizeof(partition_info));
RecursiveLocker locker(&fs->lock);
// you cannot change a partition once set
if (devfs_find_in_dir(device->parent, name)) {
status = B_BAD_VALUE;
goto err1;
}
// increase reference count of raw device -
// the partition device really needs it
status = get_vnode(fs->id, device->id, (fs_vnode *)&partition->raw_device);
if (status < B_OK)
goto err1;
// now create the partition vnode
partitionNode = devfs_create_vnode(fs, device->parent, name);
if (partitionNode == NULL) {
status = B_NO_MEMORY;
goto err2;
}
partitionNode->stream.type = device->stream.type;
partitionNode->stream.u.dev.node = device->stream.u.dev.node;
partitionNode->stream.u.dev.info = device->stream.u.dev.info;
partitionNode->stream.u.dev.ops = device->stream.u.dev.ops;
partitionNode->stream.u.dev.partition = partition;
partitionNode->stream.u.dev.scheduler = device->stream.u.dev.scheduler;
hash_insert(fs->vnode_hash, partitionNode);
devfs_insert_in_dir(device->parent, partitionNode);
TRACE(("add_partition(name = %s, offset = %Ld, size = %Ld)\n",
name, info.offset, info.size));
return B_OK;
err2:
put_vnode(fs->id, device->id);
err1:
free(partition);
return status;
}
static inline void
translate_partition_access(devfs_partition *partition, off_t &offset,
size_t &size)
{
ASSERT(offset >= 0);
ASSERT(offset < partition->info.size);
size = min_c(size, partition->info.size - offset);
offset += partition->info.offset;
}
static pnp_devfs_driver_info *
create_new_driver_info(device_hooks *ops, int32 version)
{
pnp_devfs_driver_info *info = (pnp_devfs_driver_info *)malloc(
sizeof(pnp_devfs_driver_info));
if (info == NULL)
return NULL;
memset(info, 0, sizeof(driver_module_info));
info->open = NULL;
// ops->open is used directly for old devices
info->close = ops->close;
info->free = ops->free;
info->control = ops->control;
info->read = ops->read;
info->write = ops->write;
// depends on api_version
info->select = NULL;
info->deselect = NULL;
info->read_pages = NULL;
info->write_pages = NULL;
// old devices can't know how to do physical page access
if (version >= 2) {
// According to Be newsletter, vol II, issue 36,
// version 2 added readv/writev, which we don't support, but also
// select/deselect.
info->select = ops->select;
info->deselect = ops->deselect;
// ops->readv;
// ops->writev;
// we don't implement scatter-gather atm, so ignore those.
}
return info;
}
static status_t
get_node_for_path(struct devfs *fs, const char *path,
struct devfs_vnode **_node)
{
return vfs_get_fs_node_from_path(fs->id, path, true, (void **)_node);
}
static status_t
unpublish_node(struct devfs *fs, devfs_vnode *node, mode_t type)
{
if ((node->stream.type & S_IFMT) != type)
return B_BAD_TYPE;
recursive_lock_lock(&fs->lock);
status_t status = devfs_remove_from_dir(node->parent, node);
if (status < B_OK)
goto out;
status = remove_vnode(fs->id, node->id);
out:
recursive_lock_unlock(&fs->lock);
return status;
}
static status_t
unpublish_node(struct devfs *fs, const char *path, mode_t type)
{
devfs_vnode *node;
status_t status = get_node_for_path(fs, path, &node);
if (status != B_OK)
return status;
status = unpublish_node(fs, node, type);
put_vnode(fs->id, node->id);
return status;
}
static status_t
publish_directory(struct devfs *fs, const char *path)
{
ASSERT_LOCKED_RECURSIVE(&fs->lock);
// copy the path over to a temp buffer so we can munge it
KPath tempPath(path);
if (tempPath.InitCheck() != B_OK)
return B_NO_MEMORY;
char *temp = tempPath.LockBuffer();
// create the path leading to the device
// parse the path passed in, stripping out '/'
struct devfs_vnode *dir = fs->root_vnode;
struct devfs_vnode *vnode = NULL;
status_t status = B_OK;
int32 i = 0, last = 0;
while (temp[last]) {
if (temp[i] == '/') {
temp[i] = '\0';
i++;
} else if (temp[i] != '\0') {
i++;
continue;
}
//TRACE(("\tpath component '%s'\n", &temp[last]));
// we have a path component
vnode = devfs_find_in_dir(dir, &temp[last]);
if (vnode) {
if (S_ISDIR(vnode->stream.type)) {
last = i;
dir = vnode;
continue;
}
// we hit something on our path that's not a directory
status = B_FILE_EXISTS;
goto out;
} else {
vnode = devfs_create_vnode(fs, dir, &temp[last]);
if (!vnode) {
status = B_NO_MEMORY;
goto out;
}
}
// set up the new directory
vnode->stream.type = S_IFDIR | 0755;
vnode->stream.u.dir.dir_head = NULL;
list_init(&vnode->stream.u.dir.cookies);
hash_insert(sDeviceFileSystem->vnode_hash, vnode);
devfs_insert_in_dir(dir, vnode);
last = i;
dir = vnode;
}
out:
return status;
}
static status_t
publish_node(struct devfs *fs, const char *path, struct devfs_vnode **_node)
{
ASSERT_LOCKED_MUTEX(&fs->lock);
// copy the path over to a temp buffer so we can munge it
KPath tempPath(path);
if (tempPath.InitCheck() != B_OK)
return B_NO_MEMORY;
char *temp = tempPath.LockBuffer();
// create the path leading to the device
// parse the path passed in, stripping out '/'
struct devfs_vnode *dir = fs->root_vnode;
struct devfs_vnode *vnode = NULL;
status_t status = B_OK;
int32 i = 0, last = 0;
bool atLeaf = false;
for (;;) {
if (temp[i] == '\0') {
atLeaf = true; // we'll be done after this one
} else if (temp[i] == '/') {
temp[i] = '\0';
i++;
} else {
i++;
continue;
}
//TRACE(("\tpath component '%s'\n", &temp[last]));
// we have a path component
vnode = devfs_find_in_dir(dir, &temp[last]);
if (vnode) {
if (!atLeaf) {
// we are not at the leaf of the path, so as long as
// this is a dir we're okay
if (S_ISDIR(vnode->stream.type)) {
last = i;
dir = vnode;
continue;
}
}
// we are at the leaf and hit another node
// or we aren't but hit a non-dir node.
// we're screwed
status = B_FILE_EXISTS;
goto out;
} else {
vnode = devfs_create_vnode(fs, dir, &temp[last]);
if (!vnode) {
status = B_NO_MEMORY;
goto out;
}
}
// set up the new vnode
if (!atLeaf) {
// this is a dir
vnode->stream.type = S_IFDIR | 0755;
vnode->stream.u.dir.dir_head = NULL;
list_init(&vnode->stream.u.dir.cookies);
} else {
// this is the last component
*_node = vnode;
}
hash_insert(sDeviceFileSystem->vnode_hash, vnode);
devfs_insert_in_dir(dir, vnode);
if (atLeaf)
break;
last = i;
dir = vnode;
}
out:
return status;
}
static status_t
publish_device(struct devfs *fs, const char *path, device_node_info *deviceNode,
pnp_devfs_driver_info *info, driver_entry *driver, device_hooks *ops,
int32 apiVersion)
{
TRACE(("publish_device(path = \"%s\", node = %p, info = %p, hooks = %p, apiVersion = %ld)\n",
path, deviceNode, info, ops, apiVersion));
if (sDeviceFileSystem == NULL) {
panic("publish_device() called before devfs mounted\n");
return B_ERROR;
}
if ((ops == NULL && (deviceNode == NULL || info == NULL))
|| path == NULL || path[0] == '/')
return B_BAD_VALUE;
// are the provided device hooks okay?
if ((ops != NULL && (ops->open == NULL || ops->close == NULL
|| ops->read == NULL || ops->write == NULL))
|| info != NULL && (info->open == NULL || info->close == NULL
|| info->read == NULL || info->write == NULL))
return B_BAD_VALUE;
// mark disk devices - they might get an I/O scheduler
bool isDisk = false;
if (!strncmp(path, "disk/", 5))
isDisk = true;
struct devfs_vnode *node;
status_t status;
RecursiveLocker locker(&fs->lock);
status = publish_node(fs, path, &node);
if (status != B_OK)
return status;
// all went fine, let's initialize the node
node->stream.type = S_IFCHR | 0644;
if (deviceNode == NULL) {
info = create_new_driver_info(ops, apiVersion);
if (!info)
return B_NO_MEMORY;
}
node->stream.u.dev.info = info;
node->stream.u.dev.node = deviceNode;
node->stream.u.dev.driver = driver;
node->stream.u.dev.ops = ops;
// every raw disk gets an I/O scheduler object attached
// ToDo: the driver should ask for a scheduler (ie. using its devfs node attributes)
if (isDisk && !strcmp(node->name, "raw")) {
node->stream.u.dev.scheduler = new(nothrow) IOScheduler(path, info);
if (!node->stream.u.dev.scheduler)
return B_NO_MEMORY;
}
return status;
}
/** Construct complete device name (as used for device_open()).
* This is safe to use only when the device is in use (and therefore
* cannot be unpublished during the iteration).
*/
static void
get_device_name(struct devfs_vnode *vnode, char *buffer, size_t size)
{
struct devfs_vnode *leaf = vnode;
size_t offset = 0;
// count levels
for (; vnode->parent && vnode->parent != vnode; vnode = vnode->parent) {
offset += strlen(vnode->name) + 1;
}
// construct full path name
for (vnode = leaf; vnode->parent && vnode->parent != vnode; vnode = vnode->parent) {
size_t length = strlen(vnode->name);
size_t start = offset - length - 1;
if (size >= offset) {
strcpy(buffer + start, vnode->name);
if (vnode != leaf)
buffer[offset - 1] = '/';
}
offset = start;
}
}
static int
dump_node(int argc, char **argv)
{
if (argc < 2) {
kprintf("usage: %s <address>\n", argv[0]);
return 0;
}
struct devfs_vnode *vnode = (struct devfs_vnode *)strtoul(argv[1], NULL, 0);
if (vnode == NULL) {
kprintf("invalid node address\n");
return 0;
}
kprintf("DEVFS NODE: %p\n", vnode);
kprintf(" id: %Ld\n", vnode->id);
kprintf(" name: %s\n", vnode->name);
kprintf(" type: %x\n", vnode->stream.type);
kprintf(" parent: %p\n", vnode->parent);
kprintf(" dir_next: %p\n", vnode->dir_next);
return 0;
}
// #pragma mark - file system interface
static status_t
devfs_mount(dev_t id, const char *devfs, uint32 flags, const char *args,
fs_volume *_fs, ino_t *root_vnid)
{
struct devfs_vnode *vnode;
struct devfs *fs;
status_t err;
TRACE(("devfs_mount: entry\n"));
if (sDeviceFileSystem) {
dprintf("double mount of devfs attempted\n");
err = B_ERROR;
goto err;
}
fs = (struct devfs *)malloc(sizeof(struct devfs));
if (fs == NULL) {
err = B_NO_MEMORY;
goto err;
}
fs->id = id;
fs->next_vnode_id = 0;
err = recursive_lock_init(&fs->lock, "devfs lock");
if (err < B_OK)
goto err1;
fs->vnode_hash = hash_init(DEVFS_HASH_SIZE, offsetof(devfs_vnode, all_next),
//(addr_t)&vnode->all_next - (addr_t)vnode,
&devfs_vnode_compare, &devfs_vnode_hash);
if (fs->vnode_hash == NULL) {
err = B_NO_MEMORY;
goto err2;
}
fs->driver_hash = hash_init(DEVFS_HASH_SIZE, offsetof(driver_entry, next),
&driver_entry_compare, &driver_entry_hash);
if (fs->driver_hash == NULL) {
err = B_NO_MEMORY;
goto err3;
}
// create a vnode
vnode = devfs_create_vnode(fs, NULL, "");
if (vnode == NULL) {
err = B_NO_MEMORY;
goto err4;
}
// set it up
vnode->parent = vnode;
// create a dir stream for it to hold
vnode->stream.type = S_IFDIR | 0755;
vnode->stream.u.dir.dir_head = NULL;
list_init(&vnode->stream.u.dir.cookies);
fs->root_vnode = vnode;
hash_insert(fs->vnode_hash, vnode);
publish_vnode(id, vnode->id, vnode);
*root_vnid = vnode->id;
*_fs = fs;
sDeviceFileSystem = fs;
return B_OK;
err4:
hash_uninit(fs->driver_hash);
err3:
hash_uninit(fs->vnode_hash);
err2:
recursive_lock_destroy(&fs->lock);
err1:
free(fs);
err:
return err;
}
static status_t
devfs_unmount(fs_volume _fs)
{
struct devfs *fs = (struct devfs *)_fs;
struct devfs_vnode *vnode;
struct hash_iterator i;
TRACE(("devfs_unmount: entry fs = %p\n", fs));
// release the reference to the root
put_vnode(fs->id, fs->root_vnode->id);
// delete all of the vnodes
hash_open(fs->vnode_hash, &i);
while ((vnode = (devfs_vnode *)hash_next(fs->vnode_hash, &i)) != NULL) {
devfs_delete_vnode(fs, vnode, true);
}
hash_close(fs->vnode_hash, &i, false);
hash_uninit(fs->vnode_hash);
hash_uninit(fs->driver_hash);
recursive_lock_destroy(&fs->lock);
free(fs);
return B_OK;
}
static status_t
devfs_sync(fs_volume fs)
{
TRACE(("devfs_sync: entry\n"));
return B_OK;
}
static status_t
devfs_lookup(fs_volume _fs, fs_vnode _dir, const char *name, ino_t *_id, int *_type)
{
struct devfs *fs = (struct devfs *)_fs;
struct devfs_vnode *dir = (struct devfs_vnode *)_dir;
struct devfs_vnode *vnode, *vdummy;
status_t status;
TRACE(("devfs_lookup: entry dir %p, name '%s'\n", dir, name));
if (!S_ISDIR(dir->stream.type))
return B_NOT_A_DIRECTORY;
RecursiveLocker locker(&fs->lock);
if (dir->stream.u.dir.scanned < scan_mode())
scan_for_drivers(dir);
// look it up
vnode = devfs_find_in_dir(dir, name);
if (vnode == NULL) {
#if 0
// ToDo: with node monitoring in place, we *know* here that the file does not exist
// and don't have to scan for it again.
// scan for drivers in the given directory (that indicates the type of the driver)
KPath path;
if (path.InitCheck() != B_OK)
return B_NO_MEMORY;
get_device_name(dir, path.LockBuffer(), path.BufferSize());
path.UnlockBuffer();
path.Append(name);
dprintf("lookup: \"%s\"\n", path.Path());
// scan for drivers of this type
probe_for_device_type(path.Path());
vnode = devfs_find_in_dir(dir, name);
if (vnode == NULL) {
#endif
return B_ENTRY_NOT_FOUND;
#if 0
}
if (S_ISDIR(vnode->stream.type) && gBootDevice >= 0)
vnode->stream.u.dir.scanned = true;
#endif
}
status = get_vnode(fs->id, vnode->id, (fs_vnode *)&vdummy);
if (status < B_OK)
return status;
*_id = vnode->id;
*_type = vnode->stream.type;
return B_OK;
}
static status_t
devfs_get_vnode_name(fs_volume _fs, fs_vnode _vnode, char *buffer, size_t bufferSize)
{
struct devfs_vnode *vnode = (struct devfs_vnode *)_vnode;
TRACE(("devfs_get_vnode_name: vnode = %p\n", vnode));
strlcpy(buffer, vnode->name, bufferSize);
return B_OK;
}
static status_t
devfs_get_vnode(fs_volume _fs, ino_t id, fs_vnode *_vnode, bool reenter)
{
struct devfs *fs = (struct devfs *)_fs;
struct devfs_vnode *vnode;
TRACE(("devfs_get_vnode: asking for vnode id = %Ld, vnode = %p, r %d\n", id, _vnode, reenter));
if (!reenter)
recursive_lock_lock(&fs->lock);
vnode = (devfs_vnode *)hash_lookup(fs->vnode_hash, &id);
if (!reenter)
recursive_lock_unlock(&fs->lock);
TRACE(("devfs_get_vnode: looked it up at %p\n", *_vnode));
if (vnode == NULL)
return B_ENTRY_NOT_FOUND;
*_vnode = vnode;
return B_OK;
}
static status_t
devfs_put_vnode(fs_volume _fs, fs_vnode _v, bool reenter)
{
#ifdef TRACE_DEVFS
struct devfs_vnode *vnode = (struct devfs_vnode *)_v;
TRACE(("devfs_put_vnode: entry on vnode %p, id = %Ld, reenter %d\n", vnode, vnode->id, reenter));
#endif
return B_OK;
}
static status_t
devfs_remove_vnode(fs_volume _fs, fs_vnode _v, bool reenter)
{
struct devfs *fs = (struct devfs *)_fs;
struct devfs_vnode *vnode = (struct devfs_vnode *)_v;
TRACE(("devfs_removevnode: remove %p (%Ld), reenter %d\n", vnode, vnode->id, reenter));
RecursiveLocker locker(&fs->lock);
if (vnode->dir_next) {
// can't remove node if it's linked to the dir
panic("devfs_removevnode: vnode %p asked to be removed is present in dir\n", vnode);
}
devfs_delete_vnode(fs, vnode, false);
return B_OK;
}
static status_t
devfs_create(fs_volume _fs, fs_vnode _dir, const char *name, int openMode, int perms,
fs_cookie *_cookie, ino_t *_newVnodeID)
{
struct devfs_vnode *dir = (struct devfs_vnode *)_dir;
struct devfs *fs = (struct devfs *)_fs;
struct devfs_cookie *cookie;
struct devfs_vnode *vnode, *vdummy;
status_t status = B_OK;
TRACE(("devfs_create: dir %p, name \"%s\", openMode 0x%x, fs_cookie %p \n", dir, name, openMode, _cookie));
RecursiveLocker locker(&fs->lock);
// look it up
vnode = devfs_find_in_dir(dir, name);
if (!vnode) {
status = EROFS;
goto err1;
}
if (openMode & O_EXCL)
return B_FILE_EXISTS;
status = get_vnode(fs->id, vnode->id, (fs_vnode *)&vdummy);
if (status < B_OK)
goto err1;
*_newVnodeID = vnode->id;
cookie = (struct devfs_cookie *)malloc(sizeof(struct devfs_cookie));
if (cookie == NULL) {
status = B_NO_MEMORY;
goto err2;
}
if (S_ISCHR(vnode->stream.type)) {
if (vnode->stream.u.dev.node != NULL) {
status = vnode->stream.u.dev.info->open(
vnode->stream.u.dev.node->parent->cookie, openMode,
&cookie->device_cookie);
} else {
char buffer[B_FILE_NAME_LENGTH];
get_device_name(vnode, buffer, sizeof(buffer));
status = vnode->stream.u.dev.ops->open(buffer, openMode,
&cookie->device_cookie);
}
}
if (status < B_OK)
goto err3;
*_cookie = cookie;
return B_OK;
err3:
free(cookie);
err2:
put_vnode(fs->id, vnode->id);
err1:
return status;
}
static status_t
devfs_open(fs_volume _fs, fs_vnode _vnode, int openMode, fs_cookie *_cookie)
{
struct devfs_vnode *vnode = (struct devfs_vnode *)_vnode;
struct devfs_cookie *cookie;
status_t status = B_OK;
TRACE(("devfs_open: vnode %p, openMode 0x%x, fs_cookie %p \n", vnode, openMode, _cookie));
cookie = (struct devfs_cookie *)malloc(sizeof(struct devfs_cookie));
if (cookie == NULL)
return B_NO_MEMORY;
if (S_ISCHR(vnode->stream.type)) {
if (vnode->stream.u.dev.node != NULL) {
status = vnode->stream.u.dev.info->open(
vnode->stream.u.dev.node->parent->cookie, openMode,
&cookie->device_cookie);
} else {
char buffer[B_FILE_NAME_LENGTH];
get_device_name(vnode, buffer, sizeof(buffer));
status = vnode->stream.u.dev.ops->open(buffer, openMode,
&cookie->device_cookie);
}
}
if (status < B_OK)
free(cookie);
else
*_cookie = cookie;
return status;
}
static status_t
devfs_close(fs_volume _fs, fs_vnode _vnode, fs_cookie _cookie)
{
struct devfs_vnode *vnode = (struct devfs_vnode *)_vnode;
struct devfs_cookie *cookie = (struct devfs_cookie *)_cookie;
TRACE(("devfs_close: entry vnode %p, cookie %p\n", vnode, cookie));
if (S_ISCHR(vnode->stream.type)) {
// pass the call through to the underlying device
return vnode->stream.u.dev.info->close(cookie->device_cookie);
}
return B_OK;
}
static status_t
devfs_free_cookie(fs_volume _fs, fs_vnode _vnode, fs_cookie _cookie)
{
struct devfs_vnode *vnode = (struct devfs_vnode *)_vnode;
struct devfs_cookie *cookie = (struct devfs_cookie *)_cookie;
TRACE(("devfs_freecookie: entry vnode %p, cookie %p\n", vnode, cookie));
if (S_ISCHR(vnode->stream.type)) {
// pass the call through to the underlying device
vnode->stream.u.dev.info->free(cookie->device_cookie);
}
free(cookie);
return B_OK;
}
static status_t
devfs_fsync(fs_volume _fs, fs_vnode _v)
{
return B_OK;
}
static status_t
devfs_read_link(fs_volume _fs, fs_vnode _link, char *buffer, size_t *_bufferSize)
{
struct devfs_vnode *link = (struct devfs_vnode *)_link;
size_t bufferSize = *_bufferSize;
if (!S_ISLNK(link->stream.type))
return B_BAD_VALUE;
*_bufferSize = link->stream.u.symlink.length + 1;
// we always need to return the number of bytes we intend to write!
if (bufferSize <= link->stream.u.symlink.length)
return B_BUFFER_OVERFLOW;
memcpy(buffer, link->stream.u.symlink.path, link->stream.u.symlink.length + 1);
return B_OK;
}
static status_t
devfs_read(fs_volume _fs, fs_vnode _vnode, fs_cookie _cookie, off_t pos,
void *buffer, size_t *_length)
{
struct devfs_vnode *vnode = (struct devfs_vnode *)_vnode;
struct devfs_cookie *cookie = (struct devfs_cookie *)_cookie;
//TRACE(("devfs_read: vnode %p, cookie %p, pos %Ld, len %p\n",
// vnode, cookie, pos, _length));
if (!S_ISCHR(vnode->stream.type))
return B_BAD_VALUE;
if (pos < 0)
return B_BAD_VALUE;
if (vnode->stream.u.dev.partition) {
if (pos >= vnode->stream.u.dev.partition->info.size)
return B_BAD_VALUE;
translate_partition_access(vnode->stream.u.dev.partition, pos,
*_length);
}
if (*_length == 0)
return B_OK;
// if this device has an I/O scheduler attached, the request must go through it
if (IOScheduler *scheduler = vnode->stream.u.dev.scheduler) {
IORequest request(cookie->device_cookie, pos, buffer, *_length);
status_t status = scheduler->Process(request);
if (status == B_OK)
*_length = request.Size();
return status;
}
// pass the call through to the device
return vnode->stream.u.dev.info->read(cookie->device_cookie, pos, buffer, _length);
}
static status_t
devfs_write(fs_volume _fs, fs_vnode _vnode, fs_cookie _cookie, off_t pos,
const void *buffer, size_t *_length)
{
struct devfs_vnode *vnode = (struct devfs_vnode *)_vnode;
struct devfs_cookie *cookie = (struct devfs_cookie *)_cookie;
//TRACE(("devfs_write: vnode %p, cookie %p, pos %Ld, len %p\n",
// vnode, cookie, pos, _length));
if (!S_ISCHR(vnode->stream.type))
return B_BAD_VALUE;
if (pos < 0)
return B_BAD_VALUE;
if (vnode->stream.u.dev.partition) {
if (pos >= vnode->stream.u.dev.partition->info.size)
return B_BAD_VALUE;
translate_partition_access(vnode->stream.u.dev.partition, pos,
*_length);
}
if (*_length == 0)
return B_OK;
if (IOScheduler *scheduler = vnode->stream.u.dev.scheduler) {
IORequest request(cookie->device_cookie, pos, buffer, *_length);
status_t status = scheduler->Process(request);
if (status == B_OK)
*_length = request.Size();
return status;
}
return vnode->stream.u.dev.info->write(cookie->device_cookie, pos, buffer, _length);
}
static status_t
devfs_create_dir(fs_volume _fs, fs_vnode _dir, const char *name,
int perms, ino_t *_newVnodeID)
{
struct devfs *fs = (struct devfs *)_fs;
struct devfs_vnode *dir = (struct devfs_vnode *)_dir;
struct devfs_vnode *vnode = devfs_find_in_dir(dir, name);
if (vnode != NULL) {
return EEXIST;
}
vnode = devfs_create_vnode(fs, dir, name);
if (vnode == NULL) {
return B_NO_MEMORY;
}
// set up the new directory
vnode->stream.type = S_IFDIR | perms;
vnode->stream.u.dir.dir_head = NULL;
list_init(&vnode->stream.u.dir.cookies);
hash_insert(sDeviceFileSystem->vnode_hash, vnode);
devfs_insert_in_dir(dir, vnode);
*_newVnodeID = vnode->id;
return B_OK;
}
static status_t
devfs_open_dir(fs_volume _fs, fs_vnode _vnode, fs_cookie *_cookie)
{
struct devfs *fs = (struct devfs *)_fs;
struct devfs_vnode *vnode = (struct devfs_vnode *)_vnode;
struct devfs_dir_cookie *cookie;
TRACE(("devfs_open_dir: vnode %p\n", vnode));
if (!S_ISDIR(vnode->stream.type))
return B_BAD_VALUE;
cookie = (devfs_dir_cookie *)malloc(sizeof(devfs_dir_cookie));
if (cookie == NULL)
return B_NO_MEMORY;
RecursiveLocker locker(&fs->lock);
// make sure the directory has up-to-date contents
if (vnode->stream.u.dir.scanned < scan_mode())
scan_for_drivers(vnode);
cookie->current = vnode->stream.u.dir.dir_head;
cookie->state = ITERATION_STATE_BEGIN;
list_add_item(&vnode->stream.u.dir.cookies, cookie);
*_cookie = cookie;
return B_OK;
}
static status_t
devfs_free_dir_cookie(fs_volume _fs, fs_vnode _vnode, fs_cookie _cookie)
{
struct devfs_vnode *vnode = (struct devfs_vnode *)_vnode;
struct devfs_dir_cookie *cookie = (devfs_dir_cookie *)_cookie;
struct devfs *fs = (struct devfs *)_fs;
TRACE(("devfs_free_dir_cookie: entry vnode %p, cookie %p\n", vnode, cookie));
RecursiveLocker locker(&fs->lock);
list_remove_item(&vnode->stream.u.dir.cookies, cookie);
free(cookie);
return B_OK;
}
static status_t
devfs_read_dir(fs_volume _fs, fs_vnode _vnode, fs_cookie _cookie,
struct dirent *dirent, size_t bufferSize, uint32 *_num)
{
struct devfs_vnode *vnode = (devfs_vnode *)_vnode;
struct devfs_dir_cookie *cookie = (devfs_dir_cookie *)_cookie;
struct devfs *fs = (struct devfs *)_fs;
status_t status = B_OK;
struct devfs_vnode *childNode = NULL;
const char *name = NULL;
struct devfs_vnode *nextChildNode = NULL;
int32 nextState = cookie->state;
TRACE(("devfs_read_dir: vnode %p, cookie %p, buffer %p, size %ld\n",
_vnode, cookie, dirent, bufferSize));
if (!S_ISDIR(vnode->stream.type))
return B_BAD_VALUE;
RecursiveLocker locker(&fs->lock);
switch (cookie->state) {
case ITERATION_STATE_DOT:
childNode = vnode;
name = ".";
nextChildNode = vnode->stream.u.dir.dir_head;
nextState = cookie->state + 1;
break;
case ITERATION_STATE_DOT_DOT:
childNode = vnode->parent;
name = "..";
nextChildNode = vnode->stream.u.dir.dir_head;
nextState = cookie->state + 1;
break;
default:
childNode = cookie->current;
if (childNode) {
name = childNode->name;
nextChildNode = childNode->dir_next;
}
break;
}
if (!childNode) {
*_num = 0;
return B_OK;
}
dirent->d_dev = fs->id;
dirent->d_ino = childNode->id;
dirent->d_reclen = strlen(name) + sizeof(struct dirent);
if (dirent->d_reclen > bufferSize)
return ENOBUFS;
status = user_strlcpy(dirent->d_name, name,
bufferSize - sizeof(struct dirent));
if (status < B_OK)
return status;
cookie->current = nextChildNode;
cookie->state = nextState;
return B_OK;
}
static status_t
devfs_rewind_dir(fs_volume _fs, fs_vnode _vnode, fs_cookie _cookie)
{
struct devfs_vnode *vnode = (struct devfs_vnode *)_vnode;
struct devfs_dir_cookie *cookie = (devfs_dir_cookie *)_cookie;
struct devfs *fs = (struct devfs *)_fs;
TRACE(("devfs_rewind_dir: vnode %p, cookie %p\n", _vnode, _cookie));
if (!S_ISDIR(vnode->stream.type))
return B_BAD_VALUE;
RecursiveLocker locker(&fs->lock);
cookie->current = vnode->stream.u.dir.dir_head;
cookie->state = ITERATION_STATE_BEGIN;
return B_OK;
}
/*! Forwards the opcode to the device driver, but also handles some devfs
specific functionality, like partitions.
*/
static status_t
devfs_ioctl(fs_volume _fs, fs_vnode _vnode, fs_cookie _cookie, ulong op,
void *buffer, size_t length)
{
struct devfs *fs = (struct devfs *)_fs;
struct devfs_vnode *vnode = (struct devfs_vnode *)_vnode;
struct devfs_cookie *cookie = (struct devfs_cookie *)_cookie;
TRACE(("devfs_ioctl: vnode %p, cookie %p, op %ld, buf %p, len %ld\n",
_vnode, _cookie, op, buffer, length));
// we are actually checking for a *device* here, we don't make the
// distinction between char and block devices
if (S_ISCHR(vnode->stream.type)) {
switch (op) {
case B_GET_GEOMETRY:
{
struct devfs_partition *partition
= vnode->stream.u.dev.partition;
if (partition == NULL)
break;
device_geometry geometry;
status_t status = vnode->stream.u.dev.info->control(
cookie->device_cookie, op, &geometry, length);
if (status < B_OK)
return status;
// patch values to match partition size
geometry.sectors_per_track = 0;
if (geometry.bytes_per_sector == 0)
geometry.bytes_per_sector = 512;
geometry.sectors_per_track = partition->info.size
/ geometry.bytes_per_sector;
geometry.head_count = 1;
geometry.cylinder_count = 1;
return user_memcpy(buffer, &geometry, sizeof(device_geometry));
}
case B_GET_DRIVER_FOR_DEVICE:
{
const char *path;
if (!vnode->stream.u.dev.driver)
return B_ENTRY_NOT_FOUND;
path = vnode->stream.u.dev.driver->path;
if (path == NULL)
return B_ENTRY_NOT_FOUND;
return user_strlcpy((char *)buffer, path, B_FILE_NAME_LENGTH);
}
case B_GET_PARTITION_INFO:
{
struct devfs_partition *partition
= vnode->stream.u.dev.partition;
if (!S_ISCHR(vnode->stream.type)
|| partition == NULL
|| length != sizeof(partition_info))
return B_BAD_VALUE;
return user_memcpy(buffer, &partition->info,
sizeof(partition_info));
}
case B_SET_PARTITION:
return B_NOT_ALLOWED;
case B_GET_PATH_FOR_DEVICE:
{
char path[256];
status_t err;
/* TODO: we might want to actually find the mountpoint
* of that instance of devfs...
* but for now we assume it's mounted on /dev
*/
strcpy(path, "/dev/");
get_device_name(vnode, path + 5, sizeof(path) - 5);
if (length && (length <= strlen(path)))
return ERANGE;
return user_strlcpy((char *)buffer, path, sizeof(path));
}
// old unsupported R5 private stuff
case B_GET_NEXT_OPEN_DEVICE:
dprintf("devfs: unsupported legacy ioctl B_GET_NEXT_OPEN_DEVICE\n");
return B_NOT_SUPPORTED;
case B_ADD_FIXED_DRIVER:
dprintf("devfs: unsupported legacy ioctl B_ADD_FIXED_DRIVER\n");
return B_NOT_SUPPORTED;
case B_REMOVE_FIXED_DRIVER:
dprintf("devfs: unsupported legacy ioctl B_REMOVE_FIXED_DRIVER\n");
return B_NOT_SUPPORTED;
}
return vnode->stream.u.dev.info->control(cookie->device_cookie,
op, buffer, length);
}
return B_BAD_VALUE;
}
static status_t
devfs_set_flags(fs_volume _fs, fs_vnode _vnode, fs_cookie _cookie, int flags)
{
struct devfs_vnode *vnode = (struct devfs_vnode *)_vnode;
struct devfs_cookie *cookie = (struct devfs_cookie *)_cookie;
// we need to pass the O_NONBLOCK flag to the underlying device
if (!S_ISCHR(vnode->stream.type))
return B_NOT_ALLOWED;
return vnode->stream.u.dev.info->control(cookie->device_cookie,
flags & O_NONBLOCK ? B_SET_NONBLOCKING_IO : B_SET_BLOCKING_IO, NULL, 0);
}
static status_t
devfs_select(fs_volume _fs, fs_vnode _vnode, fs_cookie _cookie, uint8 event,
uint32 ref, selectsync *sync)
{
struct devfs_vnode *vnode = (struct devfs_vnode *)_vnode;
struct devfs_cookie *cookie = (struct devfs_cookie *)_cookie;
if (!S_ISCHR(vnode->stream.type))
return B_NOT_ALLOWED;
// If the device has no select() hook, notify select() now.
if (!vnode->stream.u.dev.info->select)
return notify_select_event((selectsync*)sync, event);
return vnode->stream.u.dev.info->select(cookie->device_cookie, event, ref,
(selectsync*)sync);
}
static status_t
devfs_deselect(fs_volume _fs, fs_vnode _vnode, fs_cookie _cookie, uint8 event,
selectsync *sync)
{
struct devfs_vnode *vnode = (struct devfs_vnode *)_vnode;
struct devfs_cookie *cookie = (struct devfs_cookie *)_cookie;
if (!S_ISCHR(vnode->stream.type))
return B_NOT_ALLOWED;
// If the device has no select() hook, notify select() now.
if (!vnode->stream.u.dev.info->deselect)
return B_OK;
return vnode->stream.u.dev.info->deselect(cookie->device_cookie, event,
(selectsync*)sync);
}
static bool
devfs_can_page(fs_volume _fs, fs_vnode _vnode, fs_cookie cookie)
{
struct devfs_vnode *vnode = (devfs_vnode *)_vnode;
//TRACE(("devfs_canpage: vnode %p\n", vnode));
if (!S_ISCHR(vnode->stream.type)
|| vnode->stream.u.dev.node == NULL
|| cookie == NULL)
return false;
return vnode->stream.u.dev.info->read_pages != NULL
|| vnode->stream.u.dev.info->read != NULL;
}
static status_t
devfs_read_pages(fs_volume _fs, fs_vnode _vnode, fs_cookie _cookie, off_t pos,
const iovec *vecs, size_t count, size_t *_numBytes, bool mayBlock,
bool reenter)
{
struct devfs_vnode *vnode = (devfs_vnode *)_vnode;
struct devfs_cookie *cookie = (struct devfs_cookie *)_cookie;
//TRACE(("devfs_read_pages: vnode %p, vecs %p, count = %lu, pos = %Ld, size = %lu\n", vnode, vecs, count, pos, *_numBytes));
if (!S_ISCHR(vnode->stream.type)
|| (vnode->stream.u.dev.info->read_pages == NULL
&& vnode->stream.u.dev.info->read == NULL)
|| cookie == NULL)
return B_NOT_ALLOWED;
if (pos < 0)
return B_BAD_VALUE;
if (vnode->stream.u.dev.partition) {
if (pos >= vnode->stream.u.dev.partition->info.size)
return B_BAD_VALUE;
translate_partition_access(vnode->stream.u.dev.partition, pos,
*_numBytes);
}
if (vnode->stream.u.dev.info->read_pages) {
return vnode->stream.u.dev.info->read_pages(cookie->device_cookie, pos,
vecs, count, _numBytes);
}
// emulate read_pages() using read()
status_t error = B_OK;
size_t bytesTransferred = 0;
size_t remainingBytes = *_numBytes;
for (size_t i = 0; i < count && remainingBytes > 0; i++) {
size_t toRead = min_c(vecs[i].iov_len, remainingBytes);
size_t length = toRead;
error = vnode->stream.u.dev.info->read(cookie->device_cookie, pos,
vecs[i].iov_base, &length);
if (error != B_OK)
break;
pos += length;
bytesTransferred += length;
remainingBytes -= length;
if (length < toRead)
break;
}
*_numBytes = bytesTransferred;
return (bytesTransferred > 0 ? B_OK : error);
}
static status_t
devfs_write_pages(fs_volume _fs, fs_vnode _vnode, fs_cookie _cookie, off_t pos,
const iovec *vecs, size_t count, size_t *_numBytes, bool mayBlock,
bool reenter)
{
struct devfs_vnode *vnode = (devfs_vnode *)_vnode;
struct devfs_cookie *cookie = (struct devfs_cookie *)_cookie;
//TRACE(("devfs_write_pages: vnode %p, vecs %p, count = %lu, pos = %Ld, size = %lu\n", vnode, vecs, count, pos, *_numBytes));
if (!S_ISCHR(vnode->stream.type)
|| (vnode->stream.u.dev.info->write_pages == NULL
&& vnode->stream.u.dev.info->write == NULL)
|| cookie == NULL)
return B_NOT_ALLOWED;
if (pos < 0)
return B_BAD_VALUE;
if (vnode->stream.u.dev.partition) {
if (pos >= vnode->stream.u.dev.partition->info.size)
return B_BAD_VALUE;
translate_partition_access(vnode->stream.u.dev.partition, pos,
*_numBytes);
}
if (vnode->stream.u.dev.info->write_pages) {
return vnode->stream.u.dev.info->write_pages(cookie->device_cookie, pos,
vecs, count, _numBytes);
}
// emulate write_pages() using write()
status_t error = B_OK;
size_t bytesTransferred = 0;
size_t remainingBytes = *_numBytes;
for (size_t i = 0; i < count && remainingBytes > 0; i++) {
size_t toWrite = min_c(vecs[i].iov_len, remainingBytes);
size_t length = toWrite;
error = vnode->stream.u.dev.info->write(cookie->device_cookie, pos,
vecs[i].iov_base, &length);
if (error != B_OK)
break;
pos += length;
bytesTransferred += length;
remainingBytes -= length;
if (length < toWrite)
break;
}
*_numBytes = bytesTransferred;
return (bytesTransferred > 0 ? B_OK : error);
}
static status_t
devfs_read_stat(fs_volume _fs, fs_vnode _vnode, struct stat *stat)
{
struct devfs_vnode *vnode = (struct devfs_vnode *)_vnode;
TRACE(("devfs_read_stat: vnode %p (%Ld), stat %p\n", vnode, vnode->id,
stat));
stat->st_ino = vnode->id;
stat->st_size = 0;
stat->st_mode = vnode->stream.type;
stat->st_nlink = 1;
stat->st_blksize = 65536;
stat->st_uid = vnode->uid;
stat->st_gid = vnode->gid;
stat->st_atime = time(NULL);
stat->st_mtime = stat->st_ctime = vnode->modification_time;
stat->st_crtime = vnode->creation_time;
// ToDo: this only works for partitions right now - if we should decide
// to keep this feature, we should have a better solution
if (S_ISCHR(vnode->stream.type)) {
//device_geometry geometry;
// if it's a real block device, then let's report a useful size
if (vnode->stream.u.dev.partition != NULL) {
stat->st_size = vnode->stream.u.dev.partition->info.size;
#if 0
} else if (vnode->stream.u.dev.info->control(cookie->device_cookie,
B_GET_GEOMETRY, &geometry, sizeof(struct device_geometry)) >= B_OK) {
stat->st_size = 1LL * geometry.head_count * geometry.cylinder_count
* geometry.sectors_per_track * geometry.bytes_per_sector;
#endif
}
// is this a real block device? then let's have it reported like that
if (stat->st_size != 0)
stat->st_mode = S_IFBLK | (vnode->stream.type & S_IUMSK);
}
return B_OK;
}
static status_t
devfs_write_stat(fs_volume _fs, fs_vnode _vnode, const struct stat *stat,
uint32 statMask)
{
struct devfs *fs = (struct devfs *)_fs;
struct devfs_vnode *vnode = (struct devfs_vnode *)_vnode;
TRACE(("devfs_write_stat: vnode %p (0x%Lx), stat %p\n", vnode, vnode->id,
stat));
// we cannot change the size of anything
if (statMask & FS_WRITE_STAT_SIZE)
return B_BAD_VALUE;
RecursiveLocker locker(&fs->lock);
if (statMask & FS_WRITE_STAT_MODE) {
vnode->stream.type = (vnode->stream.type & ~S_IUMSK)
| (stat->st_mode & S_IUMSK);
}
if (statMask & FS_WRITE_STAT_UID)
vnode->uid = stat->st_uid;
if (statMask & FS_WRITE_STAT_GID)
vnode->gid = stat->st_gid;
if (statMask & FS_WRITE_STAT_MTIME)
vnode->modification_time = stat->st_mtime;
if (statMask & FS_WRITE_STAT_CRTIME)
vnode->creation_time = stat->st_crtime;
notify_stat_changed(fs->id, vnode->id, statMask);
return B_OK;
}
static status_t
devfs_std_ops(int32 op, ...)
{
switch (op) {
case B_MODULE_INIT:
add_debugger_command("devfs_node", &dump_node,
"info about a private devfs node");
return B_OK;
case B_MODULE_UNINIT:
remove_debugger_command("devfs_node", &dump_node);
return B_OK;
default:
return B_ERROR;
}
}
file_system_module_info gDeviceFileSystem = {
{
"file_systems/devfs" B_CURRENT_FS_API_VERSION,
0,
devfs_std_ops,
},
"Device File System",
0, // DDM flags
NULL, // identify_partition()
NULL, // scan_partition()
NULL, // free_identify_partition_cookie()
NULL, // free_partition_content_cookie()
&devfs_mount,
&devfs_unmount,
NULL,
NULL,
&devfs_sync,
&devfs_lookup,
&devfs_get_vnode_name,
&devfs_get_vnode,
&devfs_put_vnode,
&devfs_remove_vnode,
&devfs_can_page,
&devfs_read_pages,
&devfs_write_pages,
NULL, // get_file_map
/* common */
&devfs_ioctl,
&devfs_set_flags,
&devfs_select,
&devfs_deselect,
&devfs_fsync,
&devfs_read_link,
NULL, // symlink
NULL, // link
NULL, // unlink
NULL, // rename
NULL, // access
&devfs_read_stat,
&devfs_write_stat,
/* file */
&devfs_create,
&devfs_open,
&devfs_close,
&devfs_free_cookie,
&devfs_read,
&devfs_write,
/* directory */
&devfs_create_dir,
NULL, // remove_dir
&devfs_open_dir,
&devfs_close,
// same as for files - it does nothing for directories, anyway
&devfs_free_dir_cookie,
&devfs_read_dir,
&devfs_rewind_dir,
// the other operations are not supported (attributes, indices, queries)
NULL,
};
// #pragma mark - device node
// temporary hack to get it to work with the current device manager
static device_manager_info *sDeviceManager;
static const device_attr pnp_devfs_attrs[] = {
{ B_DRIVER_MODULE, B_STRING_TYPE, { string: PNP_DEVFS_MODULE_NAME }},
{ NULL }
};
/** someone registered a device */
static status_t
pnp_devfs_register_device(device_node_handle parent)
{
char *filename = NULL;
device_node_handle node;
status_t status;
TRACE(("pnp_devfs_probe()\n"));
if (sDeviceManager->get_attr_string(parent, PNP_DEVFS_FILENAME,
&filename, true) != B_OK) {
dprintf("devfs: Item containing file name is missing\n");
status = B_ERROR;
goto err1;
}
TRACE(("Adding %s\n", filename));
status = sDeviceManager->register_device(parent, pnp_devfs_attrs, NULL,
&node);
if (status != B_OK || node == NULL)
goto err1;
// ToDo: this is a hack to get things working (init_driver() only
// works for registered nodes)
parent->registered = true;
pnp_devfs_driver_info *info;
status = sDeviceManager->init_driver(parent, NULL,
(driver_module_info **)&info, NULL);
if (status != B_OK)
goto err2;
//add_device(device);
status = publish_device(sDeviceFileSystem, filename, node, info, NULL,
NULL, 0);
if (status != B_OK)
goto err3;
//nudge();
return B_OK;
err3:
sDeviceManager->uninit_driver(parent);
err2:
sDeviceManager->unregister_device(node);
err1:
free(filename);
return status;
}
#if 0
// remove device from public list and add it to unpublish list
// (devices_lock must be hold)
static void
pnp_devfs_remove_device(device_info *device)
{
TRACE(("removing device %s from public list\n", device->name));
--num_devices;
REMOVE_DL_LIST( device, devices, );
++num_unpublished_devices;
ADD_DL_LIST_HEAD( device, devices_to_unpublish, );
// (don't free it even if no handle is open - the device
// info block contains the hook list which may just got passed
// to the devfs layer; we better wait until next
// publish_devices, so we are sure that devfs won't access
// the hook list anymore)
}
#endif
// device got removed
static void
pnp_devfs_device_removed(device_node_handle node, void *cookie)
{
#if 0
device_info *device;
device_node_handle parent;
status_t res = B_OK;
#endif
TRACE(("pnp_devfs_device_removed()\n"));
#if 0
parent = sDeviceManager->get_parent(node);
// don't use cookie - we don't use sDeviceManager loading scheme but
// global data and keep care of everything ourself!
ACQUIRE_BEN( &device_list_lock );
for( device = devices; device; device = device->next ) {
if( device->parent == parent )
break;
}
if( device != NULL ) {
pnp_devfs_remove_device(device);
} else {
SHOW_ERROR( 0, "bug: node %p couldn't been found", node );
res = B_NAME_NOT_FOUND;
}
RELEASE_BEN( &device_list_lock );
//nudge();
#endif
}
static status_t
pnp_devfs_std_ops(int32 op, ...)
{
switch (op) {
case B_MODULE_INIT:
return get_module(B_DEVICE_MANAGER_MODULE_NAME,
(module_info **)&sDeviceManager);
case B_MODULE_UNINIT:
put_module(B_DEVICE_MANAGER_MODULE_NAME);
return B_OK;
default:
return B_ERROR;
}
}
driver_module_info gDeviceForDriversModule = {
{
PNP_DEVFS_MODULE_NAME,
0 /*B_KEEP_LOADED*/,
pnp_devfs_std_ops
},
NULL, // supports device
pnp_devfs_register_device,
NULL, // init driver
NULL, // uninit driver
pnp_devfs_device_removed,
NULL, // cleanup
NULL, // get paths
};
// #pragma mark - kernel private API
extern "C" void
devfs_add_preloaded_drivers(kernel_args* args)
{
struct preloaded_image* image;
for (image = args->preloaded_images; image != NULL; image = image->next) {
if (!image->is_module && image->id >= 0) {
// fake an absolute path
char path[B_PATH_NAME_LENGTH];
strlcpy(path, "/boot/beos/system/add-ons/kernel/", sizeof(path));
strlcat(path, image->name, sizeof(path));
// try to add the driver
status_t error = add_driver(path, image->id);
if (error != B_OK) {
dprintf("devfs_add_preloaded_drivers: Failed to add \"%s\"\n",
image->name);
unload_kernel_add_on(image->id);
}
}
}
}
extern "C" status_t
devfs_add_driver(const char *path)
{
return add_driver(path, -1);
}
extern "C" status_t
devfs_unpublish_file_device(const char *path)
{
return unpublish_node(sDeviceFileSystem, path, S_IFLNK);
}
extern "C" status_t
devfs_publish_file_device(const char *path, const char *filePath)
{
struct devfs_vnode *node;
status_t status;
filePath = strdup(filePath);
if (filePath == NULL)
return B_NO_MEMORY;
RecursiveLocker locker(&sDeviceFileSystem->lock);
status = publish_node(sDeviceFileSystem, path, &node);
if (status != B_OK)
return status;
// all went fine, let's initialize the node
node->stream.type = S_IFLNK | 0644;
node->stream.u.symlink.path = filePath;
node->stream.u.symlink.length = strlen(filePath);
return B_OK;
}
extern "C" status_t
devfs_unpublish_partition(const char *path)
{
return unpublish_node(sDeviceFileSystem, path, S_IFCHR);
}
extern "C" status_t
devfs_publish_partition(const char *path, const partition_info *info)
{
if (path == NULL || info == NULL)
return B_BAD_VALUE;
TRACE(("publish partition: %s (device \"%s\", offset %Ld, size %Ld)\n",
path, info->device, info->offset, info->size));
// the partition and device paths must be the same until the leaves
const char *lastPath = strrchr(path, '/');
const char *lastDevice = strrchr(info->device, '/');
if (lastPath == NULL || lastDevice == NULL)
return B_BAD_VALUE;
size_t length = lastDevice - (lastPath - path) - info->device;
if (strncmp(path, info->device + length, lastPath - path))
return B_BAD_VALUE;
devfs_vnode *device;
status_t status = get_node_for_path(sDeviceFileSystem, info->device,
&device);
if (status != B_OK)
return status;
status = add_partition(sDeviceFileSystem, device, lastPath + 1, *info);
put_vnode(sDeviceFileSystem->id, device->id);
return status;
}
extern "C" status_t
devfs_unpublish_device(const char *path, bool disconnect)
{
devfs_vnode *node;
status_t status = get_node_for_path(sDeviceFileSystem, path, &node);
if (status != B_OK)
return status;
status = unpublish_node(sDeviceFileSystem, node, S_IFCHR);
if (status == B_OK && disconnect)
vfs_disconnect_vnode(sDeviceFileSystem->id, node->id);
put_vnode(sDeviceFileSystem->id, node->id);
return status;
}
extern "C" status_t
devfs_publish_device(const char *path, void *obsolete, device_hooks *ops)
{
// post R5: assume version 2
return publish_device(sDeviceFileSystem, path, NULL, NULL, NULL, ops, 2);
}
extern "C" status_t
devfs_publish_directory(const char *path)
{
RecursiveLocker locker(&sDeviceFileSystem->lock);
return publish_directory(sDeviceFileSystem, path);
}