haiku/src/system/kernel/smp.c
Axel Dörfler e0e9a3e69f * We now support the global page feature of x86 processors that prevents
kernel TLBs from being flushed on context switch.
* new arch_cpu_user_TLB_invalidate() that now does what arch_cpu_global_TLB_invalidate()
  did before.
* arch_cpu_global_TLB_invalidate() will now flush all TLBs, even those from the
  kernel.
* some cleanups.


git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@15535 a95241bf-73f2-0310-859d-f6bbb57e9c96
2005-12-14 17:07:37 +00:00

684 lines
15 KiB
C

/*
* Copyright 2002-2005, Axel Dörfler, axeld@pinc-software.de.
* Distributed under the terms of the MIT License.
*
* Copyright 2001-2002, Travis Geiselbrecht. All rights reserved.
* Distributed under the terms of the NewOS License.
*/
/* Functionality for symetrical multi-processors */
#include <thread.h>
#include <int.h>
#include <smp.h>
#include <cpu.h>
#include <arch/cpu.h>
#include <arch/smp.h>
#include <arch/int.h>
#include <arch/debug.h>
#include <stdlib.h>
#include <string.h>
#define DEBUG_SPINLOCKS 1
//#define TRACE_SMP
#ifdef TRACE_SMP
# define TRACE(x) dprintf x
#else
# define TRACE(x) ;
#endif
#if __INTEL__
#define PAUSE() asm volatile ("rep; nop;")
#else
#define PAUSE()
#endif
#define MSG_POOL_SIZE (SMP_MAX_CPUS * 4)
struct smp_msg {
struct smp_msg *next;
int32 message;
uint32 data;
uint32 data2;
uint32 data3;
void *data_ptr;
uint32 flags;
int32 ref_count;
volatile bool done;
uint32 proc_bitmap;
};
#define MAILBOX_LOCAL 1
#define MAILBOX_BCAST 2
static spinlock boot_cpu_spin[SMP_MAX_CPUS] = { 0, };
static struct smp_msg *free_msgs = NULL;
static volatile int free_msg_count = 0;
static spinlock free_msg_spinlock = 0;
static struct smp_msg *smp_msgs[SMP_MAX_CPUS] = { NULL, };
static spinlock cpu_msg_spinlock[SMP_MAX_CPUS] = { 0, };
static struct smp_msg *smp_broadcast_msgs = NULL;
static spinlock broadcast_msg_spinlock = 0;
static bool sICIEnabled = false;
static int32 sNumCPUs = 1;
static int32 process_pending_ici(int32 currentCPU);
#if DEBUG_SPINLOCKS
#define NUM_LAST_CALLERS 32
static struct {
void *caller;
spinlock *lock;
} sLastCaller[NUM_LAST_CALLERS];
static int32 sLastIndex = 0;
static void
push_lock_caller(void *caller, spinlock *lock)
{
sLastCaller[sLastIndex].caller = caller;
sLastCaller[sLastIndex].lock = lock;
if (++sLastIndex >= NUM_LAST_CALLERS)
sLastIndex = 0;
}
static void *
find_lock_caller(spinlock *lock)
{
int32 i;
for (i = 0; i < NUM_LAST_CALLERS; i++) {
int32 index = (NUM_LAST_CALLERS + sLastIndex - 1 - i) % NUM_LAST_CALLERS;
if (sLastCaller[index].lock == lock)
return sLastCaller[index].caller;
}
return NULL;
}
#endif // DEBUG_SPINLOCKS
void
acquire_spinlock(spinlock *lock)
{
if (sNumCPUs > 1) {
int currentCPU = smp_get_current_cpu();
if (are_interrupts_enabled())
panic("acquire_spinlock: attempt to acquire lock %p with interrupts enabled\n", lock);
while (1) {
while (*lock != 0) {
process_pending_ici(currentCPU);
PAUSE();
}
if (atomic_set((int32 *)lock, 1) == 0)
break;
}
} else {
#if DEBUG_SPINLOCKS
int32 oldValue;
if (are_interrupts_enabled())
panic("acquire_spinlock: attempt to acquire lock %p with interrupts enabled\n", lock);
oldValue = atomic_set((int32 *)lock, 1);
if (oldValue != 0) {
panic("acquire_spinlock: attempt to acquire lock %p twice on non-SMP system (last caller: %p, value %ld)\n",
lock, find_lock_caller(lock), oldValue);
}
push_lock_caller(arch_debug_get_caller(), lock);
#endif
}
}
static void
acquire_spinlock_nocheck(spinlock *lock)
{
if (sNumCPUs > 1) {
#if DEBUG_SPINLOCKS
if (are_interrupts_enabled())
panic("acquire_spinlock_nocheck: attempt to acquire lock %p with interrupts enabled\n", lock);
#endif
while (1) {
while(*lock != 0)
PAUSE();
if (atomic_set((int32 *)lock, 1) == 0)
break;
}
} else {
#if DEBUG_SPINLOCKS
if (are_interrupts_enabled())
panic("acquire_spinlock_nocheck: attempt to acquire lock %p with interrupts enabled\n", lock);
if (atomic_set((int32 *)lock, 1) != 0)
panic("acquire_spinlock_nocheck: attempt to acquire lock %p twice on non-SMP system\n", lock);
#endif
}
}
void
release_spinlock(spinlock *lock)
{
if (sNumCPUs > 1) {
if (are_interrupts_enabled())
panic("release_spinlock: attempt to release lock %p with interrupts enabled\n", lock);
if (atomic_set((int32 *)lock, 0) != 1)
panic("release_spinlock: lock %p was already released\n", lock);
} else {
#if DEBUG_SPINLOCKS
if (are_interrupts_enabled())
panic("release_spinlock: attempt to release lock %p with interrupts enabled\n", lock);
if (atomic_set((int32 *)lock, 0) != 1)
panic("release_spinlock: lock %p was already released\n", lock);
#endif
}
}
/** Finds a free message and gets it.
* NOTE: has side effect of disabling interrupts
* return value is the former interrupt state
*/
static cpu_status
find_free_message(struct smp_msg **msg)
{
cpu_status state;
TRACE(("find_free_message: entry\n"));
retry:
while (free_msg_count <= 0)
PAUSE();
state = disable_interrupts();
acquire_spinlock(&free_msg_spinlock);
if (free_msg_count <= 0) {
// someone grabbed one while we were getting the lock,
// go back to waiting for it
release_spinlock(&free_msg_spinlock);
restore_interrupts(state);
goto retry;
}
*msg = free_msgs;
free_msgs = (*msg)->next;
free_msg_count--;
release_spinlock(&free_msg_spinlock);
TRACE(("find_free_message: returning msg %p\n", *msg));
return state;
}
static void
return_free_message(struct smp_msg *msg)
{
TRACE(("return_free_message: returning msg %p\n", msg));
acquire_spinlock_nocheck(&free_msg_spinlock);
msg->next = free_msgs;
free_msgs = msg;
free_msg_count++;
release_spinlock(&free_msg_spinlock);
}
static struct smp_msg *
check_for_message(int currentCPU, int *source_mailbox)
{
struct smp_msg *msg;
if (!sICIEnabled)
return NULL;
acquire_spinlock_nocheck(&cpu_msg_spinlock[currentCPU]);
msg = smp_msgs[currentCPU];
if (msg != NULL) {
smp_msgs[currentCPU] = msg->next;
release_spinlock(&cpu_msg_spinlock[currentCPU]);
TRACE((" found msg %p in cpu mailbox\n", msg));
*source_mailbox = MAILBOX_LOCAL;
} else {
// try getting one from the broadcast mailbox
release_spinlock(&cpu_msg_spinlock[currentCPU]);
acquire_spinlock_nocheck(&broadcast_msg_spinlock);
msg = smp_broadcast_msgs;
while (msg != NULL) {
if (CHECK_BIT(msg->proc_bitmap, currentCPU) != 0) {
// we have handled this one already
msg = msg->next;
continue;
}
// mark it so we wont try to process this one again
msg->proc_bitmap = SET_BIT(msg->proc_bitmap, currentCPU);
*source_mailbox = MAILBOX_BCAST;
break;
}
release_spinlock(&broadcast_msg_spinlock);
TRACE((" found msg %p in broadcast mailbox\n", msg));
}
return msg;
}
static void
finish_message_processing(int currentCPU, struct smp_msg *msg, int source_mailbox)
{
int old_refcount;
old_refcount = atomic_add(&msg->ref_count, -1);
if (old_refcount == 1) {
// we were the last one to decrement the ref_count
// it's our job to remove it from the list & possibly clean it up
struct smp_msg **mbox = NULL;
spinlock *spinlock = NULL;
// clean up the message from one of the mailboxes
switch (source_mailbox) {
case MAILBOX_BCAST:
mbox = &smp_broadcast_msgs;
spinlock = &broadcast_msg_spinlock;
break;
case MAILBOX_LOCAL:
mbox = &smp_msgs[currentCPU];
spinlock = &cpu_msg_spinlock[currentCPU];
break;
}
acquire_spinlock_nocheck(spinlock);
TRACE(("cleaning up message %p\n", msg));
if (msg == *mbox) {
(*mbox) = msg->next;
} else {
// we need to walk to find the message in the list.
// we can't use any data found when previously walking through
// the list, since the list may have changed. But, we are guaranteed
// to at least have msg in it.
struct smp_msg *last = NULL;
struct smp_msg *msg1;
msg1 = *mbox;
while (msg1 != NULL && msg1 != msg) {
last = msg1;
msg1 = msg1->next;
}
// by definition, last must be something
if (msg1 == msg && last != NULL)
last->next = msg->next;
else
dprintf("last == NULL or msg != msg1!!!\n");
}
release_spinlock(spinlock);
if ((msg->flags & SMP_MSG_FLAG_FREE_ARG) != 0 && msg->data_ptr != NULL)
free(msg->data_ptr);
if (msg->flags & SMP_MSG_FLAG_SYNC) {
msg->done = true;
// the caller cpu should now free the message
} else {
// in the !SYNC case, we get to free the message
return_free_message(msg);
}
}
}
static int32
process_pending_ici(int32 currentCPU)
{
struct smp_msg *msg;
bool halt = false;
int source_mailbox = 0;
int retval = B_HANDLED_INTERRUPT;
msg = check_for_message(currentCPU, &source_mailbox);
if (msg == NULL)
return retval;
TRACE((" cpu %d message = %d\n", curr_cpu, msg->message));
switch (msg->message) {
case SMP_MSG_INVALIDATE_PAGE_RANGE:
arch_cpu_invalidate_TLB_range((addr_t)msg->data, (addr_t)msg->data2);
break;
case SMP_MSG_INVALIDATE_PAGE_LIST:
arch_cpu_invalidate_TLB_list((addr_t *)msg->data, (int)msg->data2);
break;
case SMP_MSG_USER_INVALIDATE_PAGES:
arch_cpu_user_TLB_invalidate();
break;
case SMP_MSG_GLOBAL_INVALIDATE_PAGES:
arch_cpu_global_TLB_invalidate();
break;
case SMP_MSG_RESCHEDULE:
retval = B_INVOKE_SCHEDULER;
break;
case SMP_MSG_CPU_HALT:
halt = true;
dprintf("cpu %ld halted!\n", currentCPU);
break;
case SMP_MSG_CALL_FUNCTION:
{
smp_call_func func = (smp_call_func)msg->data_ptr;
func(msg->data, currentCPU, msg->data2, msg->data3);
break;
}
default:
dprintf("smp_intercpu_int_handler: got unknown message %ld\n", msg->message);
}
// finish dealing with this message, possibly removing it from the list
finish_message_processing(currentCPU, msg, source_mailbox);
// special case for the halt message
// we otherwise wouldn't have gotten the opportunity to clean up
if (halt) {
disable_interrupts();
for(;;);
}
return retval;
}
// #pragma mark -
int
smp_intercpu_int_handler(void)
{
int retval;
int currentCPU = smp_get_current_cpu();
TRACE(("smp_intercpu_int_handler: entry on cpu %d\n", currentCPU));
retval = process_pending_ici(currentCPU);
TRACE(("smp_intercpu_int_handler: done\n"));
return retval;
}
void
smp_send_ici(int32 targetCPU, int32 message, uint32 data, uint32 data2, uint32 data3,
void *data_ptr, uint32 flags)
{
struct smp_msg *msg;
TRACE(("smp_send_ici: target 0x%x, mess 0x%x, data 0x%lx, data2 0x%lx, data3 0x%lx, ptr %p, flags 0x%x\n",
target_cpu, message, data, data2, data3, data_ptr, flags));
if (sICIEnabled) {
int state;
int currentCPU;
// find_free_message leaves interrupts disabled
state = find_free_message(&msg);
currentCPU = smp_get_current_cpu();
if (targetCPU == currentCPU) {
return_free_message(msg);
restore_interrupts(state);
return; // nope, cant do that
}
// set up the message
msg->message = message;
msg->data = data;
msg->data2 = data2;
msg->data3 = data3;
msg->data_ptr = data_ptr;
msg->ref_count = 1;
msg->flags = flags;
msg->done = false;
// stick it in the appropriate cpu's mailbox
acquire_spinlock_nocheck(&cpu_msg_spinlock[targetCPU]);
msg->next = smp_msgs[targetCPU];
smp_msgs[targetCPU] = msg;
release_spinlock(&cpu_msg_spinlock[targetCPU]);
arch_smp_send_ici(targetCPU);
if (flags & SMP_MSG_FLAG_SYNC) {
// wait for the other cpu to finish processing it
// the interrupt handler will ref count it to <0
// if the message is sync after it has removed it from the mailbox
while (msg->done == false) {
process_pending_ici(currentCPU);
PAUSE();
}
// for SYNC messages, it's our responsibility to put it
// back into the free list
return_free_message(msg);
}
restore_interrupts(state);
}
}
void
smp_send_broadcast_ici(int32 message, uint32 data, uint32 data2, uint32 data3,
void *data_ptr, uint32 flags)
{
struct smp_msg *msg;
TRACE(("smp_send_broadcast_ici: cpu %d mess 0x%x, data 0x%lx, data2 0x%lx, data3 0x%lx, ptr %p, flags 0x%x\n",
smp_get_current_cpu(), message, data, data2, data3, data_ptr, flags));
if (sICIEnabled) {
int state;
int currentCPU;
// find_free_message leaves interrupts disabled
state = find_free_message(&msg);
currentCPU = smp_get_current_cpu();
msg->message = message;
msg->data = data;
msg->data2 = data2;
msg->data3 = data3;
msg->data_ptr = data_ptr;
msg->ref_count = sNumCPUs - 1;
msg->flags = flags;
msg->proc_bitmap = SET_BIT(0, currentCPU);
msg->done = false;
TRACE(("smp_send_broadcast_ici%d: inserting msg %p into broadcast mbox\n",
smp_get_current_cpu(), msg));
// stick it in the appropriate cpu's mailbox
acquire_spinlock_nocheck(&broadcast_msg_spinlock);
msg->next = smp_broadcast_msgs;
smp_broadcast_msgs = msg;
release_spinlock(&broadcast_msg_spinlock);
arch_smp_send_broadcast_ici();
TRACE(("smp_send_broadcast_ici: sent interrupt\n"));
if (flags & SMP_MSG_FLAG_SYNC) {
// wait for the other cpus to finish processing it
// the interrupt handler will ref count it to <0
// if the message is sync after it has removed it from the mailbox
TRACE(("smp_send_broadcast_ici: waiting for ack\n"));
while (msg->done == false) {
process_pending_ici(currentCPU);
PAUSE();
}
TRACE(("smp_send_broadcast_ici: returning message to free list\n"));
// for SYNC messages, it's our responsibility to put it
// back into the free list
return_free_message(msg);
}
restore_interrupts(state);
}
TRACE(("smp_send_broadcast_ici: done\n"));
}
bool
smp_trap_non_boot_cpus(int32 cpu)
{
if (cpu > 0) {
boot_cpu_spin[cpu] = 1;
acquire_spinlock(&boot_cpu_spin[cpu]);
return false;
}
return true;
}
void
smp_wake_up_non_boot_cpus()
{
// resume non boot CPUs
int i;
for (i = 1; i < sNumCPUs; i++) {
release_spinlock(&boot_cpu_spin[i]);
}
// ICIs were previously being ignored
if (sNumCPUs > 1)
sICIEnabled = true;
// invalidate all of the other processors' TLB caches
arch_cpu_global_TLB_invalidate();
smp_send_broadcast_ici(SMP_MSG_GLOBAL_INVALIDATE_PAGES, 0, 0, 0, NULL,
SMP_MSG_FLAG_SYNC);
// start the other processors
smp_send_broadcast_ici(SMP_MSG_RESCHEDULE, 0, 0, 0, NULL, SMP_MSG_FLAG_ASYNC);
}
void
smp_wait_for_non_boot_cpus(void)
{
bool retry;
int32 i;
do {
retry = false;
for (i = 1; i < sNumCPUs; i++) {
if (boot_cpu_spin[i] != 1)
retry = true;
}
} while (retry == true);
}
status_t
smp_init(kernel_args *args)
{
struct smp_msg *msg;
int i;
TRACE(("smp_init: entry\n"));
if (args->num_cpus > 1) {
free_msgs = NULL;
free_msg_count = 0;
for (i = 0; i < MSG_POOL_SIZE; i++) {
msg = (struct smp_msg *)malloc(sizeof(struct smp_msg));
if (msg == NULL) {
panic("error creating smp mailboxes\n");
return B_ERROR;
}
memset(msg, 0, sizeof(struct smp_msg));
msg->next = free_msgs;
free_msgs = msg;
free_msg_count++;
}
sNumCPUs = args->num_cpus;
}
TRACE(("smp_init: calling arch_smp_init\n"));
return arch_smp_init(args);
}
status_t
smp_per_cpu_init(kernel_args *args, int32 cpu)
{
return arch_smp_per_cpu_init(args, cpu);
}
void
smp_set_num_cpus(int32 numCPUs)
{
sNumCPUs = numCPUs;
}
int32
smp_get_num_cpus()
{
return sNumCPUs;
}
int32
smp_get_current_cpu(void)
{
struct thread *thread = thread_get_current_thread();
if (thread)
return thread->cpu->info.cpu_num;
// this is not always correct during early boot, but it's okay for
// for the boot process
return 0;
}
// #pragma mark -
// public exported functions
void
call_all_cpus(void (*func)(void *, int), void *cookie)
{
cpu_status state = disable_interrupts();
if (smp_get_num_cpus() > 1) {
smp_send_broadcast_ici(SMP_MSG_CALL_FUNCTION, (uint32)cookie,
0, 0, (void *)func, SMP_MSG_FLAG_SYNC);
}
// we need to call this function ourselves as well
func(cookie, smp_get_current_cpu());
restore_interrupts(state);
}