haiku/headers/private/kernel/smp.h
Jérôme Duval 026c8b9c04 kernel/smp: add call_single_cpu()
to call a function on the target cpu. Early mechanism not available.

Change-Id: I9d049e618c319c59729d1ab53fb313b748f82315
Reviewed-on: https://review.haiku-os.org/c/haiku/+/3212
Reviewed-by: Axel Dörfler <axeld@pinc-software.de>
2020-09-15 20:42:14 +00:00

317 lines
6.7 KiB
C++

/*
* Copyright 2002-2005, Axel Dörfler, axeld@pinc-software.de.
* Distributed under the terms of the MIT License.
*
* Copyright 2001-2002, Travis Geiselbrecht. All rights reserved.
* Distributed under the terms of the NewOS License.
*/
#ifndef KERNEL_SMP_H
#define KERNEL_SMP_H
#include <arch/atomic.h>
#include <boot/kernel_args.h>
#include <kernel.h>
#include <KernelExport.h>
#include <string.h>
struct kernel_args;
// intercpu messages
enum {
SMP_MSG_INVALIDATE_PAGE_RANGE = 0,
SMP_MSG_INVALIDATE_PAGE_LIST,
SMP_MSG_USER_INVALIDATE_PAGES,
SMP_MSG_GLOBAL_INVALIDATE_PAGES,
SMP_MSG_CPU_HALT,
SMP_MSG_CALL_FUNCTION,
SMP_MSG_RESCHEDULE
};
enum {
SMP_MSG_FLAG_ASYNC = 0x0,
SMP_MSG_FLAG_SYNC = 0x1,
SMP_MSG_FLAG_FREE_ARG = 0x2,
};
typedef void (*smp_call_func)(addr_t data1, int32 currentCPU, addr_t data2, addr_t data3);
class CPUSet {
public:
inline CPUSet();
inline void ClearAll();
inline void SetAll();
inline void SetBit(int32 cpu);
inline void ClearBit(int32 cpu);
inline void SetBitAtomic(int32 cpu);
inline void ClearBitAtomic(int32 cpu);
inline bool GetBit(int32 cpu) const;
inline bool IsEmpty() const;
private:
static const int kArraySize = ROUNDUP(SMP_MAX_CPUS, 32) / 32;
uint32 fBitmap[kArraySize];
};
#ifdef __cplusplus
extern "C" {
#endif
bool try_acquire_spinlock(spinlock* lock);
status_t smp_init(struct kernel_args *args);
status_t smp_per_cpu_init(struct kernel_args *args, int32 cpu);
status_t smp_init_post_generic_syscalls(void);
bool smp_trap_non_boot_cpus(int32 cpu, uint32* rendezVous);
void smp_wake_up_non_boot_cpus(void);
void smp_cpu_rendezvous(uint32* var);
void smp_send_ici(int32 targetCPU, int32 message, addr_t data, addr_t data2, addr_t data3,
void *data_ptr, uint32 flags);
void smp_send_multicast_ici(CPUSet& cpuMask, int32 message, addr_t data,
addr_t data2, addr_t data3, void *data_ptr, uint32 flags);
void smp_send_broadcast_ici(int32 message, addr_t data, addr_t data2, addr_t data3,
void *data_ptr, uint32 flags);
void smp_send_broadcast_ici_interrupts_disabled(int32 currentCPU, int32 message,
addr_t data, addr_t data2, addr_t data3, void *data_ptr, uint32 flags);
int32 smp_get_num_cpus(void);
void smp_set_num_cpus(int32 numCPUs);
int32 smp_get_current_cpu(void);
int smp_intercpu_int_handler(int32 cpu);
void call_single_cpu(uint32 targetCPU, void (*func)(void*, int), void* cookie);
void call_single_cpu_sync(uint32 targetCPU, void (*func)(void*, int),
void* cookie);
#ifdef __cplusplus
}
#endif
inline
CPUSet::CPUSet()
{
memset(fBitmap, 0, sizeof(fBitmap));
}
inline void
CPUSet::ClearAll()
{
memset(fBitmap, 0, sizeof(fBitmap));
}
inline void
CPUSet::SetAll()
{
memset(fBitmap, ~uint8(0), sizeof(fBitmap));
}
inline void
CPUSet::SetBit(int32 cpu)
{
int32* element = (int32*)&fBitmap[cpu % kArraySize];
*element |= 1u << (cpu / kArraySize);
}
inline void
CPUSet::ClearBit(int32 cpu)
{
int32* element = (int32*)&fBitmap[cpu % kArraySize];
*element &= ~uint32(1u << (cpu / kArraySize));
}
inline void
CPUSet::SetBitAtomic(int32 cpu)
{
int32* element = (int32*)&fBitmap[cpu % kArraySize];
atomic_or(element, 1u << (cpu / kArraySize));
}
inline void
CPUSet::ClearBitAtomic(int32 cpu)
{
int32* element = (int32*)&fBitmap[cpu % kArraySize];
atomic_and(element, ~uint32(1u << (cpu / kArraySize)));
}
inline bool
CPUSet::GetBit(int32 cpu) const
{
int32* element = (int32*)&fBitmap[cpu % kArraySize];
return ((uint32)atomic_get(element) & (1u << (cpu / kArraySize))) != 0;
}
inline bool
CPUSet::IsEmpty() const
{
for (int i = 0; i < kArraySize; i++) {
if (fBitmap[i] != 0)
return false;
}
return true;
}
// Unless spinlock debug features are enabled, try to inline
// {acquire,release}_spinlock().
#if !DEBUG_SPINLOCKS && !B_DEBUG_SPINLOCK_CONTENTION
static inline bool
try_acquire_spinlock_inline(spinlock* lock)
{
return atomic_get_and_set((int32*)lock, 1) == 0;
}
static inline void
acquire_spinlock_inline(spinlock* lock)
{
if (try_acquire_spinlock_inline(lock))
return;
acquire_spinlock(lock);
}
static inline void
release_spinlock_inline(spinlock* lock)
{
atomic_set((int32*)lock, 0);
}
#define try_acquire_spinlock(lock) try_acquire_spinlock_inline(lock)
#define acquire_spinlock(lock) acquire_spinlock_inline(lock)
#define release_spinlock(lock) release_spinlock_inline(lock)
static inline bool
try_acquire_write_spinlock_inline(rw_spinlock* lock)
{
return atomic_test_and_set(&lock->lock, 1u << 31, 0) == 0;
}
static inline void
acquire_write_spinlock_inline(rw_spinlock* lock)
{
if (try_acquire_write_spinlock(lock))
return;
acquire_write_spinlock(lock);
}
static inline void
release_write_spinlock_inline(rw_spinlock* lock)
{
atomic_set(&lock->lock, 0);
}
static inline bool
try_acquire_read_spinlock_inline(rw_spinlock* lock)
{
uint32 previous = atomic_add(&lock->lock, 1);
return (previous & (1u << 31)) == 0;
}
static inline void
acquire_read_spinlock_inline(rw_spinlock* lock)
{
if (try_acquire_read_spinlock(lock))
return;
acquire_read_spinlock(lock);
}
static inline void
release_read_spinlock_inline(rw_spinlock* lock)
{
atomic_add(&lock->lock, -1);
}
#define try_acquire_read_spinlock(lock) try_acquire_read_spinlock_inline(lock)
#define acquire_read_spinlock(lock) acquire_read_spinlock_inline(lock)
#define release_read_spinlock(lock) release_read_spinlock_inline(lock)
#define try_acquire_write_spinlock(lock) \
try_acquire_write_spinlock(lock)
#define acquire_write_spinlock(lock) acquire_write_spinlock_inline(lock)
#define release_write_spinlock(lock) release_write_spinlock_inline(lock)
static inline bool
try_acquire_write_seqlock_inline(seqlock* lock) {
bool succeed = try_acquire_spinlock(&lock->lock);
if (succeed)
atomic_add((int32*)&lock->count, 1);
return succeed;
}
static inline void
acquire_write_seqlock_inline(seqlock* lock) {
acquire_spinlock(&lock->lock);
atomic_add((int32*)&lock->count, 1);
}
static inline void
release_write_seqlock_inline(seqlock* lock) {
atomic_add((int32*)&lock->count, 1);
release_spinlock(&lock->lock);
}
static inline uint32
acquire_read_seqlock_inline(seqlock* lock)
{
return (uint32)atomic_get((int32*)&lock->count);
}
static inline bool
release_read_seqlock_inline(seqlock* lock, uint32 count)
{
uint32 current = (uint32)atomic_get((int32*)&lock->count);
return count % 2 == 0 && current == count;
}
#define try_acquire_write_seqlock(lock) try_acquire_write_seqlock_inline(lock)
#define acquire_write_seqlock(lock) acquire_write_seqlock_inline(lock)
#define release_write_seqlock(lock) release_write_seqlock_inline(lock)
#define acquire_read_seqlock(lock) acquire_read_seqlock_inline(lock)
#define release_read_seqlock(lock, count) \
release_read_seqlock_inline(lock, count)
#endif // !DEBUG_SPINLOCKS && !B_DEBUG_SPINLOCK_CONTENTION
#endif /* KERNEL_SMP_H */