4d1c422802
of locking before processing the message (single/all window lock) -> in most message cases, I could comment out the unlocking/locking which switched to the different lock, because the required lock is now already held, this removes some race conditions which were commented in the code already * EventDispatcher::SetDragMessage() didn't lock the object, this would have been bad if multiple windows tried to set a drag bitmap at once * the Desktop object keeps track of mouse position and pressed buttons, so that it doesn't need to lock the EventDispatcher for sending fake mouse moves to windows on show/hide of windows (solves some cases of possible dead locks with the new locking strategy) * the keyboard EventFilter switches the current workspace asynchrnously from the Desktop thread (another source of possible deadlocks) * the "reader is trying to become writer" check in MultiLocker is only used in DEBUG mode now As a summary: It would be nice if ServerWindow used a readlock for all messages it processes itself, and forwards all messages for which it needs a write lock to the Desktop thread. All cases where either the Desktop or the ServerWindow mess with the EventDispatcher are possible sources of deadlocks. This is solved right now by making sure that the lock is released before using the EventDispatcher. I have not observed any deadlocks while switching workspaces and launching many apps anymore, neither crashes. But I have not tested extensively except for in the test environment. That being said, I could reproduce the problems on first try before in Haiku. git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@22410 a95241bf-73f2-0310-859d-f6bbb57e9c96 |
||
---|---|---|
3rdparty/vmware | ||
build | ||
data | ||
docs | ||
headers | ||
src | ||
configure | ||
Jamfile | ||
Jamrules | ||
makehaikufloppy | ||
ReadMe | ||
ReadMe.cross-compile |
Building on BeOS ================ For building on BeOS you need the development tools from: http://haiku-os.org/downloads Please always use the most recent versions. They are required to build Haiku. Building on a non-BeOS platform =============================== Please read the file 'ReadMe.cross-compile' before continuing. It describes how to build the cross-compilation tools and configure the build system for building Haiku. After following the instructions you can directly continue with the section Building. Configuring on BeOS =================== Open a Terminal and change to your Haiku trunk folder. To configure the build you can run configure like this: ./configure --target=TARGET Where "TARGET" is the target platform that the compiled code should run on: * haiku (default) * r5 * bone * dano (also for Zeta) The configure script generates a file named "BuildConfig" in the "build" directory. As long as configure is not modified (!), there is no need to call it again. That is for re-building you only need to invoke jam (see below). If you don't update the source tree very frequently, you may want to execute 'configure' after each update just to be on the safe side. Building ======== Haiku can be built in either of two ways, as disk image file (e.g. for use with emulators) or as installation in a directory. Image File ---------- jam -q haiku-image This generates an image file named 'haiku.image' in your output directory under 'generated/'. VMware Image File ----------------- jam -q haiku-vmware-image This generates an image file named 'haiku.vmdk' in your output directory under 'generated/'. Directory Installation ---------------------- HAIKU_INSTALL_DIR=/Haiku jam -q install-haiku Installs all Haiku components into the volume mounted at "/Haiku" and automatically marks it as bootable. To create a partition in the first place use DriveSetup and initialize it to BFS. Note that installing Haiku in a directory only works as expected under BeOS, but it is not yet supported under Linux and other non-BeOS platforms. Building Components ------------------- If you don't want to build the complete Haiku, but only a certain app/driver/etc. you can specify it as argument to jam, e.g.: jam Pulse Alternatively, you can 'cd' to the directory of the component you want to build and run 'jam' from there. You can also force rebuilding of a component by using the "-a" parameter: jam -a Pulse Running ======= Generally there are two ways of running Haiku. On real hardware using a partition and on emulated hardware using an emulator like Bochs or QEmu. On Real Hardware ---------------- If you have installed Haiku to its own partition you can include this partition in your bootmanager and try to boot Haiku like any other OS you have installed. To include a new partition in the BeOS bootmanager run this in a Terminal: bootman On Emulated Hardware -------------------- For emulated hardware you should build disk image (see above). How to setup this image depends on your emulater. A tutorial for Bochs on BeOS is below. If you use QEmu, you can usually just provide the path to the image as command line argument to the "qemu" executable. Bochs ----- Version 2.2 of Bochs for BeOS (BeBochs) can be downloaded from BeBits: http://www.bebits.com/app/3324 The package installs to: /boot/apps/BeBochs2.2 You have to set up a configuration for Bochs. You should edit the ".bochsrc" to include the following: ata0-master: type=disk, path="/path/to/haiku.image", cylinders=122, heads=16, spt=63 boot: disk Now you can start Bochs: $ cd /boot/apps/BeBochs2.2 $ ./bochs Answer with RETURN and with some patience you will see Haiku booting. If booting into the graphical evironment fails you can try to hit "space" at the very beginning of the boot process. The Haiku bootloader should then come up and you can select some safe mode options. Docbook documentation ===================== Our documentation can be found in 'src/documentation/'. You can build it by running 'jam' in that folder. The results will be stored in the 'generated/' folder.