haiku/headers/private/kernel/util/OpenHashTable.h
Ingo Weinhold 4535495d80 Merged the signals branch into trunk, with these changes:
* The team and thread kernel structures have been renamed to Team and Thread
  respectively and moved into the new BKernel namespace.
* Several (kernel add-on) sources have been converted from C to C++ since
  private kernel headers are included that are no longer C compatible.

Changes after merging:
* Fixed gcc 2 build (warnings mainly in the scary firewire bus manager).


git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@40196 a95241bf-73f2-0310-859d-f6bbb57e9c96
2011-01-10 21:54:38 +00:00

457 lines
9.0 KiB
C++

/*
* Copyright 2007, Hugo Santos. All Rights Reserved.
* Distributed under the terms of the MIT License.
*/
#ifndef _KERNEL_UTIL_OPEN_HASH_TABLE_H
#define _KERNEL_UTIL_OPEN_HASH_TABLE_H
#include <OS.h>
#include <stdlib.h>
#include <string.h>
#ifdef _KERNEL_MODE
# include <KernelExport.h>
# include <util/kernel_cpp.h>
#endif
/*!
The Definition template must have four methods: `HashKey', `Hash',
`Compare' and `GetLink;. It must also define several types as shown in the
following example:
struct Foo {
int bar;
Foo* fNext;
};
struct HashTableDefinition {
typedef int KeyType;
typedef Foo ValueType;
size_t HashKey(int key) const
{
return key >> 1;
}
size_t Hash(Foo* value) const
{
return HashKey(value->bar);
}
bool Compare(int key, Foo* value) const
{
return value->bar == key;
}
Foo*& GetLink(Foo* value) const
{
return value->fNext;
}
};
*/
struct MallocAllocator {
void* Allocate(size_t size) const
{
return malloc(size);
}
void Free(void* memory) const
{
free(memory);
}
};
template<typename Definition, bool AutoExpand = true,
bool CheckDuplicates = false, typename Allocator = MallocAllocator>
class BOpenHashTable {
public:
typedef BOpenHashTable<Definition, AutoExpand, CheckDuplicates> HashTable;
typedef typename Definition::KeyType KeyType;
typedef typename Definition::ValueType ValueType;
static const size_t kMinimumSize = 8;
// All allocations are of power of 2 lengths.
// regrowth factor: 200 / 256 = 78.125%
// 50 / 256 = 19.53125%
BOpenHashTable()
:
fTableSize(0),
fItemCount(0),
fTable(NULL)
{
}
BOpenHashTable(const Definition& definition)
:
fDefinition(definition),
fTableSize(0),
fItemCount(0),
fTable(NULL)
{
}
BOpenHashTable(const Definition& definition, const Allocator& allocator)
:
fDefinition(definition),
fAllocator(allocator),
fTableSize(0),
fItemCount(0),
fTable(NULL)
{
}
~BOpenHashTable()
{
fAllocator.Free(fTable);
}
status_t Init(size_t initialSize = kMinimumSize)
{
if (initialSize > 0 && !_Resize(initialSize))
return B_NO_MEMORY;
return B_OK;
}
size_t TableSize() const
{
return fTableSize;
}
size_t CountElements() const
{
return fItemCount;
}
ValueType* Lookup(const KeyType& key) const
{
if (fTableSize == 0)
return NULL;
size_t index = fDefinition.HashKey(key) & (fTableSize - 1);
ValueType* slot = fTable[index];
while (slot) {
if (fDefinition.Compare(key, slot))
break;
slot = _Link(slot);
}
return slot;
}
status_t Insert(ValueType* value)
{
if (fTableSize == 0) {
if (!_Resize(kMinimumSize))
return B_NO_MEMORY;
} else if (AutoExpand && fItemCount >= (fTableSize * 200 / 256))
_Resize(fTableSize * 2);
InsertUnchecked(value);
return B_OK;
}
void InsertUnchecked(ValueType* value)
{
if (CheckDuplicates && _ExhaustiveSearch(value)) {
#ifdef _KERNEL_MODE
panic("Hash Table: value already in table.");
#else
debugger("Hash Table: value already in table.");
#endif
}
_Insert(fTable, fTableSize, value);
fItemCount++;
}
// TODO: a ValueType* Remove(const KeyType& key) method is missing
bool Remove(ValueType* value)
{
if (!RemoveUnchecked(value))
return false;
if (AutoExpand && fTableSize > kMinimumSize
&& fItemCount < (fTableSize * 50 / 256))
_Resize(fTableSize / 2);
return true;
}
bool RemoveUnchecked(ValueType* value)
{
size_t index = fDefinition.Hash(value) & (fTableSize - 1);
ValueType* previous = NULL;
ValueType* slot = fTable[index];
while (slot) {
ValueType* next = _Link(slot);
if (value == slot) {
if (previous)
_Link(previous) = next;
else
fTable[index] = next;
break;
}
previous = slot;
slot = next;
}
if (slot == NULL)
return false;
if (CheckDuplicates && _ExhaustiveSearch(value)) {
#ifdef _KERNEL_MODE
panic("Hash Table: duplicate detected.");
#else
debugger("Hash Table: duplicate detected.");
#endif
}
fItemCount--;
return true;
}
/*! Removes all elements from the hash table. No resizing happens. The
elements are not deleted. If \a returnElements is \c true, the method
returns all elements chained via their hash table link.
*/
ValueType* Clear(bool returnElements = false)
{
if (this->fItemCount == 0)
return NULL;
ValueType* result = NULL;
if (returnElements) {
ValueType** nextPointer = &result;
// iterate through all buckets
for (size_t i = 0; i < fTableSize; i++) {
ValueType* element = fTable[i];
if (element != NULL) {
// add the bucket to the list
*nextPointer = element;
// update nextPointer to point to the fNext of the last
// element in the bucket
while (element != NULL) {
nextPointer = &_Link(element);
element = *nextPointer;
}
}
}
}
memset(this->fTable, 0, sizeof(ValueType*) * this->fTableSize);
return result;
}
/*! If the table needs resizing, the number of bytes for the required
allocation is returned. If no resizing is needed, 0 is returned.
*/
size_t ResizeNeeded() const
{
size_t size = fTableSize;
if (size == 0 || fItemCount >= (size * 200 / 256)) {
// grow table
if (size == 0)
size = kMinimumSize;
while (fItemCount >= size * 200 / 256)
size <<= 1;
} else if (size > kMinimumSize && fItemCount < size * 50 / 256) {
// shrink table
while (fItemCount < size * 50 / 256)
size >>= 1;
if (size < kMinimumSize)
size = kMinimumSize;
}
if (size == fTableSize)
return 0;
return size * sizeof(ValueType*);
}
/*! Resizes the table using the given allocation. The allocation must not
be \c NULL. It must be of size \a size, which must a value returned
earlier by ResizeNeeded(). If the size requirements have changed in the
meantime, the method free()s the given allocation and returns \c false,
unless \a force is \c true, in which case the supplied allocation is
used in any event.
Otherwise \c true is returned.
If \a oldTable is non-null and resizing is successful, the old table
will not be freed, but will be returned via this parameter instead.
*/
bool Resize(void* allocation, size_t size, bool force = false,
void** oldTable = NULL)
{
if (!force && size != ResizeNeeded()) {
fAllocator.Free(allocation);
return false;
}
_Resize((ValueType**)allocation, size / sizeof(ValueType*), oldTable);
return true;
}
class Iterator {
public:
Iterator(const HashTable* table)
: fTable(table)
{
Rewind();
}
Iterator(const HashTable* table, size_t index, ValueType* value)
: fTable(table), fIndex(index), fNext(value) {}
bool HasNext() const { return fNext != NULL; }
ValueType* Next()
{
ValueType* current = fNext;
_GetNext();
return current;
}
void Rewind()
{
// get the first one
fIndex = 0;
fNext = NULL;
_GetNext();
}
protected:
Iterator() {}
void _GetNext()
{
if (fNext)
fNext = fTable->_Link(fNext);
while (fNext == NULL && fIndex < fTable->fTableSize)
fNext = fTable->fTable[fIndex++];
}
const HashTable* fTable;
size_t fIndex;
ValueType* fNext;
};
Iterator GetIterator() const
{
return Iterator(this);
}
Iterator GetIterator(const KeyType& key) const
{
if (fTableSize == 0)
return Iterator(this, fTableSize, NULL);
size_t index = fDefinition.HashKey(key) & (fTableSize - 1);
ValueType* slot = fTable[index];
while (slot) {
if (fDefinition.Compare(key, slot))
break;
slot = _Link(slot);
}
if (slot == NULL)
return Iterator(this, fTableSize, NULL);
return Iterator(this, index + 1, slot);
}
protected:
// for g++ 2.95
friend class Iterator;
void _Insert(ValueType** table, size_t tableSize, ValueType* value)
{
size_t index = fDefinition.Hash(value) & (tableSize - 1);
_Link(value) = table[index];
table[index] = value;
}
bool _Resize(size_t newSize)
{
ValueType** newTable
= (ValueType**)fAllocator.Allocate(sizeof(ValueType*) * newSize);
if (newTable == NULL)
return false;
_Resize(newTable, newSize);
return true;
}
void _Resize(ValueType** newTable, size_t newSize, void** _oldTable = NULL)
{
for (size_t i = 0; i < newSize; i++)
newTable[i] = NULL;
if (fTable) {
for (size_t i = 0; i < fTableSize; i++) {
ValueType* bucket = fTable[i];
while (bucket) {
ValueType* next = _Link(bucket);
_Insert(newTable, newSize, bucket);
bucket = next;
}
}
if (_oldTable != NULL)
*_oldTable = fTable;
else
fAllocator.Free(fTable);
} else if (_oldTable != NULL)
*_oldTable = NULL;
fTableSize = newSize;
fTable = newTable;
}
ValueType*& _Link(ValueType* bucket) const
{
return fDefinition.GetLink(bucket);
}
bool _ExhaustiveSearch(ValueType* value) const
{
for (size_t i = 0; i < fTableSize; i++) {
ValueType* bucket = fTable[i];
while (bucket) {
if (bucket == value)
return true;
bucket = _Link(bucket);
}
}
return false;
}
Definition fDefinition;
Allocator fAllocator;
size_t fTableSize;
size_t fItemCount;
ValueType** fTable;
};
#endif // _KERNEL_UTIL_OPEN_HASH_TABLE_H