haiku/src/system/kernel/port.c
Axel Dörfler 89f5f72a15 * Added debug output to vm_low_memory.cpp.
* Minor cleanup.


git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@15568 a95241bf-73f2-0310-859d-f6bbb57e9c96
2005-12-16 17:35:03 +00:00

1329 lines
29 KiB
C

/*
* Copyright 2002-2005, Axel Dörfler, axeld@pinc-software.de.
* Distributed under the terms of the MIT License.
*
* Copyright 2001, Mark-Jan Bastian. All rights reserved.
* Distributed under the terms of the NewOS License.
*/
/* ports for IPC */
#include <OS.h>
#include <port.h>
#include <kernel.h>
#include <sem.h>
#include <team.h>
#include <util/list.h>
#include <arch/int.h>
#include <cbuf.h>
#include <iovec.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
//#define TRACE_PORTS
#ifdef TRACE_PORTS
# define TRACE(x) dprintf x
#else
# define TRACE(x)
#endif
typedef struct port_msg {
list_link link;
int32 code;
cbuf *buffer_chain;
size_t size;
} port_msg;
struct port_entry {
port_id id;
team_id owner;
int32 capacity;
spinlock lock;
const char *name;
sem_id read_sem;
sem_id write_sem;
int32 total_count; // messages read from port since creation
struct list msg_queue;
};
// internal API
static int dump_port_list(int argc, char **argv);
static int dump_port_info(int argc, char **argv);
static void _dump_port_info(struct port_entry *port);
// sMaxPorts must be power of 2
static int32 sMaxPorts = 4096;
static int32 sUsedPorts = 0;
#define MAX_QUEUE_LENGTH 4096
#define PORT_MAX_MESSAGE_SIZE 65536
static struct port_entry *sPorts = NULL;
static area_id sPortArea = 0;
static bool sPortsActive = false;
static port_id sNextPort = 1;
static int32 sFirstFreeSlot = 1;
static spinlock sPortSpinlock = 0;
#define GRAB_PORT_LIST_LOCK() acquire_spinlock(&sPortSpinlock)
#define RELEASE_PORT_LIST_LOCK() release_spinlock(&sPortSpinlock)
#define GRAB_PORT_LOCK(s) acquire_spinlock(&(s).lock)
#define RELEASE_PORT_LOCK(s) release_spinlock(&(s).lock)
status_t
port_init(kernel_args *args)
{
int i;
int size = sizeof(struct port_entry) * sMaxPorts;
// create and initialize ports table
sPortArea = create_area("port_table", (void **)&sPorts, B_ANY_KERNEL_ADDRESS,
size, B_FULL_LOCK, B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA);
if (sPortArea < 0) {
panic("unable to allocate kernel port table!\n");
}
// ToDo: investigate preallocating a list of port_msgs to
// speed up actual message sending/receiving, a slab allocator
// might do it as well, though :-)
memset(sPorts, 0, size);
for (i = 0; i < sMaxPorts; i++)
sPorts[i].id = -1;
// add debugger commands
add_debugger_command("ports", &dump_port_list, "Dump a list of all active ports");
add_debugger_command("port", &dump_port_info, "Dump info about a particular port");
sPortsActive = true;
return 0;
}
#ifdef DEBUG
// ToDo: the test code does not belong here!
// the same code is present in the test_app in kernel/apps
// so I guess we can remove this
/*
* testcode
*/
static int32 port_test_thread_func(void *arg);
port_id test_p1, test_p2, test_p3, test_p4;
void
port_test()
{
char testdata[5];
thread_id t;
int res;
int32 dummy;
int32 dummy2;
strcpy(testdata, "abcd");
dprintf("porttest: create_port()\n");
test_p1 = create_port(1, "test port #1");
test_p2 = create_port(10, "test port #2");
test_p3 = create_port(1024, "test port #3");
test_p4 = create_port(1024, "test port #4");
dprintf("porttest: find_port()\n");
dprintf("'test port #1' has id %ld (should be %ld)\n", find_port("test port #1"), test_p1);
dprintf("porttest: write_port() on 1, 2 and 3\n");
write_port(test_p1, 1, &testdata, sizeof(testdata));
write_port(test_p2, 666, &testdata, sizeof(testdata));
write_port(test_p3, 999, &testdata, sizeof(testdata));
dprintf("porttest: port_count(test_p1) = %ld\n", port_count(test_p1));
dprintf("porttest: write_port() on 1 with timeout of 1 sec (blocks 1 sec)\n");
write_port_etc(test_p1, 1, &testdata, sizeof(testdata), B_TIMEOUT, 1000000);
dprintf("porttest: write_port() on 2 with timeout of 1 sec (wont block)\n");
res = write_port_etc(test_p2, 777, &testdata, sizeof(testdata), B_TIMEOUT, 1000000);
dprintf("porttest: res=%d, %s\n", res, res == 0 ? "ok" : "BAD");
dprintf("porttest: read_port() on empty port 4 with timeout of 1 sec (blocks 1 sec)\n");
res = read_port_etc(test_p4, &dummy, &dummy2, sizeof(dummy2), B_TIMEOUT, 1000000);
dprintf("porttest: res=%d, %s\n", res, res == B_TIMED_OUT ? "ok" : "BAD");
dprintf("porttest: spawning thread for port 1\n");
t = spawn_kernel_thread(port_test_thread_func, "port_test", B_NORMAL_PRIORITY, NULL);
resume_thread(t);
dprintf("porttest: write\n");
write_port(test_p1, 1, &testdata, sizeof(testdata));
// now we can write more (no blocking)
dprintf("porttest: write #2\n");
write_port(test_p1, 2, &testdata, sizeof(testdata));
dprintf("porttest: write #3\n");
write_port(test_p1, 3, &testdata, sizeof(testdata));
dprintf("porttest: waiting on spawned thread\n");
wait_for_thread(t, NULL);
dprintf("porttest: close p1\n");
close_port(test_p2);
dprintf("porttest: attempt write p1 after close\n");
res = write_port(test_p2, 4, &testdata, sizeof(testdata));
dprintf("porttest: write_port ret %d\n", res);
dprintf("porttest: testing delete p2\n");
delete_port(test_p2);
dprintf("porttest: end test main thread\n");
}
static int32
port_test_thread_func(void *arg)
{
int32 msg_code;
int n;
char buf[6];
buf[5] = '\0';
dprintf("porttest: port_test_thread_func()\n");
n = read_port(test_p1, &msg_code, &buf, 3);
dprintf("read_port #1 code %ld len %d buf %s\n", msg_code, n, buf);
n = read_port(test_p1, &msg_code, &buf, 4);
dprintf("read_port #1 code %ld len %d buf %s\n", msg_code, n, buf);
buf[4] = 'X';
n = read_port(test_p1, &msg_code, &buf, 5);
dprintf("read_port #1 code %ld len %d buf %s\n", msg_code, n, buf);
dprintf("porttest: testing delete p1 from other thread\n");
delete_port(test_p1);
dprintf("porttest: end port_test_thread_func()\n");
return 0;
}
#endif /* DEBUG */
int
dump_port_list(int argc, char **argv)
{
int i;
for (i = 0; i < sMaxPorts; i++) {
if (sPorts[i].id >= 0)
kprintf("%p\tid: 0x%lx\t\tname: '%s'\n", &sPorts[i], sPorts[i].id, sPorts[i].name);
}
return 0;
}
static void
_dump_port_info(struct port_entry *port)
{
int32 count;
kprintf("PORT: %p\n", port);
kprintf(" id: %#lx\n", port->id);
kprintf(" name: \"%s\"\n", port->name);
kprintf(" owner: %#lx\n", port->owner);
kprintf(" capacity: %ld\n", port->capacity);
kprintf(" read_sem: %#lx\n", port->read_sem);
kprintf(" write_sem: %#lx\n", port->write_sem);
get_sem_count(port->read_sem, &count);
kprintf(" read_sem count: %ld\n", count);
get_sem_count(port->write_sem, &count);
kprintf(" write_sem count: %ld\n", count);
kprintf(" total count: %ld\n", port->total_count);
}
static int
dump_port_info(int argc, char **argv)
{
int i;
if (argc < 2) {
kprintf("usage: port [id|name|address]\n");
return 0;
}
// if the argument looks like a number, treat it as such
if (isdigit(argv[1][0])) {
uint32 num = strtoul(argv[1], NULL, 0);
if (num > KERNEL_BASE && num <= (KERNEL_BASE + (KERNEL_SIZE - 1))) {
// XXX semi-hack
// one can use either address or a port_id, since KERNEL_BASE > sMaxPorts assumed
_dump_port_info((struct port_entry *)num);
return 0;
} else {
unsigned slot = num % sMaxPorts;
if (sPorts[slot].id != (int)num) {
kprintf("port 0x%lx doesn't exist!\n", num);
return 0;
}
_dump_port_info(&sPorts[slot]);
return 0;
}
}
// walk through the ports list, trying to match name
for (i = 0; i < sMaxPorts; i++) {
if (sPorts[i].name != NULL
&& strcmp(argv[1], sPorts[i].name) == 0) {
_dump_port_info(&sPorts[i]);
return 0;
}
}
return 0;
}
/** this function cycles through the ports table, deleting all
* the ports that are owned by the passed team_id
*/
int
delete_owned_ports(team_id owner)
{
// ToDo: investigate maintaining a list of ports in the team
// to make this simpler and more efficient.
cpu_status state;
int i;
int count = 0;
TRACE(("delete_owned_ports(owner = %ld)\n", owner));
if (!sPortsActive)
return B_BAD_PORT_ID;
state = disable_interrupts();
GRAB_PORT_LIST_LOCK();
for (i = 0; i < sMaxPorts; i++) {
if (sPorts[i].id != -1 && sPorts[i].owner == owner) {
port_id id = sPorts[i].id;
RELEASE_PORT_LIST_LOCK();
restore_interrupts(state);
delete_port(id);
count++;
state = disable_interrupts();
GRAB_PORT_LIST_LOCK();
}
}
RELEASE_PORT_LIST_LOCK();
restore_interrupts(state);
return count;
}
static void
put_port_msg(port_msg *msg)
{
cbuf_free_chain(msg->buffer_chain);
free(msg);
}
static port_msg *
get_port_msg(int32 code, size_t bufferSize)
{
// ToDo: investigate preallocation of port_msgs (or use a slab allocator)
cbuf *bufferChain = NULL;
port_msg *msg = (port_msg *)malloc(sizeof(port_msg));
if (msg == NULL)
return NULL;
if (bufferSize > 0) {
bufferChain = cbuf_get_chain(bufferSize);
if (bufferChain == NULL) {
free(msg);
return NULL;
}
}
msg->code = code;
msg->buffer_chain = bufferChain;
msg->size = bufferSize;
return msg;
}
int32
port_max_ports(void)
{
return sMaxPorts;
}
int32
port_used_ports(void)
{
return sUsedPorts;
}
// #pragma mark -
// public kernel API
port_id
create_port(int32 queueLength, const char *name)
{
cpu_status state;
char nameBuffer[B_OS_NAME_LENGTH];
sem_id readSem, writeSem;
status_t status;
team_id owner;
int32 slot;
TRACE(("create_port(queueLength = %ld, name = \"%s\")\n", queueLength, name));
if (!sPortsActive)
return B_BAD_PORT_ID;
// check queue length
if (queueLength < 1
|| queueLength > MAX_QUEUE_LENGTH)
return B_BAD_VALUE;
// check early on if there are any free port slots to use
if (atomic_add(&sUsedPorts, 1) >= sMaxPorts) {
status = B_NO_MORE_PORTS;
goto err1;
}
// check & dup name
if (name == NULL)
name = "unnamed port";
// ToDo: we could save the memory and use the semaphore name only instead
strlcpy(nameBuffer, name, B_OS_NAME_LENGTH);
name = strdup(nameBuffer);
if (name == NULL) {
status = B_NO_MEMORY;
goto err1;
}
// create read sem with owner set to -1
// ToDo: should be B_SYSTEM_TEAM
readSem = create_sem_etc(0, name, -1);
if (readSem < B_OK) {
status = readSem;
goto err2;
}
// create write sem
writeSem = create_sem_etc(queueLength, name, -1);
if (writeSem < B_OK) {
status = writeSem;
goto err3;
}
owner = team_get_current_team_id();
state = disable_interrupts();
GRAB_PORT_LIST_LOCK();
// find the first empty spot
for (slot = 0; slot < sMaxPorts; slot++) {
int32 i = (slot + sFirstFreeSlot) % sMaxPorts;
if (sPorts[i].id == -1) {
port_id id;
// make the port_id be a multiple of the slot it's in
if (i >= sNextPort % sMaxPorts)
sNextPort += i - sNextPort % sMaxPorts;
else
sNextPort += sMaxPorts - (sNextPort % sMaxPorts - i);
sFirstFreeSlot = slot + 1;
GRAB_PORT_LOCK(sPorts[i]);
sPorts[i].id = sNextPort++;
RELEASE_PORT_LIST_LOCK();
sPorts[i].capacity = queueLength;
sPorts[i].owner = owner;
sPorts[i].name = name;
sPorts[i].read_sem = readSem;
sPorts[i].write_sem = writeSem;
list_init(&sPorts[i].msg_queue);
sPorts[i].total_count = 0;
id = sPorts[i].id;
RELEASE_PORT_LOCK(sPorts[i]);
restore_interrupts(state);
TRACE(("create_port() done: port created %ld\n", id));
return id;
}
}
// not enough ports...
// ToDo: due to sUsedPorts, this cannot happen anymore - as
// long as sMaxPorts stays constant over the kernel run
// time (which it should be). IOW we could simply panic()
// here.
RELEASE_PORT_LIST_LOCK();
restore_interrupts(state);
status = B_NO_MORE_PORTS;
delete_sem(writeSem);
err3:
delete_sem(readSem);
err2:
free((char *)name);
err1:
atomic_add(&sUsedPorts, -1);
return status;
}
status_t
close_port(port_id id)
{
cpu_status state;
int slot;
TRACE(("close_port(id = %ld)\n", id));
if (!sPortsActive || id < 0)
return B_BAD_PORT_ID;
slot = id % sMaxPorts;
// walk through the sem list, trying to match name
state = disable_interrupts();
GRAB_PORT_LOCK(sPorts[slot]);
if (sPorts[slot].id != id) {
RELEASE_PORT_LOCK(sPorts[slot]);
restore_interrupts(state);
TRACE(("close_port: invalid port_id %ld\n", id));
return B_BAD_PORT_ID;
}
// mark port to disable writing
sPorts[slot].capacity = 0;
RELEASE_PORT_LOCK(sPorts[slot]);
restore_interrupts(state);
return B_NO_ERROR;
}
status_t
delete_port(port_id id)
{
cpu_status state;
sem_id readSem, writeSem;
const char *name;
struct list list;
port_msg *msg;
int slot;
TRACE(("delete_port(id = %ld)\n", id));
if (!sPortsActive || id < 0)
return B_BAD_PORT_ID;
slot = id % sMaxPorts;
state = disable_interrupts();
GRAB_PORT_LOCK(sPorts[slot]);
if (sPorts[slot].id != id) {
RELEASE_PORT_LOCK(sPorts[slot]);
restore_interrupts(state);
TRACE(("delete_port: invalid port_id %ld\n", id));
return B_BAD_PORT_ID;
}
/* mark port as invalid */
sPorts[slot].id = -1;
name = sPorts[slot].name;
readSem = sPorts[slot].read_sem;
writeSem = sPorts[slot].write_sem;
sPorts[slot].name = NULL;
list_move_to_list(&sPorts[slot].msg_queue, &list);
RELEASE_PORT_LOCK(sPorts[slot]);
// update the first free slot hint in the array
GRAB_PORT_LIST_LOCK();
if (slot < sFirstFreeSlot)
sFirstFreeSlot = slot;
RELEASE_PORT_LIST_LOCK();
restore_interrupts(state);
atomic_add(&sUsedPorts, -1);
// free the queue
while ((msg = (port_msg *)list_remove_head_item(&list)) != NULL) {
put_port_msg(msg);
}
free((char *)name);
// release the threads that were blocking on this port by deleting the sem
// read_port() will see the B_BAD_SEM_ID acq_sem() return value, and act accordingly
delete_sem(readSem);
delete_sem(writeSem);
return B_OK;
}
port_id
find_port(const char *name)
{
port_id portFound = B_NAME_NOT_FOUND;
cpu_status state;
int i;
TRACE(("find_port(name = \"%s\")\n", name));
if (!sPortsActive)
return B_NAME_NOT_FOUND;
if (name == NULL)
return B_BAD_VALUE;
// Since we have to check every single port, and we don't
// care if it goes away at any point, we're only grabbing
// the port lock in question, not the port list lock
// loop over list
for (i = 0; i < sMaxPorts && portFound < B_OK; i++) {
// lock every individual port before comparing
state = disable_interrupts();
GRAB_PORT_LOCK(sPorts[i]);
if (sPorts[i].id >= 0 && !strcmp(name, sPorts[i].name))
portFound = sPorts[i].id;
RELEASE_PORT_LOCK(sPorts[i]);
restore_interrupts(state);
}
return portFound;
}
/** Fills the port_info structure with information from the specified
* port.
* The port lock must be held when called.
*/
static void
fill_port_info(struct port_entry *port, port_info *info, size_t size)
{
int32 count;
info->port = port->id;
info->team = port->owner;
info->capacity = port->capacity;
get_sem_count(port->read_sem, &count);
if (count < 0)
count = 0;
info->queue_count = count;
info->total_count = port->total_count;
strlcpy(info->name, port->name, B_OS_NAME_LENGTH);
}
status_t
_get_port_info(port_id id, port_info *info, size_t size)
{
cpu_status state;
int slot;
TRACE(("get_port_info(id = %ld)\n", id));
if (info == NULL || size != sizeof(port_info))
return B_BAD_VALUE;
if (!sPortsActive || id < 0)
return B_BAD_PORT_ID;
slot = id % sMaxPorts;
state = disable_interrupts();
GRAB_PORT_LOCK(sPorts[slot]);
if (sPorts[slot].id != id || sPorts[slot].capacity == 0) {
RELEASE_PORT_LOCK(sPorts[slot]);
restore_interrupts(state);
TRACE(("get_port_info: invalid port_id %ld\n", id));
return B_BAD_PORT_ID;
}
// fill a port_info struct with info
fill_port_info(&sPorts[slot], info, size);
RELEASE_PORT_LOCK(sPorts[slot]);
restore_interrupts(state);
return B_OK;
}
status_t
_get_next_port_info(team_id team, int32 *_cookie, struct port_info *info, size_t size)
{
cpu_status state;
int slot;
TRACE(("get_next_port_info(team = %ld)\n", team));
if (info == NULL || size != sizeof(port_info) || _cookie == NULL || team < B_OK)
return B_BAD_VALUE;
if (!sPortsActive)
return B_BAD_PORT_ID;
slot = *_cookie;
if (slot >= sMaxPorts)
return B_BAD_PORT_ID;
if (team == B_CURRENT_TEAM)
team = team_get_current_team_id();
info->port = -1; // used as found flag
// spinlock
state = disable_interrupts();
GRAB_PORT_LIST_LOCK();
while (slot < sMaxPorts) {
GRAB_PORT_LOCK(sPorts[slot]);
if (sPorts[slot].id != -1 && sPorts[slot].capacity != 0 && sPorts[slot].owner == team) {
// found one!
fill_port_info(&sPorts[slot], info, size);
RELEASE_PORT_LOCK(sPorts[slot]);
slot++;
break;
}
RELEASE_PORT_LOCK(sPorts[slot]);
slot++;
}
RELEASE_PORT_LIST_LOCK();
restore_interrupts(state);
if (info->port == -1)
return B_BAD_PORT_ID;
*_cookie = slot;
return B_NO_ERROR;
}
ssize_t
port_buffer_size(port_id id)
{
return port_buffer_size_etc(id, 0, 0);
}
ssize_t
port_buffer_size_etc(port_id id, uint32 flags, bigtime_t timeout)
{
cpu_status state;
sem_id cachedSem;
status_t status;
port_msg *msg;
ssize_t size;
int slot;
if (!sPortsActive || id < 0)
return B_BAD_PORT_ID;
slot = id % sMaxPorts;
state = disable_interrupts();
GRAB_PORT_LOCK(sPorts[slot]);
if (sPorts[slot].id != id) {
RELEASE_PORT_LOCK(sPorts[slot]);
restore_interrupts(state);
TRACE(("get_buffer_size_etc: invalid port_id %ld\n", id));
return B_BAD_PORT_ID;
}
cachedSem = sPorts[slot].read_sem;
RELEASE_PORT_LOCK(sPorts[slot]);
restore_interrupts(state);
// block if no message, or, if B_TIMEOUT flag set, block with timeout
status = acquire_sem_etc(cachedSem, 1, flags, timeout);
if (status == B_BAD_SEM_ID) {
// somebody deleted the port
return B_BAD_PORT_ID;
}
if (status != B_OK)
return status;
state = disable_interrupts();
GRAB_PORT_LOCK(sPorts[slot]);
if (sPorts[slot].id != id) {
// the port is no longer there
RELEASE_PORT_LOCK(sPorts[slot]);
restore_interrupts(state);
return B_BAD_PORT_ID;
}
// determine tail & get the length of the message
msg = list_get_first_item(&sPorts[slot].msg_queue);
if (msg == NULL)
panic("port %ld: no messages found\n", sPorts[slot].id);
size = msg->size;
RELEASE_PORT_LOCK(sPorts[slot]);
restore_interrupts(state);
// restore read_sem, as we haven't read from the port
release_sem(cachedSem);
// return length of item at end of queue
return size;
}
ssize_t
port_count(port_id id)
{
cpu_status state;
int32 count;
int slot;
if (!sPortsActive || id < 0)
return B_BAD_PORT_ID;
slot = id % sMaxPorts;
state = disable_interrupts();
GRAB_PORT_LOCK(sPorts[slot]);
if (sPorts[slot].id != id) {
RELEASE_PORT_LOCK(sPorts[slot]);
restore_interrupts(state);
TRACE(("port_count: invalid port_id %ld\n", id));
return B_BAD_PORT_ID;
}
get_sem_count(sPorts[slot].read_sem, &count);
// do not return negative numbers
if (count < 0)
count = 0;
RELEASE_PORT_LOCK(sPorts[slot]);
restore_interrupts(state);
// return count of messages (sem_count)
return count;
}
ssize_t
read_port(port_id port, int32 *msgCode, void *msgBuffer, size_t bufferSize)
{
return read_port_etc(port, msgCode, msgBuffer, bufferSize, 0, 0);
}
ssize_t
read_port_etc(port_id id, int32 *_msgCode, void *msgBuffer, size_t bufferSize,
uint32 flags, bigtime_t timeout)
{
cpu_status state;
sem_id cachedSem;
status_t status;
bool userCopy = (flags & PORT_FLAG_USE_USER_MEMCPY) > 0;
port_msg *msg;
size_t size;
int slot;
if (!sPortsActive || id < 0)
return B_BAD_PORT_ID;
if (_msgCode == NULL
|| (msgBuffer == NULL && bufferSize > 0)
|| timeout < 0)
return B_BAD_VALUE;
flags = flags & (B_CAN_INTERRUPT | B_KILL_CAN_INTERRUPT
| B_RELATIVE_TIMEOUT | B_ABSOLUTE_TIMEOUT);
slot = id % sMaxPorts;
state = disable_interrupts();
GRAB_PORT_LOCK(sPorts[slot]);
if (sPorts[slot].id != id) {
RELEASE_PORT_LOCK(sPorts[slot]);
restore_interrupts(state);
TRACE(("read_port_etc: invalid port_id %ld\n", id));
return B_BAD_PORT_ID;
}
// store sem_id in local variable
cachedSem = sPorts[slot].read_sem;
// unlock port && enable ints/
RELEASE_PORT_LOCK(sPorts[slot]);
restore_interrupts(state);
status = acquire_sem_etc(cachedSem, 1, flags, timeout);
// get 1 entry from the queue, block if needed
if (status == B_BAD_SEM_ID) {
// somebody deleted the port
return B_BAD_PORT_ID;
}
if (status != B_OK)
return status;
state = disable_interrupts();
GRAB_PORT_LOCK(sPorts[slot]);
// first, let's check if the port is still alive
if (sPorts[slot].id == -1) {
// the port has been deleted in the meantime
RELEASE_PORT_LOCK(sPorts[slot]);
restore_interrupts(state);
return B_BAD_PORT_ID;
}
msg = list_get_first_item(&sPorts[slot].msg_queue);
if (msg == NULL)
panic("port %ld: no messages found", sPorts[slot].id);
list_remove_link(msg);
sPorts[slot].total_count++;
cachedSem = sPorts[slot].write_sem;
RELEASE_PORT_LOCK(sPorts[slot]);
restore_interrupts(state);
// check output buffer size
size = min(bufferSize, msg->size);
// copy message
*_msgCode = msg->code;
if (size > 0) {
if (userCopy) {
if ((status = cbuf_user_memcpy_from_chain(msgBuffer, msg->buffer_chain, 0, size) < B_OK)) {
// leave the port intact, for other threads that might not crash
put_port_msg(msg);
release_sem(cachedSem);
return status;
}
} else
cbuf_memcpy_from_chain(msgBuffer, msg->buffer_chain, 0, size);
}
put_port_msg(msg);
// make one spot in queue available again for write
release_sem(cachedSem);
// ToDo: we might think about setting B_NO_RESCHEDULE here
// from time to time (always?)
return size;
}
status_t
write_port(port_id id, int32 msgCode, const void *msgBuffer, size_t bufferSize)
{
iovec vec = { (void *)msgBuffer, bufferSize };
return writev_port_etc(id, msgCode, &vec, 1, bufferSize, 0, 0);
}
status_t
write_port_etc(port_id id, int32 msgCode, const void *msgBuffer,
size_t bufferSize, uint32 flags, bigtime_t timeout)
{
iovec vec = { (void *)msgBuffer, bufferSize };
return writev_port_etc(id, msgCode, &vec, 1, bufferSize, flags, timeout);
}
status_t
writev_port_etc(port_id id, int32 msgCode, const iovec *msgVecs,
size_t vecCount, size_t bufferSize, uint32 flags,
bigtime_t timeout)
{
cpu_status state;
sem_id cachedSem;
status_t status;
port_msg *msg;
bool userCopy = (flags & PORT_FLAG_USE_USER_MEMCPY) > 0;
int slot;
if (!sPortsActive || id < 0)
return B_BAD_PORT_ID;
// mask irrelevant flags (for acquire_sem() usage)
flags = flags & (B_CAN_INTERRUPT | B_KILL_CAN_INTERRUPT
| B_RELATIVE_TIMEOUT | B_ABSOLUTE_TIMEOUT);
slot = id % sMaxPorts;
if (bufferSize > PORT_MAX_MESSAGE_SIZE)
return B_BAD_VALUE;
state = disable_interrupts();
GRAB_PORT_LOCK(sPorts[slot]);
if (sPorts[slot].id != id) {
RELEASE_PORT_LOCK(sPorts[slot]);
restore_interrupts(state);
TRACE(("write_port_etc: invalid port_id %ld\n", id));
return B_BAD_PORT_ID;
}
if (sPorts[slot].capacity == 0) {
RELEASE_PORT_LOCK(sPorts[slot]);
restore_interrupts(state);
TRACE(("write_port_etc: port %ld closed\n", id));
return B_BAD_PORT_ID;
}
// store sem_id in local variable
cachedSem = sPorts[slot].write_sem;
RELEASE_PORT_LOCK(sPorts[slot]);
restore_interrupts(state);
status = acquire_sem_etc(cachedSem, 1, flags, timeout);
// get 1 entry from the queue, block if needed
if (status == B_BAD_SEM_ID) {
// somebody deleted the port
return B_BAD_PORT_ID;
}
if (status != B_OK)
return status;
msg = get_port_msg(msgCode, bufferSize);
if (msg == NULL)
return B_NO_MEMORY;
if (bufferSize > 0) {
uint32 i;
if (userCopy) {
// copy from user memory
for (i = 0; i < vecCount; i++) {
size_t bytes = msgVecs[i].iov_len;
if (bytes > bufferSize)
bytes = bufferSize;
if ((status = cbuf_user_memcpy_to_chain(msg->buffer_chain,
0, msgVecs[i].iov_base, bytes)) < B_OK)
return status;
bufferSize -= bytes;
if (bufferSize == 0)
break;
}
} else {
// copy from kernel memory
for (i = 0; i < vecCount; i++) {
size_t bytes = msgVecs[i].iov_len;
if (bytes > bufferSize)
bytes = bufferSize;
if ((status = cbuf_memcpy_to_chain(msg->buffer_chain,
0, msgVecs[i].iov_base, bytes)) < 0)
return status;
bufferSize -= bytes;
if (bufferSize == 0)
break;
}
}
}
// attach message to queue
state = disable_interrupts();
GRAB_PORT_LOCK(sPorts[slot]);
// first, let's check if the port is still alive
if (sPorts[slot].id == -1) {
// the port has been deleted in the meantime
RELEASE_PORT_LOCK(sPorts[slot]);
restore_interrupts(state);
put_port_msg(msg);
return B_BAD_PORT_ID;
}
list_add_item(&sPorts[slot].msg_queue, msg);
// store sem_id in local variable
cachedSem = sPorts[slot].read_sem;
RELEASE_PORT_LOCK(sPorts[slot]);
restore_interrupts(state);
// release sem, allowing read (might reschedule)
release_sem(cachedSem);
return B_NO_ERROR;
}
status_t
set_port_owner(port_id id, team_id team)
{
cpu_status state;
int slot;
// ToDo: Shouldn't we at least check, whether the team exists?
TRACE(("set_port_owner(id = %ld, team = %ld)\n", id, team));
if (!sPortsActive || id < 0)
return B_BAD_PORT_ID;
slot = id % sMaxPorts;
state = disable_interrupts();
GRAB_PORT_LOCK(sPorts[slot]);
if (sPorts[slot].id != id) {
RELEASE_PORT_LOCK(sPorts[slot]);
restore_interrupts(state);
TRACE(("set_port_owner: invalid port_id %ld\n", id));
return B_BAD_PORT_ID;
}
// transfer ownership to other team
sPorts[slot].owner = team;
// unlock port
RELEASE_PORT_LOCK(sPorts[slot]);
restore_interrupts(state);
return B_NO_ERROR;
}
// #pragma mark -
/*
* user level ports
*/
port_id
_user_create_port(int32 queueLength, const char *userName)
{
char name[B_OS_NAME_LENGTH];
if (userName == NULL)
return create_port(queueLength, NULL);
if (!IS_USER_ADDRESS(userName)
|| user_strlcpy(name, userName, B_OS_NAME_LENGTH) < B_OK)
return B_BAD_ADDRESS;
return create_port(queueLength, name);
}
status_t
_user_close_port(port_id id)
{
return close_port(id);
}
status_t
_user_delete_port(port_id id)
{
return delete_port(id);
}
port_id
_user_find_port(const char *userName)
{
char name[B_OS_NAME_LENGTH];
if (userName == NULL)
return B_BAD_VALUE;
if (!IS_USER_ADDRESS(userName)
|| user_strlcpy(name, userName, B_OS_NAME_LENGTH) < B_OK)
return B_BAD_ADDRESS;
return find_port(name);
}
status_t
_user_get_port_info(port_id id, struct port_info *userInfo)
{
struct port_info info;
status_t status;
if (userInfo == NULL)
return B_BAD_VALUE;
if (!IS_USER_ADDRESS(userInfo))
return B_BAD_ADDRESS;
status = get_port_info(id, &info);
// copy back to user space
if (status == B_OK && user_memcpy(userInfo, &info, sizeof(struct port_info)) < B_OK)
return B_BAD_ADDRESS;
return status;
}
status_t
_user_get_next_port_info(team_id team, int32 *userCookie, struct port_info *userInfo)
{
struct port_info info;
status_t status;
int32 cookie;
if (userCookie == NULL || userInfo == NULL)
return B_BAD_VALUE;
if (!IS_USER_ADDRESS(userCookie) || !IS_USER_ADDRESS(userInfo)
|| user_memcpy(&cookie, userCookie, sizeof(int32)) < B_OK)
return B_BAD_ADDRESS;
status = get_next_port_info(team, &cookie, &info);
// copy back to user space
if (user_memcpy(userCookie, &cookie, sizeof(int32)) < B_OK
|| (status == B_OK && user_memcpy(userInfo, &info, sizeof(struct port_info)) < B_OK))
return B_BAD_ADDRESS;
return status;
}
ssize_t
_user_port_buffer_size_etc(port_id port, uint32 flags, bigtime_t timeout)
{
return port_buffer_size_etc(port, flags | B_CAN_INTERRUPT, timeout);
}
ssize_t
_user_port_count(port_id port)
{
return port_count(port);
}
status_t
_user_set_port_owner(port_id port, team_id team)
{
return set_port_owner(port, team);
}
ssize_t
_user_read_port_etc(port_id port, int32 *userCode, void *userBuffer,
size_t bufferSize, uint32 flags, bigtime_t timeout)
{
int32 messageCode;
ssize_t status;
if (userCode == NULL || (userBuffer == NULL && bufferSize != 0))
return B_BAD_VALUE;
if (!IS_USER_ADDRESS(userCode) || (userBuffer != NULL && !IS_USER_ADDRESS(userBuffer)))
return B_BAD_ADDRESS;
status = read_port_etc(port, &messageCode, userBuffer, bufferSize,
flags | PORT_FLAG_USE_USER_MEMCPY | B_CAN_INTERRUPT, timeout);
if (status >= 0 && user_memcpy(userCode, &messageCode, sizeof(int32)) < B_OK)
return B_BAD_ADDRESS;
return status;
}
status_t
_user_write_port_etc(port_id port, int32 messageCode, const void *userBuffer,
size_t bufferSize, uint32 flags, bigtime_t timeout)
{
iovec vec = { (void *)userBuffer, bufferSize };
if (userBuffer == NULL && bufferSize != 0)
return B_BAD_VALUE;
if (userBuffer != NULL && !IS_USER_ADDRESS(userBuffer))
return B_BAD_ADDRESS;
return writev_port_etc(port, messageCode, &vec, 1, bufferSize,
flags | PORT_FLAG_USE_USER_MEMCPY | B_CAN_INTERRUPT, timeout);
}
status_t
_user_writev_port_etc(port_id port, int32 messageCode, const iovec *userVecs,
size_t vecCount, size_t bufferSize, uint32 flags, bigtime_t timeout)
{
iovec *vecs = NULL;
status_t status;
if (userVecs == NULL && bufferSize != 0)
return B_BAD_VALUE;
if (userVecs != NULL && !IS_USER_ADDRESS(userVecs))
return B_BAD_ADDRESS;
if (userVecs && vecCount != 0) {
vecs = malloc(sizeof(iovec) * vecCount);
if (vecs == NULL)
return B_NO_MEMORY;
if (user_memcpy(vecs, userVecs, sizeof(iovec) * vecCount) < B_OK) {
free(vecs);
return B_BAD_ADDRESS;
}
}
status = writev_port_etc(port, messageCode, vecs, vecCount, bufferSize,
flags | PORT_FLAG_USE_USER_MEMCPY | B_CAN_INTERRUPT, timeout);
free(vecs);
return status;
}