haiku/src/kits/shared/SHA256.cpp
Ingo Weinhold 7a0dca5c54 Moved SHA256 code to libshared.a.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@37235 a95241bf-73f2-0310-859d-f6bbb57e9c96
2010-06-23 17:47:07 +00:00

191 lines
4.4 KiB
C++

/*
* Copyright 2008, Ingo Weinhold, ingo_weinhold@gmx.de.
* Distributed under the terms of the MIT License.
*/
#include "SHA256.h"
#include <stdio.h>
#include <string.h>
#include <ByteOrder.h>
static const uint32 kChunkSize = 64; // 64 bytes == 512 bits
static const uint32 kRounds[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
static const uint32 kHash[8] = {
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
};
static inline uint32
rotate_right(uint32 value, int bits)
{
return (value >> bits) | (value << (32 - bits));
}
// #pragma mark -
SHA256::SHA256()
{
Init();
}
SHA256::~SHA256()
{
}
void
SHA256::Init()
{
memcpy(fHash, kHash, sizeof(kHash));
fBytesInBuffer = 0;
fMessageSize = 0;
fDigested = false;
}
void
SHA256::Update(const void* _buffer, size_t size)
{
const uint8* buffer = (const uint8*)_buffer;
fMessageSize += size;
while (fBytesInBuffer + size >= kChunkSize) {
size_t toCopy = kChunkSize - fBytesInBuffer;
memcpy((uint8*)fBuffer + fBytesInBuffer, buffer, toCopy);
buffer += toCopy;
size -= toCopy;
_ProcessChunk();
fBytesInBuffer = 0;
}
if (size > 0) {
memcpy((uint8*)fBuffer + fBytesInBuffer, buffer, size);
fBytesInBuffer += size;
}
}
const uint8*
SHA256::Digest()
{
if (!fDigested) {
// We need to append a 1 bit, append padding with 0 bits, and append
// the message size in bits (64 bit big-endian int), so that the whole
// is chunk-aligned. So we either have to process one last chunk or two
// chunks.
// append the 1 bit
((uint8*)fBuffer)[fBytesInBuffer] = 0x80;
fBytesInBuffer++;
// if the message size doesn't fit anymore, we pad the chunk and
// process it
if (fBytesInBuffer > kChunkSize - 8) {
memset((uint8*)fBuffer + fBytesInBuffer, 0,
kChunkSize - fBytesInBuffer);
_ProcessChunk();
fBytesInBuffer = 0;
}
// pad the buffer
if (fBytesInBuffer < kChunkSize - 8) {
memset((uint8*)fBuffer + fBytesInBuffer, 0,
kChunkSize - 8 - fBytesInBuffer);
}
// write the (big-endian) message size in bits
*(uint64*)((uint8*)fBuffer + kChunkSize - 8)
= B_HOST_TO_BENDIAN_INT64((uint64)fMessageSize * 8);
_ProcessChunk();
// set digest
for (int i = 0; i < 8; i++)
fDigest[i] = B_HOST_TO_BENDIAN_INT32(fHash[i]);
fDigested = true;
}
return (uint8*)fDigest;
}
void
SHA256::_ProcessChunk()
{
// convert endianess -- the data are supposed to be a stream of
// 32 bit big-endian integers
#if B_HOST_IS_LENDIAN
for (int i = 0; i < (int)kChunkSize / 4; i++)
fBuffer[i] = B_SWAP_INT32(fBuffer[i]);
#endif
// pre-process buffer (extend to 64 elements)
for (int i = 16; i < 64; i++) {
uint32 v0 = fBuffer[i - 15];
uint32 v1 = fBuffer[i - 2];
uint32 s0 = rotate_right(v0, 7) ^ rotate_right(v0, 18) ^ (v0 >> 3);
uint32 s1 = rotate_right(v1, 17) ^ rotate_right(v1, 19) ^ (v1 >> 10);
fBuffer[i] = fBuffer[i - 16] + s0 + fBuffer[i - 7] + s1;
}
uint32 a = fHash[0];
uint32 b = fHash[1];
uint32 c = fHash[2];
uint32 d = fHash[3];
uint32 e = fHash[4];
uint32 f = fHash[5];
uint32 g = fHash[6];
uint32 h = fHash[7];
// process the buffer
for (int i = 0; i < 64; i++) {
uint32 s0 = rotate_right(a, 2) ^ rotate_right(a, 13)
^ rotate_right(a, 22);
uint32 maj = (a & b) ^ (a & c) ^ (b & c);
uint32 t2 = s0 + maj;
uint32 s1 = rotate_right(e, 6) ^ rotate_right(e, 11)
^ rotate_right(e, 25);
uint32 ch = (e & f) ^ (~e & g);
uint32 t1 = h + s1 + ch + kRounds[i] + fBuffer[i];
h = g;
g = f;
f = e;
e = d + t1;
d = c;
c = b;
b = a;
a = t1 + t2;
}
fHash[0] += a;
fHash[1] += b;
fHash[2] += c;
fHash[3] += d;
fHash[4] += e;
fHash[5] += f;
fHash[6] += g;
fHash[7] += h;
}