d2de8b3867
git-svn-id: file:///srv/svn/repos/haiku/trunk/current@105 a95241bf-73f2-0310-859d-f6bbb57e9c96
895 lines
21 KiB
C
895 lines
21 KiB
C
/* Semaphore code. Lots of "todo" items*/
|
|
|
|
/*
|
|
** Copyright 2001, Travis Geiselbrecht. All rights reserved.
|
|
** Distributed under the terms of the NewOS License.
|
|
*/
|
|
#include <kernel.h>
|
|
#include <OS.h>
|
|
#include <sem.h>
|
|
#include <smp.h>
|
|
#include <int.h>
|
|
#include <arch/int.h>
|
|
#include <timer.h>
|
|
#include <debug.h>
|
|
#include <memheap.h>
|
|
#include <thread.h>
|
|
#include <Errors.h>
|
|
#include <kerrors.h>
|
|
|
|
#include <stage2.h>
|
|
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
|
|
struct sem_entry {
|
|
sem_id id;
|
|
int count;
|
|
struct thread_queue q;
|
|
char *name;
|
|
int lock;
|
|
proc_id owner; // if set to -1, means owned by a port
|
|
};
|
|
|
|
#define MAX_SEMS 4096
|
|
|
|
static struct sem_entry *sems = NULL;
|
|
static region_id sem_region = 0;
|
|
static bool sems_active = false;
|
|
|
|
static sem_id next_sem = 0;
|
|
|
|
static int sem_spinlock = 0;
|
|
#define GRAB_SEM_LIST_LOCK() acquire_spinlock(&sem_spinlock)
|
|
#define RELEASE_SEM_LIST_LOCK() release_spinlock(&sem_spinlock)
|
|
#define GRAB_SEM_LOCK(s) acquire_spinlock(&(s).lock)
|
|
#define RELEASE_SEM_LOCK(s) release_spinlock(&(s).lock)
|
|
|
|
// used in functions that may put a bunch of threads in the run q at once
|
|
#define READY_THREAD_CACHE_SIZE 16
|
|
|
|
static int remove_thread_from_sem(struct thread *t, struct sem_entry *sem, struct thread_queue *queue, int sem_errcode);
|
|
|
|
struct sem_timeout_args {
|
|
thread_id blocked_thread;
|
|
sem_id blocked_sem_id;
|
|
int sem_count;
|
|
};
|
|
|
|
static void dump_sem_list(int argc, char **argv)
|
|
{
|
|
int i;
|
|
|
|
for(i=0; i<MAX_SEMS; i++) {
|
|
if(sems[i].id >= 0) {
|
|
dprintf("%p\tid: 0x%x\t\tname: '%s'\n", &sems[i], sems[i].id, sems[i].name);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void _dump_sem_info(struct sem_entry *sem)
|
|
{
|
|
dprintf("SEM: %p\n", sem);
|
|
dprintf("name: '%s'\n", sem->name);
|
|
dprintf("owner: 0x%x\n", sem->owner);
|
|
dprintf("count: 0x%x\n", sem->count);
|
|
dprintf("queue: head %p tail %p\n", sem->q.head, sem->q.tail);
|
|
}
|
|
|
|
static void dump_sem_info(int argc, char **argv)
|
|
{
|
|
int i;
|
|
|
|
if(argc < 2) {
|
|
dprintf("sem: not enough arguments\n");
|
|
return;
|
|
}
|
|
|
|
// if the argument looks like a hex number, treat it as such
|
|
if(strlen(argv[1]) > 2 && argv[1][0] == '0' && argv[1][1] == 'x') {
|
|
unsigned long num = atoul(argv[1]);
|
|
|
|
if(num > KERNEL_BASE && num <= (KERNEL_BASE + (KERNEL_SIZE - 1))) {
|
|
// XXX semi-hack
|
|
_dump_sem_info((struct sem_entry *)num);
|
|
return;
|
|
} else {
|
|
unsigned slot = num % MAX_SEMS;
|
|
if(sems[slot].id != (int)num) {
|
|
dprintf("sem 0x%lx doesn't exist!\n", num);
|
|
return;
|
|
}
|
|
_dump_sem_info(&sems[slot]);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// walk through the sem list, trying to match name
|
|
for(i=0; i<MAX_SEMS; i++) {
|
|
if (sems[i].name != NULL)
|
|
if(strcmp(argv[1], sems[i].name) == 0) {
|
|
_dump_sem_info(&sems[i]);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
int sem_init(kernel_args *ka)
|
|
{
|
|
int i;
|
|
|
|
dprintf("sem_init: entry\n");
|
|
|
|
// create and initialize semaphore table
|
|
sem_region = vm_create_anonymous_region(vm_get_kernel_aspace_id(), "sem_table", (void **)&sems,
|
|
REGION_ADDR_ANY_ADDRESS, sizeof(struct sem_entry) * MAX_SEMS, REGION_WIRING_WIRED, LOCK_RW|LOCK_KERNEL);
|
|
if(sem_region < 0) {
|
|
panic("unable to allocate semaphore table!\n");
|
|
}
|
|
|
|
memset(sems, 0, sizeof(struct sem_entry) * MAX_SEMS);
|
|
for(i=0; i<MAX_SEMS; i++)
|
|
sems[i].id = -1;
|
|
|
|
// add debugger commands
|
|
dbg_add_command(&dump_sem_list, "sems", "Dump a list of all active semaphores");
|
|
dbg_add_command(&dump_sem_info, "sem", "Dump info about a particular semaphore");
|
|
|
|
dprintf("sem_init: exit\n");
|
|
|
|
sems_active = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
sem_id create_sem_etc(int count, const char *name, proc_id owner)
|
|
{
|
|
int i;
|
|
int state;
|
|
sem_id retval = B_NO_MORE_SEMS;
|
|
char *temp_name;
|
|
|
|
if(sems_active == false)
|
|
return B_NO_MORE_SEMS;
|
|
|
|
if(name) {
|
|
int name_len = strlen(name);
|
|
|
|
temp_name = (char *)kmalloc(min(name_len + 1, SYS_MAX_OS_NAME_LEN));
|
|
if(temp_name == NULL)
|
|
return ENOMEM;
|
|
strncpy(temp_name, name, SYS_MAX_OS_NAME_LEN-1);
|
|
temp_name[SYS_MAX_OS_NAME_LEN-1] = 0;
|
|
} else {
|
|
temp_name = (char *)kmalloc(sizeof("default_sem_name")+1);
|
|
if(temp_name == NULL)
|
|
return ENOMEM;
|
|
strcpy(temp_name, "default_sem_name");
|
|
}
|
|
|
|
state = int_disable_interrupts();
|
|
GRAB_SEM_LIST_LOCK();
|
|
|
|
// find the first empty spot
|
|
for(i=0; i<MAX_SEMS; i++) {
|
|
if(sems[i].id == -1) {
|
|
// make the sem id be a multiple of the slot it's in
|
|
if(i >= next_sem % MAX_SEMS) {
|
|
next_sem += i - next_sem % MAX_SEMS;
|
|
} else {
|
|
next_sem += MAX_SEMS - (next_sem % MAX_SEMS - i);
|
|
}
|
|
sems[i].id = next_sem++;
|
|
|
|
sems[i].lock = 0;
|
|
GRAB_SEM_LOCK(sems[i]);
|
|
RELEASE_SEM_LIST_LOCK();
|
|
|
|
sems[i].q.tail = NULL;
|
|
sems[i].q.head = NULL;
|
|
sems[i].count = count;
|
|
sems[i].name = temp_name;
|
|
sems[i].owner = owner;
|
|
retval = sems[i].id;
|
|
|
|
RELEASE_SEM_LOCK(sems[i]);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
//err:
|
|
RELEASE_SEM_LIST_LOCK();
|
|
kfree(temp_name);
|
|
|
|
out:
|
|
int_restore_interrupts(state);
|
|
|
|
return retval;
|
|
}
|
|
|
|
sem_id create_sem(int count, const char *name)
|
|
{
|
|
return create_sem_etc(count, name, proc_get_kernel_proc_id());
|
|
}
|
|
|
|
int delete_sem(sem_id id)
|
|
{
|
|
return delete_sem_etc(id, 0);
|
|
}
|
|
|
|
int delete_sem_etc(sem_id id, int return_code)
|
|
{
|
|
int slot;
|
|
int state;
|
|
int err = B_NO_ERROR;
|
|
struct thread *t;
|
|
int released_threads;
|
|
char *old_name;
|
|
struct thread_queue release_queue;
|
|
|
|
if(sems_active == false)
|
|
return B_NO_MORE_SEMS;
|
|
if(id < 0)
|
|
return B_BAD_SEM_ID;
|
|
|
|
slot = id % MAX_SEMS;
|
|
|
|
state = int_disable_interrupts();
|
|
GRAB_SEM_LOCK(sems[slot]);
|
|
|
|
if(sems[slot].id != id) {
|
|
RELEASE_SEM_LOCK(sems[slot]);
|
|
int_restore_interrupts(state);
|
|
dprintf("delete_sem: invalid sem_id %d\n", id);
|
|
return B_BAD_SEM_ID;
|
|
}
|
|
|
|
released_threads = 0;
|
|
release_queue.head = release_queue.tail = NULL;
|
|
|
|
// free any threads waiting for this semaphore
|
|
while((t = thread_dequeue(&sems[slot].q)) != NULL) {
|
|
t->state = THREAD_STATE_READY;
|
|
t->sem_errcode = B_BAD_SEM_ID;
|
|
t->sem_deleted_retcode = return_code;
|
|
t->sem_count = 0;
|
|
thread_enqueue(t, &release_queue);
|
|
released_threads++;
|
|
}
|
|
|
|
sems[slot].id = -1;
|
|
old_name = sems[slot].name;
|
|
sems[slot].name = NULL;
|
|
|
|
RELEASE_SEM_LOCK(sems[slot]);
|
|
|
|
if(released_threads > 0) {
|
|
GRAB_THREAD_LOCK();
|
|
while((t = thread_dequeue(&release_queue)) != NULL) {
|
|
thread_enqueue_run_q(t);
|
|
}
|
|
thread_resched();
|
|
RELEASE_THREAD_LOCK();
|
|
}
|
|
|
|
int_restore_interrupts(state);
|
|
|
|
kfree(old_name);
|
|
|
|
return err;
|
|
}
|
|
|
|
// Called from a timer handler. Wakes up a semaphore
|
|
static int sem_timeout(void *data)
|
|
{
|
|
struct sem_timeout_args *args = (struct sem_timeout_args *)data;
|
|
struct thread *t;
|
|
int slot;
|
|
int state;
|
|
struct thread_queue wakeup_queue;
|
|
|
|
t = thread_get_thread_struct(args->blocked_thread);
|
|
if(t == NULL)
|
|
return INT_NO_RESCHEDULE;
|
|
slot = args->blocked_sem_id % MAX_SEMS;
|
|
|
|
state = int_disable_interrupts();
|
|
GRAB_SEM_LOCK(sems[slot]);
|
|
|
|
// dprintf("sem_timeout: called on 0x%x sem %d, tid %d\n", to, to->sem_id, to->thread_id);
|
|
|
|
if(sems[slot].id != args->blocked_sem_id) {
|
|
// this thread was not waiting on this semaphore
|
|
panic("sem_timeout: thid %d was trying to wait on sem %d which doesn't exist!\n",
|
|
args->blocked_thread, args->blocked_sem_id);
|
|
}
|
|
|
|
wakeup_queue.head = wakeup_queue.tail = NULL;
|
|
remove_thread_from_sem(t, &sems[slot], &wakeup_queue, B_TIMED_OUT);
|
|
|
|
RELEASE_SEM_LOCK(sems[slot]);
|
|
|
|
GRAB_THREAD_LOCK();
|
|
// put the threads in the run q here to make sure we dont deadlock in sem_interrupt_thread
|
|
while((t = thread_dequeue(&wakeup_queue)) != NULL) {
|
|
thread_enqueue_run_q(t);
|
|
}
|
|
RELEASE_THREAD_LOCK();
|
|
|
|
int_restore_interrupts(state);
|
|
|
|
return INT_RESCHEDULE;
|
|
}
|
|
|
|
|
|
int acquire_sem(sem_id id)
|
|
{
|
|
return acquire_sem_etc(id, 1, 0, 0);
|
|
}
|
|
|
|
int acquire_sem_etc(sem_id id, int count, int flags, bigtime_t timeout)
|
|
{
|
|
int slot = id % MAX_SEMS;
|
|
int state;
|
|
int err = 0;
|
|
|
|
if(sems_active == false)
|
|
return B_NO_MORE_SEMS;
|
|
|
|
if(id < 0) {
|
|
dprintf("acquire_sem_etc: invalid sem handle %d\n", id);
|
|
return B_BAD_SEM_ID;
|
|
}
|
|
|
|
if(count <= 0)
|
|
return ERR_INVALID_ARGS;
|
|
|
|
state = int_disable_interrupts();
|
|
GRAB_SEM_LOCK(sems[slot]);
|
|
|
|
if(sems[slot].id != id) {
|
|
dprintf("acquire_sem_etc: bad sem_id %d\n", id);
|
|
err = B_BAD_SEM_ID;
|
|
goto err;
|
|
}
|
|
|
|
if(sems[slot].count - count < 0 && (flags & B_TIMEOUT) != 0 && timeout <= 0) {
|
|
// immediate timeout
|
|
err = ERR_SEM_TIMED_OUT;
|
|
goto err;
|
|
}
|
|
|
|
if((sems[slot].count -= count) < 0) {
|
|
// we need to block
|
|
struct thread *t = thread_get_current_thread();
|
|
struct timer_event timer; // stick it on the stack, since we may be blocking here
|
|
struct sem_timeout_args args;
|
|
|
|
// do a quick check to see if the thread has any pending kill signals
|
|
// this should catch most of the cases where the thread had a signal
|
|
if((flags & B_CAN_INTERRUPT) && (t->pending_signals & SIG_KILL)) {
|
|
sems[slot].count += count;
|
|
err = EINTR;
|
|
goto err;
|
|
}
|
|
|
|
t->next_state = THREAD_STATE_WAITING;
|
|
t->sem_flags = flags;
|
|
t->sem_blocking = id;
|
|
t->sem_acquire_count = count;
|
|
t->sem_count = min(-sems[slot].count, count); // store the count we need to restore upon release
|
|
t->sem_deleted_retcode = 0;
|
|
t->sem_errcode = B_NO_ERROR;
|
|
thread_enqueue(t, &sems[slot].q);
|
|
|
|
if((flags & (B_TIMEOUT | B_ABSOLUTE_TIMEOUT)) != 0) {
|
|
int the_timeout = timeout;
|
|
// dprintf("sem_acquire_etc: setting timeout sem for %d %d usecs, semid %d, tid %d\n",
|
|
// timeout, sem_id, t->id);
|
|
// set up an event to go off with the thread struct as the data
|
|
if (flags & B_ABSOLUTE_TIMEOUT)
|
|
the_timeout -= system_time();
|
|
|
|
args.blocked_sem_id = id;
|
|
args.blocked_thread = t->id;
|
|
args.sem_count = count;
|
|
|
|
timer_setup_timer(&sem_timeout, &args, &timer);
|
|
timer_set_event(the_timeout, TIMER_MODE_ONESHOT, &timer);
|
|
}
|
|
|
|
RELEASE_SEM_LOCK(sems[slot]);
|
|
GRAB_THREAD_LOCK();
|
|
// check again to see if a kill signal is pending.
|
|
// it may have been delivered while setting up the sem, though it's pretty unlikely
|
|
if((flags & B_CAN_INTERRUPT) && (t->pending_signals & SIG_KILL)) {
|
|
struct thread_queue wakeup_queue;
|
|
// ok, so a tiny race happened where a signal was delivered to this thread while
|
|
// it was setting up the sem. We can only be sure a signal wasn't delivered
|
|
// here, since the threadlock is held. The previous check would have found most
|
|
// instances, but there was a race, so we have to handle it. It'll be more messy...
|
|
wakeup_queue.head = wakeup_queue.tail = NULL;
|
|
GRAB_SEM_LOCK(sems[slot]);
|
|
if(sems[slot].id == id) {
|
|
remove_thread_from_sem(t, &sems[slot], &wakeup_queue, EINTR);
|
|
}
|
|
RELEASE_SEM_LOCK(sems[slot]);
|
|
while((t = thread_dequeue(&wakeup_queue)) != NULL) {
|
|
thread_enqueue_run_q(t);
|
|
}
|
|
// fall through and reschedule since another thread with a higher priority may have been woken up
|
|
}
|
|
thread_resched();
|
|
RELEASE_THREAD_LOCK();
|
|
|
|
if((flags & B_TIMEOUT) != 0) {
|
|
if(t->sem_errcode != ERR_SEM_TIMED_OUT) {
|
|
// cancel the timer event, the sem may have been deleted or interrupted
|
|
// with the timer still active
|
|
timer_cancel_event(&timer);
|
|
}
|
|
}
|
|
|
|
int_restore_interrupts(state);
|
|
|
|
return t->sem_errcode;
|
|
}
|
|
|
|
err:
|
|
RELEASE_SEM_LOCK(sems[slot]);
|
|
int_restore_interrupts(state);
|
|
|
|
return err;
|
|
}
|
|
|
|
int release_sem(sem_id id)
|
|
{
|
|
return release_sem_etc(id, 1, 0);
|
|
}
|
|
|
|
|
|
int release_sem_etc(sem_id id, int count, int flags)
|
|
{
|
|
int slot = id % MAX_SEMS;
|
|
int state;
|
|
int released_threads = 0;
|
|
int err = 0;
|
|
struct thread_queue release_queue;
|
|
|
|
if(sems_active == false)
|
|
return B_NO_MORE_SEMS;
|
|
|
|
if(id < 0)
|
|
return B_BAD_SEM_ID;
|
|
|
|
if(count <= 0)
|
|
return ERR_INVALID_ARGS;
|
|
|
|
state = int_disable_interrupts();
|
|
GRAB_SEM_LOCK(sems[slot]);
|
|
|
|
if(sems[slot].id != id) {
|
|
dprintf("sem_release_etc: invalid sem_id %d\n", id);
|
|
err = B_BAD_SEM_ID;
|
|
goto err;
|
|
}
|
|
|
|
// clear out a queue we will use to hold all of the threads that we will have to
|
|
// put back into the run list. This is done so the thread lock wont be held
|
|
// while this sems lock is held since the two locks are grabbed in the other
|
|
// order in sem_interrupt_thread.
|
|
release_queue.head = release_queue.tail = NULL;
|
|
|
|
while(count > 0) {
|
|
int delta = count;
|
|
if(sems[slot].count < 0) {
|
|
struct thread *t = thread_lookat_queue(&sems[slot].q);
|
|
|
|
delta = min(count, t->sem_count);
|
|
t->sem_count -= delta;
|
|
if(t->sem_count <= 0) {
|
|
// release this thread
|
|
t = thread_dequeue(&sems[slot].q);
|
|
thread_enqueue(t, &release_queue);
|
|
t->state = THREAD_STATE_READY;
|
|
released_threads++;
|
|
t->sem_count = 0;
|
|
t->sem_deleted_retcode = 0;
|
|
}
|
|
}
|
|
|
|
sems[slot].count += delta;
|
|
count -= delta;
|
|
}
|
|
RELEASE_SEM_LOCK(sems[slot]);
|
|
|
|
// pull off any items in the release queue and put them in the run queue
|
|
if(released_threads > 0) {
|
|
struct thread *t;
|
|
GRAB_THREAD_LOCK();
|
|
while((t = thread_dequeue(&release_queue)) != NULL) {
|
|
thread_enqueue_run_q(t);
|
|
}
|
|
if((flags & B_DO_NOT_RESCHEDULE) == 0) {
|
|
thread_resched();
|
|
}
|
|
RELEASE_THREAD_LOCK();
|
|
}
|
|
goto outnolock;
|
|
|
|
err:
|
|
RELEASE_SEM_LOCK(sems[slot]);
|
|
outnolock:
|
|
int_restore_interrupts(state);
|
|
|
|
return err;
|
|
}
|
|
|
|
int get_sem_count(sem_id id, int32* thread_count)
|
|
{
|
|
int slot;
|
|
int state;
|
|
// int count;
|
|
|
|
if(sems_active == false)
|
|
return B_NO_MORE_SEMS;
|
|
if(id < 0)
|
|
return B_BAD_SEM_ID;
|
|
if (thread_count == NULL)
|
|
return ERR_INVALID_ARGS;
|
|
|
|
slot = id % MAX_SEMS;
|
|
|
|
state = int_disable_interrupts();
|
|
GRAB_SEM_LOCK(sems[slot]);
|
|
|
|
if(sems[slot].id != id) {
|
|
RELEASE_SEM_LOCK(sems[slot]);
|
|
int_restore_interrupts(state);
|
|
dprintf("sem_get_count: invalid sem_id %d\n", id);
|
|
return B_BAD_SEM_ID;
|
|
}
|
|
|
|
*thread_count = sems[slot].count;
|
|
|
|
RELEASE_SEM_LOCK(sems[slot]);
|
|
int_restore_interrupts(state);
|
|
|
|
return B_NO_ERROR;
|
|
}
|
|
|
|
int _get_sem_info(sem_id id, struct sem_info *info, size_t sz)
|
|
{
|
|
int state;
|
|
int slot;
|
|
|
|
if(sems_active == false)
|
|
return B_NO_MORE_SEMS;
|
|
if(id < 0)
|
|
return B_BAD_SEM_ID;
|
|
if (info == NULL)
|
|
return ERR_INVALID_ARGS;
|
|
|
|
slot = id % MAX_SEMS;
|
|
|
|
state = int_disable_interrupts();
|
|
GRAB_SEM_LOCK(sems[slot]);
|
|
|
|
if(sems[slot].id != id) {
|
|
RELEASE_SEM_LOCK(sems[slot]);
|
|
int_restore_interrupts(state);
|
|
dprintf("get_sem_info: invalid sem_id %d\n", id);
|
|
return B_BAD_SEM_ID;
|
|
}
|
|
|
|
info->sem = sems[slot].id;
|
|
info->proc = sems[slot].owner;
|
|
strncpy(info->name, sems[slot].name, SYS_MAX_OS_NAME_LEN-1);
|
|
info->count = sems[slot].count;
|
|
info->latest_holder = sems[slot].q.head->id; // XXX not sure if this is correct
|
|
|
|
RELEASE_SEM_LOCK(sems[slot]);
|
|
int_restore_interrupts(state);
|
|
|
|
return B_NO_ERROR;
|
|
}
|
|
|
|
int _get_next_sem_info(proc_id proc, uint32 *cookie, struct sem_info *info, size_t sz)
|
|
{
|
|
int state;
|
|
int slot;
|
|
|
|
if(sems_active == false)
|
|
return B_NO_MORE_SEMS;
|
|
|
|
if (cookie == NULL)
|
|
return ERR_INVALID_ARGS;
|
|
if (proc < 0)
|
|
return ERR_INVALID_ARGS; // prevents sems[].owner == -1 >= means owned by a port
|
|
|
|
if (*cookie == NULL) {
|
|
// return first found
|
|
slot = 0;
|
|
} else {
|
|
// start at index cookie, but check cookie against MAX_PORTS
|
|
slot = *cookie;
|
|
if (slot >= MAX_SEMS)
|
|
return B_BAD_SEM_ID;
|
|
}
|
|
// spinlock
|
|
state = int_disable_interrupts();
|
|
GRAB_SEM_LIST_LOCK();
|
|
|
|
while (slot < MAX_SEMS) {
|
|
GRAB_SEM_LOCK(sems[slot]);
|
|
if (sems[slot].id != -1)
|
|
if (sems[slot].owner == proc) {
|
|
// found one!
|
|
info->sem = sems[slot].id;
|
|
info->proc = sems[slot].owner;
|
|
strncpy(info->name, sems[slot].name, SYS_MAX_OS_NAME_LEN-1);
|
|
info->count = sems[slot].count;
|
|
info->latest_holder = sems[slot].q.head->id; // XXX not sure if this is the latest holder, or the next holder...
|
|
|
|
RELEASE_SEM_LOCK(sems[slot]);
|
|
slot++;
|
|
break;
|
|
}
|
|
RELEASE_SEM_LOCK(sems[slot]);
|
|
slot++;
|
|
}
|
|
RELEASE_SEM_LIST_LOCK();
|
|
int_restore_interrupts(state);
|
|
|
|
if (slot == MAX_SEMS)
|
|
return ERR_SEM_NOT_FOUND;
|
|
*cookie = slot;
|
|
return B_NO_ERROR;
|
|
}
|
|
|
|
int set_sem_owner(sem_id id, proc_id proc)
|
|
{
|
|
int state;
|
|
int slot;
|
|
|
|
if(sems_active == false)
|
|
return B_NO_MORE_SEMS;
|
|
if(id < 0)
|
|
return B_BAD_SEM_ID;
|
|
if (proc < NULL)
|
|
return ERR_INVALID_ARGS;
|
|
|
|
// XXX: todo check if proc exists
|
|
// if (proc_get_proc_struct(proc) == NULL)
|
|
// return B_BAD_SEM_ID; // proc_id doesn't exist right now
|
|
|
|
slot = id % MAX_SEMS;
|
|
|
|
state = int_disable_interrupts();
|
|
GRAB_SEM_LOCK(sems[slot]);
|
|
|
|
if(sems[slot].id != id) {
|
|
RELEASE_SEM_LOCK(sems[slot]);
|
|
int_restore_interrupts(state);
|
|
dprintf("set_sem_owner: invalid sem_id %d\n", id);
|
|
return B_BAD_SEM_ID;
|
|
}
|
|
|
|
sems[slot].owner = proc;
|
|
|
|
RELEASE_SEM_LOCK(sems[slot]);
|
|
int_restore_interrupts(state);
|
|
|
|
return B_NO_ERROR;
|
|
}
|
|
|
|
// Wake up a thread that's blocked on a semaphore
|
|
// this function must be entered with interrupts disabled and THREADLOCK held
|
|
int sem_interrupt_thread(struct thread *t)
|
|
{
|
|
// struct thread *t1;
|
|
int slot;
|
|
// int state;
|
|
struct thread_queue wakeup_queue;
|
|
|
|
// dprintf("sem_interrupt_thread: called on thread %p (%d), blocked on sem 0x%x\n", t, t->id, t->sem_blocking);
|
|
|
|
if(t->state != THREAD_STATE_WAITING)
|
|
return ERR_INVALID_ARGS;
|
|
if(t->sem_blocking < 0)
|
|
return ERR_INVALID_ARGS;
|
|
if((t->sem_flags & B_CAN_INTERRUPT) == 0)
|
|
return ERR_SEM_NOT_INTERRUPTABLE;
|
|
|
|
slot = t->sem_blocking % MAX_SEMS;
|
|
|
|
GRAB_SEM_LOCK(sems[slot]);
|
|
|
|
if(sems[slot].id != t->sem_blocking) {
|
|
panic("sem_interrupt_thread: thread 0x%x sez it's blocking on sem 0x%x, but that sem doesn't exist!\n", t->id, t->sem_blocking);
|
|
}
|
|
|
|
wakeup_queue.head = wakeup_queue.tail = NULL;
|
|
if(remove_thread_from_sem(t, &sems[slot], &wakeup_queue, EINTR) == ERR_NOT_FOUND)
|
|
panic("sem_interrupt_thread: thread 0x%x not found in sem 0x%x's wait queue\n", t->id, t->sem_blocking);
|
|
|
|
RELEASE_SEM_LOCK(sems[slot]);
|
|
|
|
while((t = thread_dequeue(&wakeup_queue)) != NULL) {
|
|
thread_enqueue_run_q(t);
|
|
}
|
|
|
|
return B_NO_ERROR;
|
|
}
|
|
|
|
// forcibly removes a thread from a semaphores wait q. May have to wake up other threads in the
|
|
// process. All threads that need to be woken up are added to the passed in thread_queue.
|
|
// must be called with sem lock held
|
|
static int remove_thread_from_sem(struct thread *t, struct sem_entry *sem, struct thread_queue *queue, int sem_errcode)
|
|
{
|
|
struct thread *t1;
|
|
|
|
// remove the thread from the queue and place it in the supplied queue
|
|
t1 = thread_dequeue_id(&sem->q, t->id);
|
|
if(t != t1)
|
|
return ERR_NOT_FOUND;
|
|
sem->count += t->sem_acquire_count;
|
|
t->state = THREAD_STATE_READY;
|
|
t->sem_errcode = sem_errcode;
|
|
thread_enqueue(t, queue);
|
|
|
|
// now see if more threads need to be woken up
|
|
while(sem->count > 0 && (t1 = thread_lookat_queue(&sem->q))) {
|
|
int delta = min(t->sem_count, sem->count);
|
|
|
|
t->sem_count -= delta;
|
|
if(t->sem_count <= 0) {
|
|
t = thread_dequeue(&sem->q);
|
|
t->state = THREAD_STATE_READY;
|
|
thread_enqueue(t, queue);
|
|
}
|
|
sem->count -= delta;
|
|
}
|
|
return B_NO_ERROR;
|
|
}
|
|
|
|
/* this function cycles through the sem table, deleting all the sems that are owned by
|
|
the passed proc_id */
|
|
int sem_delete_owned_sems(proc_id owner)
|
|
{
|
|
int state;
|
|
int i;
|
|
int count = 0;
|
|
|
|
if (owner < 0)
|
|
return B_BAD_SEM_ID;
|
|
|
|
state = int_disable_interrupts();
|
|
GRAB_SEM_LIST_LOCK();
|
|
|
|
for(i=0; i<MAX_SEMS; i++) {
|
|
if(sems[i].id != -1 && sems[i].owner == owner) {
|
|
sem_id id = sems[i].id;
|
|
|
|
RELEASE_SEM_LIST_LOCK();
|
|
int_restore_interrupts(state);
|
|
|
|
delete_sem_etc(id, 0);
|
|
count++;
|
|
|
|
state = int_disable_interrupts();
|
|
GRAB_SEM_LIST_LOCK();
|
|
}
|
|
}
|
|
|
|
RELEASE_SEM_LIST_LOCK();
|
|
int_restore_interrupts(state);
|
|
|
|
return count;
|
|
}
|
|
|
|
sem_id user_create_sem(int count, const char *uname)
|
|
{
|
|
if(uname != NULL) {
|
|
char name[SYS_MAX_OS_NAME_LEN];
|
|
int rc;
|
|
|
|
if((addr)uname >= KERNEL_BASE && (addr)uname <= KERNEL_TOP)
|
|
return ERR_VM_BAD_USER_MEMORY;
|
|
|
|
rc = user_strncpy(name, uname, SYS_MAX_OS_NAME_LEN-1);
|
|
if(rc < 0)
|
|
return rc;
|
|
name[SYS_MAX_OS_NAME_LEN-1] = 0;
|
|
|
|
return create_sem_etc(count, name, proc_get_current_proc_id());
|
|
} else {
|
|
return create_sem_etc(count, NULL, proc_get_current_proc_id());
|
|
}
|
|
}
|
|
|
|
int user_delete_sem(sem_id id)
|
|
{
|
|
return delete_sem(id);
|
|
}
|
|
|
|
int user_delete_sem_etc(sem_id id, int return_code)
|
|
{
|
|
return delete_sem_etc(id, return_code);
|
|
}
|
|
|
|
int user_acquire_sem(sem_id id)
|
|
{
|
|
return user_acquire_sem_etc(id, 1, 0, 0);
|
|
}
|
|
|
|
int user_acquire_sem_etc(sem_id id, int count, int flags, bigtime_t timeout)
|
|
{
|
|
flags = flags | B_CAN_INTERRUPT;
|
|
|
|
return acquire_sem_etc(id, count, flags, timeout);
|
|
}
|
|
|
|
int user_release_sem(sem_id id)
|
|
{
|
|
return release_sem_etc(id, 1, 0);
|
|
}
|
|
|
|
int user_release_sem_etc(sem_id id, int count, int flags)
|
|
{
|
|
return release_sem_etc(id, count, flags);
|
|
}
|
|
|
|
int user_get_sem_count(sem_id uid, int32* uthread_count)
|
|
{
|
|
int32 thread_count;
|
|
int rc, rc2;
|
|
rc = get_sem_count(uid, &thread_count);
|
|
rc2 = user_memcpy(uthread_count, &thread_count, sizeof(int32));
|
|
if(rc2 < 0)
|
|
return rc2;
|
|
return rc;
|
|
}
|
|
|
|
int user_get_sem_info(sem_id uid, struct sem_info *uinfo, size_t sz)
|
|
{
|
|
struct sem_info info;
|
|
int rc, rc2;
|
|
|
|
if((addr)uinfo >= KERNEL_BASE && (addr)uinfo <= KERNEL_TOP)
|
|
return ERR_VM_BAD_USER_MEMORY;
|
|
|
|
rc = _get_sem_info(uid, &info, sz);
|
|
rc2 = user_memcpy(uinfo, &info, sz);
|
|
if(rc2 < 0)
|
|
return rc2;
|
|
return rc;
|
|
}
|
|
|
|
int user_get_next_sem_info(proc_id uproc, uint32 *ucookie, struct sem_info *uinfo, size_t sz)
|
|
{
|
|
struct sem_info info;
|
|
uint32 cookie;
|
|
int rc, rc2;
|
|
|
|
if((addr)uinfo >= KERNEL_BASE && (addr)uinfo <= KERNEL_TOP)
|
|
return ERR_VM_BAD_USER_MEMORY;
|
|
|
|
rc2 = user_memcpy(&cookie, ucookie, sizeof(uint32));
|
|
if(rc2 < 0)
|
|
return rc2;
|
|
rc = _get_next_sem_info(uproc, &cookie, &info, sz);
|
|
rc2 = user_memcpy(uinfo, &info, sz);
|
|
if(rc2 < 0)
|
|
return rc2;
|
|
rc2 = user_memcpy(ucookie, &cookie, sizeof(uint32));
|
|
if(rc2 < 0)
|
|
return rc2;
|
|
return rc;
|
|
}
|
|
|
|
int user_set_sem_owner(sem_id uid, proc_id uproc)
|
|
{
|
|
return set_sem_owner(uid, uproc);
|
|
}
|