haiku/src/system/kernel/fs/vfs.cpp
Axel Dörfler 0d4c16e0c0 * Reduced the stack usage of most of the I/O paths - there were several places
that put one or more full paths on the stack before, which could cause some
  problems under certain conditions.
* Cleaned up KPath, ie. use size_t instead of int32 where appropriate, added
  license.


git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@16585 a95241bf-73f2-0310-859d-f6bbb57e9c96
2006-03-05 18:11:59 +00:00

7174 lines
175 KiB
C++

/*
* Copyright 2002-2006, Axel Dörfler, axeld@pinc-software.de.
* Distributed under the terms of the MIT License.
*
* Copyright 2001-2002, Travis Geiselbrecht. All rights reserved.
* Distributed under the terms of the NewOS License.
*/
/* Virtual File System and File System Interface Layer */
#include <OS.h>
#include <StorageDefs.h>
#include <fs_info.h>
#include <fs_interface.h>
#include <fs_volume.h>
#include <block_cache.h>
#include <fd.h>
#include <file_cache.h>
#include <khash.h>
#include <KPath.h>
#include <lock.h>
#include <syscalls.h>
#include <vfs.h>
#include <vm.h>
#include <vm_cache.h>
#include <vm_low_memory.h>
#include <boot/kernel_args.h>
#include <disk_device_manager/KDiskDevice.h>
#include <disk_device_manager/KDiskDeviceManager.h>
#include <disk_device_manager/KDiskDeviceUtils.h>
#include <disk_device_manager/KDiskSystem.h>
#include <fs/node_monitor.h>
#include <util/kernel_cpp.h>
#include <string.h>
#include <stdio.h>
#include <ctype.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/resource.h>
#include <fcntl.h>
#include <limits.h>
#include <stddef.h>
//#define TRACE_VFS
#ifdef TRACE_VFS
# define TRACE(x) dprintf x
# define FUNCTION(x) dprintf x
#else
# define TRACE(x) ;
# define FUNCTION(x) ;
#endif
#define ADD_DEBUGGER_COMMANDS
#define MAX_SYM_LINKS SYMLINKS_MAX
const static uint32 kMaxUnusedVnodes = 8192;
// This is the maximum number of unused vnodes that the system
// will keep around.
// It may be chosen with respect to the available memory or enhanced
// by some timestamp/frequency heurism.
struct vnode {
struct vnode *next;
vm_cache_ref *cache;
mount_id device;
list_link mount_link;
list_link unused_link;
vnode_id id;
fs_vnode private_node;
struct fs_mount *mount;
struct vnode *covered_by;
int32 ref_count;
uint8 remove : 1;
uint8 busy : 1;
uint8 unpublished : 1;
struct advisory_locking *advisory_locking;
};
struct vnode_hash_key {
mount_id device;
vnode_id vnode;
};
#define FS_CALL(vnode, op) (vnode->mount->fs->op)
#define FS_MOUNT_CALL(mount, op) (mount->fs->op)
struct fs_mount {
struct fs_mount *next;
file_system_module_info *fs;
mount_id id;
void *cookie;
char *device_name;
char *fs_name;
recursive_lock rlock; // guards the vnodes list
struct vnode *root_vnode;
struct vnode *covers_vnode;
KPartition *partition;
struct list vnodes;
bool unmounting;
bool owns_file_device;
};
struct advisory_locking {
sem_id lock;
sem_id wait_sem;
struct list locks;
};
struct advisory_lock {
list_link link;
team_id team;
off_t offset;
off_t length;
bool shared;
};
static mutex sFileSystemsMutex;
/** \brief Guards sMountsTable.
*
* The holder is allowed to read/write access the sMountsTable.
* Manipulation of the fs_mount structures themselves
* (and their destruction) requires different locks though.
*/
static mutex sMountMutex;
/** \brief Guards mount/unmount operations.
*
* The fs_mount() and fs_unmount() hold the lock during their whole operation.
* That is locking the lock ensures that no FS is mounted/unmounted. In
* particular this means that
* - sMountsTable will not be modified,
* - the fields immutable after initialization of the fs_mount structures in
* sMountsTable will not be modified,
* - vnode::covered_by of any vnode in sVnodeTable will not be modified,
*
* The thread trying to lock the lock must not hold sVnodeMutex or
* sMountMutex.
*/
static recursive_lock sMountOpLock;
/** \brief Guards sVnodeTable.
*
* The holder is allowed to read/write access sVnodeTable and to
* to any unbusy vnode in that table, save
* to the immutable fields (device, id, private_node, mount) to which
* only read-only access is allowed, and to the field covered_by, which is
* guarded by sMountOpLock.
*
* The thread trying to lock the mutex must not hold sMountMutex.
*/
static mutex sVnodeMutex;
#define VNODE_HASH_TABLE_SIZE 1024
static hash_table *sVnodeTable;
static list sUnusedVnodeList;
static uint32 sUnusedVnodes = 0;
static struct vnode *sRoot;
#define MOUNTS_HASH_TABLE_SIZE 16
static hash_table *sMountsTable;
static mount_id sNextMountID = 1;
mode_t __gUmask = 022;
/* function declarations */
// file descriptor operation prototypes
static status_t file_read(struct file_descriptor *, off_t pos, void *buffer, size_t *);
static status_t file_write(struct file_descriptor *, off_t pos, const void *buffer, size_t *);
static off_t file_seek(struct file_descriptor *, off_t pos, int seek_type);
static void file_free_fd(struct file_descriptor *);
static status_t file_close(struct file_descriptor *);
static status_t file_select(struct file_descriptor *, uint8 event, uint32 ref,
struct select_sync *sync);
static status_t file_deselect(struct file_descriptor *, uint8 event,
struct select_sync *sync);
static status_t dir_read(struct file_descriptor *, struct dirent *buffer, size_t bufferSize, uint32 *_count);
static status_t dir_read(struct vnode *vnode, fs_cookie cookie, struct dirent *buffer, size_t bufferSize, uint32 *_count);
static status_t dir_rewind(struct file_descriptor *);
static void dir_free_fd(struct file_descriptor *);
static status_t dir_close(struct file_descriptor *);
static status_t attr_dir_read(struct file_descriptor *, struct dirent *buffer, size_t bufferSize, uint32 *_count);
static status_t attr_dir_rewind(struct file_descriptor *);
static void attr_dir_free_fd(struct file_descriptor *);
static status_t attr_dir_close(struct file_descriptor *);
static status_t attr_read(struct file_descriptor *, off_t pos, void *buffer, size_t *);
static status_t attr_write(struct file_descriptor *, off_t pos, const void *buffer, size_t *);
static off_t attr_seek(struct file_descriptor *, off_t pos, int seek_type);
static void attr_free_fd(struct file_descriptor *);
static status_t attr_close(struct file_descriptor *);
static status_t attr_read_stat(struct file_descriptor *, struct stat *);
static status_t attr_write_stat(struct file_descriptor *, const struct stat *, int statMask);
static status_t index_dir_read(struct file_descriptor *, struct dirent *buffer, size_t bufferSize, uint32 *_count);
static status_t index_dir_rewind(struct file_descriptor *);
static void index_dir_free_fd(struct file_descriptor *);
static status_t index_dir_close(struct file_descriptor *);
static status_t query_read(struct file_descriptor *, struct dirent *buffer, size_t bufferSize, uint32 *_count);
static status_t query_rewind(struct file_descriptor *);
static void query_free_fd(struct file_descriptor *);
static status_t query_close(struct file_descriptor *);
static status_t common_ioctl(struct file_descriptor *, ulong, void *buf, size_t len);
static status_t common_read_stat(struct file_descriptor *, struct stat *);
static status_t common_write_stat(struct file_descriptor *, const struct stat *, int statMask);
static status_t vnode_path_to_vnode(struct vnode *vnode, char *path,
bool traverseLeafLink, int count, struct vnode **_vnode, vnode_id *_parentID, int *_type);
static status_t dir_vnode_to_path(struct vnode *vnode, char *buffer, size_t bufferSize);
static status_t fd_and_path_to_vnode(int fd, char *path, bool traverseLeafLink,
struct vnode **_vnode, vnode_id *_parentID, bool kernel);
static void inc_vnode_ref_count(struct vnode *vnode);
static status_t dec_vnode_ref_count(struct vnode *vnode, bool reenter);
static inline void put_vnode(struct vnode *vnode);
static struct fd_ops sFileOps = {
file_read,
file_write,
file_seek,
common_ioctl,
file_select,
file_deselect,
NULL, // read_dir()
NULL, // rewind_dir()
common_read_stat,
common_write_stat,
file_close,
file_free_fd
};
static struct fd_ops sDirectoryOps = {
NULL, // read()
NULL, // write()
NULL, // seek()
common_ioctl,
NULL, // select()
NULL, // deselect()
dir_read,
dir_rewind,
common_read_stat,
common_write_stat,
dir_close,
dir_free_fd
};
static struct fd_ops sAttributeDirectoryOps = {
NULL, // read()
NULL, // write()
NULL, // seek()
common_ioctl,
NULL, // select()
NULL, // deselect()
attr_dir_read,
attr_dir_rewind,
common_read_stat,
common_write_stat,
attr_dir_close,
attr_dir_free_fd
};
static struct fd_ops sAttributeOps = {
attr_read,
attr_write,
attr_seek,
common_ioctl,
NULL, // select()
NULL, // deselect()
NULL, // read_dir()
NULL, // rewind_dir()
attr_read_stat,
attr_write_stat,
attr_close,
attr_free_fd
};
static struct fd_ops sIndexDirectoryOps = {
NULL, // read()
NULL, // write()
NULL, // seek()
NULL, // ioctl()
NULL, // select()
NULL, // deselect()
index_dir_read,
index_dir_rewind,
NULL, // read_stat()
NULL, // write_stat()
index_dir_close,
index_dir_free_fd
};
#if 0
static struct fd_ops sIndexOps = {
NULL, // read()
NULL, // write()
NULL, // seek()
NULL, // ioctl()
NULL, // select()
NULL, // deselect()
NULL, // dir_read()
NULL, // dir_rewind()
index_read_stat, // read_stat()
NULL, // write_stat()
NULL, // dir_close()
NULL // free_fd()
};
#endif
static struct fd_ops sQueryOps = {
NULL, // read()
NULL, // write()
NULL, // seek()
NULL, // ioctl()
NULL, // select()
NULL, // deselect()
query_read,
query_rewind,
NULL, // read_stat()
NULL, // write_stat()
query_close,
query_free_fd
};
// VNodePutter
class VNodePutter {
public:
VNodePutter(struct vnode *vnode = NULL) : fVNode(vnode) {}
~VNodePutter()
{
Put();
}
void SetTo(struct vnode *vnode)
{
Put();
fVNode = vnode;
}
void Put()
{
if (fVNode) {
put_vnode(fVNode);
fVNode = NULL;
}
}
struct vnode *Detach()
{
struct vnode *vnode = fVNode;
fVNode = NULL;
return vnode;
}
private:
struct vnode *fVNode;
};
class FDCloser {
public:
FDCloser() : fFD(-1), fKernel(true) {}
FDCloser(int fd, bool kernel) : fFD(fd), fKernel(kernel) {}
~FDCloser()
{
Close();
}
void SetTo(int fd, bool kernel)
{
Close();
fFD = fd;
fKernel = kernel;
}
void Close()
{
if (fFD >= 0) {
if (fKernel)
_kern_close(fFD);
else
_user_close(fFD);
fFD = -1;
}
}
int Detach()
{
int fd = fFD;
fFD = -1;
return fd;
}
private:
int fFD;
bool fKernel;
};
static int
mount_compare(void *_m, const void *_key)
{
struct fs_mount *mount = (fs_mount *)_m;
const mount_id *id = (mount_id *)_key;
if (mount->id == *id)
return 0;
return -1;
}
static uint32
mount_hash(void *_m, const void *_key, uint32 range)
{
struct fs_mount *mount = (fs_mount *)_m;
const mount_id *id = (mount_id *)_key;
if (mount)
return mount->id % range;
return (uint32)*id % range;
}
/** Finds the mounted device (the fs_mount structure) with the given ID.
* Note, you must hold the gMountMutex lock when you call this function.
*/
static struct fs_mount *
find_mount(mount_id id)
{
ASSERT_LOCKED_MUTEX(&sMountMutex);
return (fs_mount *)hash_lookup(sMountsTable, (void *)&id);
}
static status_t
get_mount(mount_id id, struct fs_mount **_mount)
{
struct fs_mount *mount;
status_t status;
mutex_lock(&sMountMutex);
mount = find_mount(id);
if (mount) {
// ToDo: the volume is locked (against removal) by locking
// its root node - investigate if that's a good idea
if (mount->root_vnode)
inc_vnode_ref_count(mount->root_vnode);
else {
// might have been called during a mount operation in which
// case the root node may still be NULL
mount = NULL;
}
} else
status = B_BAD_VALUE;
mutex_unlock(&sMountMutex);
if (mount == NULL)
return B_BUSY;
*_mount = mount;
return B_OK;
}
static void
put_mount(struct fs_mount *mount)
{
if (mount)
put_vnode(mount->root_vnode);
}
static status_t
put_file_system(file_system_module_info *fs)
{
return put_module(fs->info.name);
}
/** Tries to open the specified file system module.
* Accepts a file system name of the form "bfs" or "file_systems/bfs/v1".
* Returns a pointer to file system module interface, or NULL if it
* could not open the module.
*/
static file_system_module_info *
get_file_system(const char *fsName)
{
char name[B_FILE_NAME_LENGTH];
if (strncmp(fsName, "file_systems/", strlen("file_systems/"))) {
// construct module name if we didn't get one
// (we currently support only one API)
snprintf(name, sizeof(name), "file_systems/%s/v1", fsName);
fsName = NULL;
}
file_system_module_info *info;
if (get_module(fsName ? fsName : name, (module_info **)&info) != B_OK)
return NULL;
return info;
}
/** Accepts a file system name of the form "bfs" or "file_systems/bfs/v1"
* and returns a compatible fs_info.fsh_name name ("bfs" in both cases).
* The name is allocated for you, and you have to free() it when you're
* done with it.
* Returns NULL if the required memory is no available.
*/
static char *
get_file_system_name(const char *fsName)
{
const size_t length = strlen("file_systems/");
if (strncmp(fsName, "file_systems/", length)) {
// the name already seems to be the module's file name
return strdup(fsName);
}
fsName += length;
const char *end = strchr(fsName, '/');
if (end == NULL) {
// this doesn't seem to be a valid name, but well...
return strdup(fsName);
}
// cut off the trailing /v1
char *name = (char *)malloc(end + 1 - fsName);
if (name == NULL)
return NULL;
strlcpy(name, fsName, end + 1 - fsName);
return name;
}
static int
vnode_compare(void *_vnode, const void *_key)
{
struct vnode *vnode = (struct vnode *)_vnode;
const struct vnode_hash_key *key = (vnode_hash_key *)_key;
if (vnode->device == key->device && vnode->id == key->vnode)
return 0;
return -1;
}
static uint32
vnode_hash(void *_vnode, const void *_key, uint32 range)
{
struct vnode *vnode = (struct vnode *)_vnode;
const struct vnode_hash_key *key = (vnode_hash_key *)_key;
#define VHASH(mountid, vnodeid) (((uint32)((vnodeid) >> 32) + (uint32)(vnodeid)) ^ (uint32)(mountid))
if (vnode != NULL)
return VHASH(vnode->device, vnode->id) % range;
return VHASH(key->device, key->vnode) % range;
#undef VHASH
}
static void
add_vnode_to_mount_list(struct vnode *vnode, struct fs_mount *mount)
{
recursive_lock_lock(&mount->rlock);
list_add_link_to_head(&mount->vnodes, &vnode->mount_link);
recursive_lock_unlock(&mount->rlock);
}
static void
remove_vnode_from_mount_list(struct vnode *vnode, struct fs_mount *mount)
{
recursive_lock_lock(&mount->rlock);
list_remove_link(&vnode->mount_link);
vnode->mount_link.next = vnode->mount_link.prev = NULL;
recursive_lock_unlock(&mount->rlock);
}
static status_t
create_new_vnode(struct vnode **_vnode, mount_id mountID, vnode_id vnodeID)
{
FUNCTION(("create_new_vnode()\n"));
struct vnode *vnode = (struct vnode *)malloc(sizeof(struct vnode));
if (vnode == NULL)
return B_NO_MEMORY;
// initialize basic values
memset(vnode, 0, sizeof(struct vnode));
vnode->device = mountID;
vnode->id = vnodeID;
// add the vnode to the mount structure
mutex_lock(&sMountMutex);
vnode->mount = find_mount(mountID);
if (!vnode->mount || vnode->mount->unmounting) {
mutex_unlock(&sMountMutex);
free(vnode);
return B_ENTRY_NOT_FOUND;
}
hash_insert(sVnodeTable, vnode);
add_vnode_to_mount_list(vnode, vnode->mount);
mutex_unlock(&sMountMutex);
vnode->ref_count = 1;
*_vnode = vnode;
return B_OK;
}
/** Frees the vnode and all resources it has acquired, and removes
* it from the vnode hash as well as from its mount structure.
* Will also make sure that any cache modifications are written back.
*/
static void
free_vnode(struct vnode *vnode, bool reenter)
{
ASSERT(vnode->ref_count == 0 && vnode->busy);
// write back any changes in this vnode's cache -- but only
// if the vnode won't be deleted, in which case the changes
// will be discarded
if (vnode->cache && !vnode->remove)
vm_cache_write_modified(vnode->cache);
if (!vnode->unpublished) {
if (vnode->remove)
FS_CALL(vnode, remove_vnode)(vnode->mount->cookie, vnode->private_node, reenter);
else
FS_CALL(vnode, put_vnode)(vnode->mount->cookie, vnode->private_node, reenter);
}
// The file system has removed the resources of the vnode now, so we can
// make it available again (and remove the busy vnode from the hash)
mutex_lock(&sVnodeMutex);
hash_remove(sVnodeTable, vnode);
mutex_unlock(&sVnodeMutex);
// if we have a vm_cache attached, remove it
if (vnode->cache)
vm_cache_release_ref(vnode->cache);
vnode->cache = NULL;
remove_vnode_from_mount_list(vnode, vnode->mount);
free(vnode);
}
/** \brief Decrements the reference counter of the given vnode and deletes it,
* if the counter dropped to 0.
*
* The caller must, of course, own a reference to the vnode to call this
* function.
* The caller must not hold the sVnodeMutex or the sMountMutex.
*
* \param vnode the vnode.
* \param reenter \c true, if this function is called (indirectly) from within
* a file system.
* \return \c B_OK, if everything went fine, an error code otherwise.
*/
static status_t
dec_vnode_ref_count(struct vnode *vnode, bool reenter)
{
int32 oldRefCount;
mutex_lock(&sVnodeMutex);
if (vnode->busy)
panic("dec_vnode_ref_count called on vnode that was busy! vnode %p\n", vnode);
oldRefCount = atomic_add(&vnode->ref_count, -1);
TRACE(("dec_vnode_ref_count: vnode %p, ref now %ld\n", vnode, vnode->ref_count));
if (oldRefCount == 1) {
bool freeNode = false;
// Just insert the vnode into an unused list if we don't need
// to delete it
if (vnode->remove) {
vnode->busy = true;
freeNode = true;
} else {
list_add_item(&sUnusedVnodeList, vnode);
if (++sUnusedVnodes > kMaxUnusedVnodes
&& vm_low_memory_state() != B_NO_LOW_MEMORY) {
// there are too many unused vnodes so we free the oldest one
// ToDo: evaluate this mechanism
vnode = (struct vnode *)list_remove_head_item(&sUnusedVnodeList);
vnode->busy = true;
freeNode = true;
sUnusedVnodes--;
}
}
mutex_unlock(&sVnodeMutex);
if (freeNode)
free_vnode(vnode, reenter);
} else
mutex_unlock(&sVnodeMutex);
return B_OK;
}
/** \brief Increments the reference counter of the given vnode.
*
* The caller must either already have a reference to the vnode or hold
* the sVnodeMutex.
*
* \param vnode the vnode.
*/
static void
inc_vnode_ref_count(struct vnode *vnode)
{
atomic_add(&vnode->ref_count, 1);
TRACE(("inc_vnode_ref_count: vnode %p, ref now %ld\n", vnode, vnode->ref_count));
}
/** \brief Looks up a vnode by mount and node ID in the sVnodeTable.
*
* The caller must hold the sVnodeMutex.
*
* \param mountID the mount ID.
* \param vnodeID the node ID.
*
* \return The vnode structure, if it was found in the hash table, \c NULL
* otherwise.
*/
static struct vnode *
lookup_vnode(mount_id mountID, vnode_id vnodeID)
{
struct vnode_hash_key key;
key.device = mountID;
key.vnode = vnodeID;
return (vnode *)hash_lookup(sVnodeTable, &key);
}
/** \brief Retrieves a vnode for a given mount ID, node ID pair.
*
* If the node is not yet in memory, it will be loaded.
*
* The caller must not hold the sVnodeMutex or the sMountMutex.
*
* \param mountID the mount ID.
* \param vnodeID the node ID.
* \param _vnode Pointer to a vnode* variable into which the pointer to the
* retrieved vnode structure shall be written.
* \param reenter \c true, if this function is called (indirectly) from within
* a file system.
* \return \c B_OK, if everything when fine, an error code otherwise.
*/
static status_t
get_vnode(mount_id mountID, vnode_id vnodeID, struct vnode **_vnode, int reenter)
{
FUNCTION(("get_vnode: mountid %ld vnid 0x%Lx %p\n", mountID, vnodeID, _vnode));
mutex_lock(&sVnodeMutex);
restart:
struct vnode *vnode = lookup_vnode(mountID, vnodeID);
if (vnode && vnode->busy) {
// ToDo: this is an endless loop if the vnode is not
// becoming unbusy anymore (for whatever reason)
mutex_unlock(&sVnodeMutex);
snooze(10000); // 10 ms
mutex_lock(&sVnodeMutex);
goto restart;
}
TRACE(("get_vnode: tried to lookup vnode, got %p\n", vnode));
status_t status;
if (vnode) {
if (vnode->ref_count == 0) {
// this vnode has been unused before
list_remove_item(&sUnusedVnodeList, vnode);
}
inc_vnode_ref_count(vnode);
} else {
// we need to create a new vnode and read it in
status = create_new_vnode(&vnode, mountID, vnodeID);
if (status < B_OK)
goto err;
vnode->busy = true;
mutex_unlock(&sVnodeMutex);
status = FS_CALL(vnode, get_vnode)(vnode->mount->cookie, vnodeID, &vnode->private_node, reenter);
if (status < B_OK || vnode->private_node == NULL) {
if (status == B_NO_ERROR)
status = B_BAD_VALUE;
}
mutex_lock(&sVnodeMutex);
if (status < B_OK)
goto err1;
vnode->busy = false;
}
mutex_unlock(&sVnodeMutex);
TRACE(("get_vnode: returning %p\n", vnode));
*_vnode = vnode;
return B_OK;
err1:
hash_remove(sVnodeTable, vnode);
remove_vnode_from_mount_list(vnode, vnode->mount);
err:
mutex_unlock(&sVnodeMutex);
if (vnode)
free(vnode);
return status;
}
/** \brief Decrements the reference counter of the given vnode and deletes it,
* if the counter dropped to 0.
*
* The caller must, of course, own a reference to the vnode to call this
* function.
* The caller must not hold the sVnodeMutex or the sMountMutex.
*
* \param vnode the vnode.
*/
static inline void
put_vnode(struct vnode *vnode)
{
dec_vnode_ref_count(vnode, false);
}
static void
vnode_low_memory_handler(void */*data*/, int32 level)
{
TRACE(("vnode_low_memory_handler(level = %ld)\n", level));
int32 count = 1;
switch (level) {
case B_NO_LOW_MEMORY:
return;
case B_LOW_MEMORY_NOTE:
count = sUnusedVnodes / 100;
break;
case B_LOW_MEMORY_WARNING:
count = sUnusedVnodes / 10;
break;
case B_LOW_MEMORY_CRITICAL:
count = sUnusedVnodes;
break;
}
for (int32 i = 0; i < count; i++) {
mutex_lock(&sVnodeMutex);
struct vnode *vnode = (struct vnode *)list_remove_head_item(&sUnusedVnodeList);
if (vnode == NULL) {
mutex_unlock(&sVnodeMutex);
break;
}
TRACE((" free vnode %ld:%Ld (%p)\n", vnode->device, vnode->id, vnode));
vnode->busy = true;
sUnusedVnodes--;
mutex_unlock(&sVnodeMutex);
free_vnode(vnode, false);
}
}
static status_t
create_advisory_locking(struct vnode *vnode)
{
if (vnode == NULL)
return B_FILE_ERROR;
struct advisory_locking *locking = (struct advisory_locking *)malloc(sizeof(struct advisory_locking));
if (locking == NULL)
return B_NO_MEMORY;
status_t status;
locking->wait_sem = create_sem(0, "advisory lock");
if (locking->wait_sem < B_OK) {
status = locking->wait_sem;
goto err1;
}
locking->lock = create_sem(1, "advisory locking");
if (locking->lock < B_OK) {
status = locking->lock;
goto err2;
}
list_init(&locking->locks);
vnode->advisory_locking = locking;
return B_OK;
err2:
delete_sem(locking->wait_sem);
err1:
free(locking);
return status;
}
static inline void
put_advisory_locking(struct advisory_locking *locking)
{
release_sem(locking->lock);
}
static struct advisory_locking *
get_advisory_locking(struct vnode *vnode)
{
mutex_lock(&sVnodeMutex);
struct advisory_locking *locking = vnode->advisory_locking;
if (locking != NULL)
acquire_sem(locking->lock);
mutex_unlock(&sVnodeMutex);
return locking;
}
static status_t
get_advisory_lock(struct vnode *vnode, struct flock *flock)
{
return B_ERROR;
}
/** Removes the specified lock, or all locks of the calling team
* if \a flock is NULL.
*/
static status_t
release_advisory_lock(struct vnode *vnode, struct flock *flock)
{
FUNCTION(("release_advisory_lock(vnode = %p, flock = %p)\n", vnode, flock));
struct advisory_locking *locking = get_advisory_locking(vnode);
if (locking == NULL)
return flock != NULL ? B_BAD_VALUE : B_OK;
team_id team = team_get_current_team_id();
// find matching lock entry
status_t status = B_BAD_VALUE;
struct advisory_lock *lock = NULL;
while ((lock = (struct advisory_lock *)list_get_next_item(&locking->locks, lock)) != NULL) {
if (lock->team == team && (flock == NULL || (flock != NULL
&& lock->offset == flock->l_start
&& lock->length == flock->l_len))) {
// we found our lock, free it
list_remove_item(&locking->locks, lock);
free(lock);
status = B_OK;
break;
}
}
bool removeLocking = list_is_empty(&locking->locks);
release_sem_etc(locking->wait_sem, 1, B_RELEASE_ALL);
put_advisory_locking(locking);
if (status < B_OK)
return status;
if (removeLocking) {
// we can remove the whole advisory locking structure; it's no longer used
mutex_lock(&sVnodeMutex);
locking = vnode->advisory_locking;
if (locking != NULL)
acquire_sem(locking->lock);
// the locking could have been changed in the mean time
if (list_is_empty(&locking->locks))
vnode->advisory_locking = NULL;
else {
removeLocking = false;
release_sem_etc(locking->lock, 1, B_DO_NOT_RESCHEDULE);
}
mutex_unlock(&sVnodeMutex);
}
if (removeLocking) {
// we've detached the locking from the vnode, so we can safely delete it
delete_sem(locking->lock);
delete_sem(locking->wait_sem);
free(locking);
}
return B_OK;
}
static status_t
acquire_advisory_lock(struct vnode *vnode, struct flock *flock, bool wait)
{
FUNCTION(("acquire_advisory_lock(vnode = %p, flock = %p, wait = %s)\n",
vnode, flock, wait ? "yes" : "no"));
bool shared = flock->l_type == F_RDLCK;
status_t status = B_OK;
restart:
// if this vnode has an advisory_locking structure attached,
// lock that one and search for any colliding lock
struct advisory_locking *locking = get_advisory_locking(vnode);
sem_id waitForLock = -1;
if (locking != NULL) {
// test for collisions
struct advisory_lock *lock = NULL;
while ((lock = (struct advisory_lock *)list_get_next_item(&locking->locks, lock)) != NULL) {
if (lock->offset <= flock->l_start + flock->l_len
&& lock->offset + lock->length > flock->l_start) {
// locks do overlap
if (!shared || !lock->shared) {
// we need to wait
waitForLock = locking->wait_sem;
break;
}
}
}
if (waitForLock < B_OK || !wait)
put_advisory_locking(locking);
}
// wait for the lock if we have to, or else return immediately
if (waitForLock >= B_OK) {
if (!wait)
status = B_PERMISSION_DENIED;
else {
status = switch_sem_etc(locking->lock, waitForLock, 1, B_CAN_INTERRUPT, 0);
if (status == B_OK) {
// see if we're still colliding
goto restart;
}
}
}
if (status < B_OK)
return status;
// install new lock
mutex_lock(&sVnodeMutex);
locking = vnode->advisory_locking;
if (locking == NULL) {
status = create_advisory_locking(vnode);
locking = vnode->advisory_locking;
}
if (locking != NULL)
acquire_sem(locking->lock);
mutex_unlock(&sVnodeMutex);
if (status < B_OK)
return status;
struct advisory_lock *lock = (struct advisory_lock *)malloc(sizeof(struct advisory_lock));
if (lock == NULL) {
if (waitForLock >= B_OK)
release_sem_etc(waitForLock, 1, B_RELEASE_ALL);
release_sem(locking->lock);
return B_NO_MEMORY;
}
lock->team = team_get_current_team_id();
// values must already be normalized when getting here
lock->offset = flock->l_start;
lock->length = flock->l_len;
lock->shared = shared;
list_add_item(&locking->locks, lock);
release_sem(locking->lock);
return status;
}
static status_t
normalize_flock(struct file_descriptor *descriptor, struct flock *flock)
{
switch (flock->l_whence) {
case SEEK_SET:
break;
case SEEK_CUR:
flock->l_start += descriptor->pos;
break;
case SEEK_END:
{
struct vnode *vnode = descriptor->u.vnode;
struct stat stat;
status_t status;
if (FS_CALL(vnode, read_stat) == NULL)
return EOPNOTSUPP;
status = FS_CALL(vnode, read_stat)(vnode->mount->cookie, vnode->private_node, &stat);
if (status < B_OK)
return status;
flock->l_start += stat.st_size;
break;
}
default:
return B_BAD_VALUE;
}
if (flock->l_start < 0)
flock->l_start = 0;
if (flock->l_len == 0)
flock->l_len = OFF_MAX;
// don't let the offset and length overflow
if (flock->l_start > 0 && OFF_MAX - flock->l_start < flock->l_len)
flock->l_len = OFF_MAX - flock->l_start;
if (flock->l_len < 0) {
// a negative length reverses the region
flock->l_start += flock->l_len;
flock->l_len = -flock->l_len;
}
return B_OK;
}
/** \brief Resolves a mount point vnode to the volume root vnode it is covered
* by.
*
* Given an arbitrary vnode, the function checks, whether the node is covered
* by the root of a volume. If it is the function obtains a reference to the
* volume root node and returns it.
*
* \param vnode The vnode in question.
* \return The volume root vnode the vnode cover is covered by, if it is
* indeed a mount point, or \c NULL otherwise.
*/
static struct vnode *
resolve_mount_point_to_volume_root(struct vnode *vnode)
{
if (!vnode)
return NULL;
struct vnode *volumeRoot = NULL;
recursive_lock_lock(&sMountOpLock);
if (vnode->covered_by) {
volumeRoot = vnode->covered_by;
inc_vnode_ref_count(volumeRoot);
}
recursive_lock_unlock(&sMountOpLock);
return volumeRoot;
}
/** \brief Resolves a mount point vnode to the volume root vnode it is covered
* by.
*
* Given an arbitrary vnode (identified by mount and node ID), the function
* checks, whether the node is covered by the root of a volume. If it is the
* function returns the mount and node ID of the volume root node. Otherwise
* it simply returns the supplied mount and node ID.
*
* In case of error (e.g. the supplied node could not be found) the variables
* for storing the resolved mount and node ID remain untouched and an error
* code is returned.
*
* \param mountID The mount ID of the vnode in question.
* \param nodeID The node ID of the vnode in question.
* \param resolvedMountID Pointer to storage for the resolved mount ID.
* \param resolvedNodeID Pointer to storage for the resolved node ID.
* \return
* - \c B_OK, if everything went fine,
* - another error code, if something went wrong.
*/
status_t
resolve_mount_point_to_volume_root(mount_id mountID, vnode_id nodeID,
mount_id *resolvedMountID, vnode_id *resolvedNodeID)
{
// get the node
struct vnode *node;
status_t error = get_vnode(mountID, nodeID, &node, false);
if (error != B_OK)
return error;
// resolve the node
struct vnode *resolvedNode = resolve_mount_point_to_volume_root(node);
if (resolvedNode) {
put_vnode(node);
node = resolvedNode;
}
// set the return values
*resolvedMountID = node->device;
*resolvedNodeID = node->id;
put_vnode(node);
return B_OK;
}
/** \brief Resolves a volume root vnode to the underlying mount point vnode.
*
* Given an arbitrary vnode, the function checks, whether the node is the
* root of a volume. If it is (and if it is not "/"), the function obtains
* a reference to the underlying mount point node and returns it.
*
* \param vnode The vnode in question.
* \return The mount point vnode the vnode covers, if it is indeed a volume
* root and not "/", or \c NULL otherwise.
*/
static struct vnode *
resolve_volume_root_to_mount_point(struct vnode *vnode)
{
if (!vnode)
return NULL;
struct vnode *mountPoint = NULL;
recursive_lock_lock(&sMountOpLock);
struct fs_mount *mount = vnode->mount;
if (vnode == mount->root_vnode && mount->covers_vnode) {
mountPoint = mount->covers_vnode;
inc_vnode_ref_count(mountPoint);
}
recursive_lock_unlock(&sMountOpLock);
return mountPoint;
}
/** \brief Gets the directory path and leaf name for a given path.
*
* The supplied \a path is transformed to refer to the directory part of
* the entry identified by the original path, and into the buffer \a filename
* the leaf name of the original entry is written.
* Neither the returned path nor the leaf name can be expected to be
* canonical.
*
* \param path The path to be analyzed. Must be able to store at least one
* additional character.
* \param filename The buffer into which the leaf name will be written.
* Must be of size B_FILE_NAME_LENGTH at least.
* \return \c B_OK, if everything went fine, \c B_NAME_TOO_LONG, if the leaf
* name is longer than \c B_FILE_NAME_LENGTH.
*/
static status_t
get_dir_path_and_leaf(char *path, char *filename)
{
char *p = strrchr(path, '/');
// '/' are not allowed in file names!
FUNCTION(("get_dir_path_and_leaf(path = %s)\n", path));
if (!p) {
// this path is single segment with no '/' in it
// ex. "foo"
if (strlcpy(filename, path, B_FILE_NAME_LENGTH) >= B_FILE_NAME_LENGTH)
return B_NAME_TOO_LONG;
strcpy(path, ".");
} else {
p++;
if (*p == '\0') {
// special case: the path ends in '/'
strcpy(filename, ".");
} else {
// normal leaf: replace the leaf portion of the path with a '.'
if (strlcpy(filename, p, B_FILE_NAME_LENGTH)
>= B_FILE_NAME_LENGTH) {
return B_NAME_TOO_LONG;
}
}
p[0] = '.';
p[1] = '\0';
}
return B_OK;
}
static status_t
entry_ref_to_vnode(mount_id mountID, vnode_id directoryID, const char *name, struct vnode **_vnode)
{
char clonedName[B_FILE_NAME_LENGTH + 1];
if (strlcpy(clonedName, name, B_FILE_NAME_LENGTH) >= B_FILE_NAME_LENGTH)
return B_NAME_TOO_LONG;
// get the directory vnode and let vnode_path_to_vnode() do the rest
struct vnode *directory;
status_t status = get_vnode(mountID, directoryID, &directory, false);
if (status < 0)
return status;
return vnode_path_to_vnode(directory, clonedName, false, 0, _vnode, NULL, NULL);
}
/** Returns the vnode for the relative path starting at the specified \a vnode.
* \a path must not be NULL.
* If it returns successfully, \a path contains the name of the last path
* component.
*/
static status_t
vnode_path_to_vnode(struct vnode *vnode, char *path, bool traverseLeafLink,
int count, struct vnode **_vnode, vnode_id *_parentID, int *_type)
{
status_t status = 0;
vnode_id lastParentID = vnode->id;
int type = 0;
FUNCTION(("vnode_path_to_vnode(vnode = %p, path = %s)\n", vnode, path));
if (path == NULL)
return B_BAD_VALUE;
while (true) {
struct vnode *nextVnode;
vnode_id vnodeID;
char *nextPath;
TRACE(("vnode_path_to_vnode: top of loop. p = %p, p = '%s'\n", path, path));
// done?
if (path[0] == '\0')
break;
// walk to find the next path component ("path" will point to a single
// path component), and filter out multiple slashes
for (nextPath = path + 1; *nextPath != '\0' && *nextPath != '/'; nextPath++);
if (*nextPath == '/') {
*nextPath = '\0';
do
nextPath++;
while (*nextPath == '/');
}
// See if the '..' is at the root of a mount and move to the covered
// vnode so we pass the '..' path to the underlying filesystem
if (!strcmp("..", path)
&& vnode->mount->root_vnode == vnode
&& vnode->mount->covers_vnode) {
nextVnode = vnode->mount->covers_vnode;
inc_vnode_ref_count(nextVnode);
put_vnode(vnode);
vnode = nextVnode;
}
// Check if we have the right to search the current directory vnode.
// If a file system doesn't have the access() function, we assume that
// searching a directory is always allowed
if (FS_CALL(vnode, access))
status = FS_CALL(vnode, access)(vnode->mount->cookie, vnode->private_node, X_OK);
// Tell the filesystem to get the vnode of this path component (if we got the
// permission from the call above)
if (status >= B_OK)
status = FS_CALL(vnode, lookup)(vnode->mount->cookie, vnode->private_node, path, &vnodeID, &type);
if (status < B_OK) {
put_vnode(vnode);
return status;
}
// Lookup the vnode, the call to fs_lookup should have caused a get_vnode to be called
// from inside the filesystem, thus the vnode would have to be in the list and it's
// ref count incremented at this point
mutex_lock(&sVnodeMutex);
nextVnode = lookup_vnode(vnode->device, vnodeID);
mutex_unlock(&sVnodeMutex);
if (!nextVnode) {
// pretty screwed up here - the file system found the vnode, but the hash
// lookup failed, so our internal structures are messed up
panic("vnode_path_to_vnode: could not lookup vnode (mountid 0x%lx vnid 0x%Lx)\n",
vnode->device, vnodeID);
put_vnode(vnode);
return B_ENTRY_NOT_FOUND;
}
// If the new node is a symbolic link, resolve it (if we've been told to do it)
if (S_ISLNK(type) && !(!traverseLeafLink && nextPath[0] == '\0')) {
size_t bufferSize;
char *buffer;
TRACE(("traverse link\n"));
// it's not exactly nice style using goto in this way, but hey, it works :-/
if (count + 1 > MAX_SYM_LINKS) {
status = B_LINK_LIMIT;
goto resolve_link_error;
}
buffer = (char *)malloc(bufferSize = B_PATH_NAME_LENGTH);
if (buffer == NULL) {
status = B_NO_MEMORY;
goto resolve_link_error;
}
status = FS_CALL(nextVnode, read_link)(nextVnode->mount->cookie,
nextVnode->private_node, buffer, &bufferSize);
if (status < B_OK) {
free(buffer);
resolve_link_error:
put_vnode(vnode);
put_vnode(nextVnode);
return status;
}
put_vnode(nextVnode);
// Check if we start from the root directory or the current
// directory ("vnode" still points to that one).
// Cut off all leading slashes if it's the root directory
path = buffer;
if (path[0] == '/') {
// we don't need the old directory anymore
put_vnode(vnode);
while (*++path == '/')
;
vnode = sRoot;
inc_vnode_ref_count(vnode);
}
inc_vnode_ref_count(vnode);
// balance the next recursion - we will decrement the ref_count
// of the vnode, no matter if we succeeded or not
status = vnode_path_to_vnode(vnode, path, traverseLeafLink, count + 1,
&nextVnode, &lastParentID, _type);
free(buffer);
if (status < B_OK) {
put_vnode(vnode);
return status;
}
} else
lastParentID = vnode->id;
// decrease the ref count on the old dir we just looked up into
put_vnode(vnode);
path = nextPath;
vnode = nextVnode;
// see if we hit a mount point
struct vnode *mountPoint = resolve_mount_point_to_volume_root(vnode);
if (mountPoint) {
put_vnode(vnode);
vnode = mountPoint;
}
}
*_vnode = vnode;
if (_type)
*_type = type;
if (_parentID)
*_parentID = lastParentID;
return B_OK;
}
static status_t
path_to_vnode(char *path, bool traverseLink, struct vnode **_vnode,
vnode_id *_parentID, bool kernel)
{
struct vnode *start = NULL;
FUNCTION(("path_to_vnode(path = \"%s\")\n", path));
if (!path)
return B_BAD_VALUE;
// figure out if we need to start at root or at cwd
if (*path == '/') {
if (sRoot == NULL) {
// we're a bit early, aren't we?
return B_ERROR;
}
while (*++path == '/')
;
start = sRoot;
inc_vnode_ref_count(start);
} else {
struct io_context *context = get_current_io_context(kernel);
mutex_lock(&context->io_mutex);
start = context->cwd;
if (start != NULL)
inc_vnode_ref_count(start);
mutex_unlock(&context->io_mutex);
if (start == NULL)
return B_ERROR;
}
return vnode_path_to_vnode(start, path, traverseLink, 0, _vnode, _parentID, NULL);
}
/** Returns the vnode in the next to last segment of the path, and returns
* the last portion in filename.
* The path buffer must be able to store at least one additional character.
*/
static status_t
path_to_dir_vnode(char *path, struct vnode **_vnode, char *filename, bool kernel)
{
status_t status = get_dir_path_and_leaf(path, filename);
if (status != B_OK)
return status;
return path_to_vnode(path, true, _vnode, NULL, kernel);
}
/** \brief Retrieves the directory vnode and the leaf name of an entry referred
* to by a FD + path pair.
*
* \a path must be given in either case. \a fd might be omitted, in which
* case \a path is either an absolute path or one relative to the current
* directory. If both a supplied and \a path is relative it is reckoned off
* of the directory referred to by \a fd. If \a path is absolute \a fd is
* ignored.
*
* The caller has the responsibility to call put_vnode() on the returned
* directory vnode.
*
* \param fd The FD. May be < 0.
* \param path The absolute or relative path. Must not be \c NULL. The buffer
* is modified by this function. It must have at least room for a
* string one character longer than the path it contains.
* \param _vnode A pointer to a variable the directory vnode shall be written
* into.
* \param filename A buffer of size B_FILE_NAME_LENGTH or larger into which
* the leaf name of the specified entry will be written.
* \param kernel \c true, if invoked from inside the kernel, \c false if
* invoked from userland.
* \return \c B_OK, if everything went fine, another error code otherwise.
*/
static status_t
fd_and_path_to_dir_vnode(int fd, char *path, struct vnode **_vnode,
char *filename, bool kernel)
{
if (!path)
return B_BAD_VALUE;
if (fd < 0)
return path_to_dir_vnode(path, _vnode, filename, kernel);
status_t status = get_dir_path_and_leaf(path, filename);
if (status != B_OK)
return status;
return fd_and_path_to_vnode(fd, path, true, _vnode, NULL, kernel);
}
static status_t
get_vnode_name(struct vnode *vnode, struct vnode *parent,
char *name, size_t nameSize)
{
VNodePutter vnodePutter;
// See if vnode is the root of a mount and move to the covered
// vnode so we get the underlying file system
if (vnode->mount->root_vnode == vnode && vnode->mount->covers_vnode != NULL) {
vnode = vnode->mount->covers_vnode;
inc_vnode_ref_count(vnode);
vnodePutter.SetTo(vnode);
}
if (FS_CALL(vnode, get_vnode_name)) {
// The FS supports getting the name of a vnode.
return FS_CALL(vnode, get_vnode_name)(vnode->mount->cookie,
vnode->private_node, name, nameSize);
}
// The FS doesn't support getting the name of a vnode. So we search the
// parent directory for the vnode, if the caller let us.
if (parent == NULL)
return EOPNOTSUPP;
fs_cookie cookie;
status_t status = FS_CALL(parent, open_dir)(parent->mount->cookie,
parent->private_node, &cookie);
if (status >= B_OK) {
char buffer[sizeof(struct dirent) + B_FILE_NAME_LENGTH];
struct dirent *dirent = (struct dirent *)buffer;
while (true) {
uint32 num = 1;
status = dir_read(parent, cookie, dirent, sizeof(buffer), &num);
if (status < B_OK)
break;
if (vnode->id == dirent->d_ino) {
// found correct entry!
if (strlcpy(name, dirent->d_name, nameSize) >= nameSize)
status = B_BUFFER_OVERFLOW;
break;
}
}
FS_CALL(vnode, close_dir)(vnode->mount->cookie, vnode->private_node, cookie);
}
return status;
}
/** Gets the full path to a given directory vnode.
* It uses the fs_get_vnode_name() call to get the name of a vnode; if a
* file system doesn't support this call, it will fall back to iterating
* through the parent directory to get the name of the child.
*
* To protect against circular loops, it supports a maximum tree depth
* of 256 levels.
*
* Note that the path may not be correct the time this function returns!
* It doesn't use any locking to prevent returning the correct path, as
* paths aren't safe anyway: the path to a file can change at any time.
*
* It might be a good idea, though, to check if the returned path exists
* in the calling function (it's not done here because of efficiency)
*/
static status_t
dir_vnode_to_path(struct vnode *vnode, char *buffer, size_t bufferSize)
{
FUNCTION(("dir_vnode_to_path(%p, %p, %lu)\n", vnode, buffer, bufferSize));
if (vnode == NULL || buffer == NULL)
return B_BAD_VALUE;
/* this implementation is currently bound to B_PATH_NAME_LENGTH */
KPath pathBuffer;
if (pathBuffer.InitCheck() != B_OK)
return B_NO_MEMORY;
char *path = pathBuffer.LockBuffer();
int32 insert = pathBuffer.BufferSize();
int32 maxLevel = 256;
int32 length;
status_t status;
// we don't use get_vnode() here because this call is more
// efficient and does all we need from get_vnode()
inc_vnode_ref_count(vnode);
// resolve a volume root to its mount point
struct vnode *mountPoint = resolve_volume_root_to_mount_point(vnode);
if (mountPoint) {
put_vnode(vnode);
vnode = mountPoint;
}
path[--insert] = '\0';
while (true) {
// the name buffer is also used for fs_read_dir()
char nameBuffer[sizeof(struct dirent) + B_FILE_NAME_LENGTH];
char *name = &((struct dirent *)nameBuffer)->d_name[0];
struct vnode *parentVnode;
vnode_id parentID, id;
int type;
// lookup the parent vnode
status = FS_CALL(vnode, lookup)(vnode->mount->cookie, vnode->private_node, "..",
&parentID, &type);
if (status < B_OK)
goto out;
mutex_lock(&sVnodeMutex);
parentVnode = lookup_vnode(vnode->device, parentID);
mutex_unlock(&sVnodeMutex);
if (parentVnode == NULL) {
panic("dir_vnode_to_path: could not lookup vnode (mountid 0x%lx vnid 0x%Lx)\n",
vnode->device, parentID);
status = B_ENTRY_NOT_FOUND;
goto out;
}
// resolve a volume root to its mount point
mountPoint = resolve_volume_root_to_mount_point(parentVnode);
if (mountPoint) {
put_vnode(parentVnode);
parentVnode = mountPoint;
parentID = parentVnode->id;
}
bool hitRoot = (parentVnode == vnode);
// Does the file system support getting the name of a vnode?
// If so, get it here...
if (status == B_OK && FS_CALL(vnode, get_vnode_name)) {
status = FS_CALL(vnode, get_vnode_name)(vnode->mount->cookie, vnode->private_node,
name, B_FILE_NAME_LENGTH);
}
// ... if not, find it out later (by iterating through
// the parent directory, searching for the id)
id = vnode->id;
// release the current vnode, we only need its parent from now on
put_vnode(vnode);
vnode = parentVnode;
if (status < B_OK)
goto out;
// ToDo: add an explicit check for loops in about 10 levels to do
// real loop detection
// don't go deeper as 'maxLevel' to prevent circular loops
if (maxLevel-- < 0) {
status = ELOOP;
goto out;
}
if (hitRoot) {
// we have reached "/", which means we have constructed the full
// path
break;
}
if (!FS_CALL(vnode, get_vnode_name)) {
// If we haven't got the vnode's name yet, we have to search for it
// in the parent directory now
fs_cookie cookie;
status = FS_CALL(vnode, open_dir)(vnode->mount->cookie, vnode->private_node,
&cookie);
if (status >= B_OK) {
struct dirent *dirent = (struct dirent *)nameBuffer;
while (true) {
uint32 num = 1;
status = dir_read(vnode, cookie, dirent, sizeof(nameBuffer),
&num);
if (status < B_OK)
break;
if (id == dirent->d_ino)
// found correct entry!
break;
}
FS_CALL(vnode, close_dir)(vnode->mount->cookie, vnode->private_node, cookie);
}
if (status < B_OK)
goto out;
}
// add the name infront of the current path
name[B_FILE_NAME_LENGTH - 1] = '\0';
length = strlen(name);
insert -= length;
if (insert <= 0) {
status = ENOBUFS;
goto out;
}
memcpy(path + insert, name, length);
path[--insert] = '/';
}
// the root dir will result in an empty path: fix it
if (path[insert] == '\0')
path[--insert] = '/';
TRACE((" path is: %s\n", path + insert));
// copy the path to the output buffer
length = pathBuffer.BufferSize() - insert;
if (length <= (int)bufferSize)
memcpy(buffer, path + insert, length);
else
status = ENOBUFS;
out:
put_vnode(vnode);
return status;
}
/** Checks the length of every path component, and adds a '.'
* if the path ends in a slash.
* The given path buffer must be able to store at least one
* additional character.
*/
static status_t
check_path(char *to)
{
int32 length = 0;
// check length of every path component
while (*to) {
char *begin;
if (*to == '/')
to++, length++;
begin = to;
while (*to != '/' && *to)
to++, length++;
if (to - begin > B_FILE_NAME_LENGTH)
return B_NAME_TOO_LONG;
}
if (length == 0)
return B_ENTRY_NOT_FOUND;
// complete path if there is a slash at the end
if (*(to - 1) == '/') {
if (length > B_PATH_NAME_LENGTH - 2)
return B_NAME_TOO_LONG;
to[0] = '.';
to[1] = '\0';
}
return B_OK;
}
static struct file_descriptor *
get_fd_and_vnode(int fd, struct vnode **_vnode, bool kernel)
{
struct file_descriptor *descriptor = get_fd(get_current_io_context(kernel), fd);
if (descriptor == NULL)
return NULL;
if (fd_vnode(descriptor) == NULL) {
put_fd(descriptor);
return NULL;
}
// ToDo: when we can close a file descriptor at any point, investigate
// if this is still valid to do (accessing the vnode without ref_count
// or locking)
*_vnode = descriptor->u.vnode;
return descriptor;
}
static struct vnode *
get_vnode_from_fd(int fd, bool kernel)
{
struct file_descriptor *descriptor;
struct vnode *vnode;
descriptor = get_fd(get_current_io_context(kernel), fd);
if (descriptor == NULL)
return NULL;
vnode = fd_vnode(descriptor);
if (vnode != NULL)
inc_vnode_ref_count(vnode);
put_fd(descriptor);
return vnode;
}
/** Gets the vnode from an FD + path combination. If \a fd is lower than zero,
* only the path will be considered. In this case, the \a path must not be
* NULL.
* If \a fd is a valid file descriptor, \a path may be NULL for directories,
* and should be NULL for files.
*/
static status_t
fd_and_path_to_vnode(int fd, char *path, bool traverseLeafLink,
struct vnode **_vnode, vnode_id *_parentID, bool kernel)
{
if (fd < 0 && !path)
return B_BAD_VALUE;
if (fd < 0 || (path != NULL && path[0] == '/')) {
// no FD or absolute path
return path_to_vnode(path, traverseLeafLink, _vnode, _parentID, kernel);
}
// FD only, or FD + relative path
struct vnode *vnode = get_vnode_from_fd(fd, kernel);
if (!vnode)
return B_FILE_ERROR;
if (path != NULL) {
return vnode_path_to_vnode(vnode, path, traverseLeafLink, 0,
_vnode, _parentID, NULL);
}
// there is no relative path to take into account
*_vnode = vnode;
if (_parentID)
*_parentID = -1;
return B_OK;
}
static int
get_new_fd(int type, struct fs_mount *mount, struct vnode *vnode,
fs_cookie cookie, int openMode, bool kernel)
{
struct file_descriptor *descriptor;
int fd;
descriptor = alloc_fd();
if (!descriptor)
return B_NO_MEMORY;
if (vnode)
descriptor->u.vnode = vnode;
else
descriptor->u.mount = mount;
descriptor->cookie = cookie;
switch (type) {
// vnode types
case FDTYPE_FILE:
descriptor->ops = &sFileOps;
break;
case FDTYPE_DIR:
descriptor->ops = &sDirectoryOps;
break;
case FDTYPE_ATTR:
descriptor->ops = &sAttributeOps;
break;
case FDTYPE_ATTR_DIR:
descriptor->ops = &sAttributeDirectoryOps;
break;
// mount types
case FDTYPE_INDEX_DIR:
descriptor->ops = &sIndexDirectoryOps;
break;
case FDTYPE_QUERY:
descriptor->ops = &sQueryOps;
break;
default:
panic("get_new_fd() called with unknown type %d\n", type);
break;
}
descriptor->type = type;
descriptor->open_mode = openMode;
fd = new_fd(get_current_io_context(kernel), descriptor);
if (fd < 0) {
free(descriptor);
return B_NO_MORE_FDS;
}
return fd;
}
#ifdef ADD_DEBUGGER_COMMANDS
static void
_dump_advisory_locking(advisory_locking *locking)
{
if (locking == NULL)
return;
kprintf(" lock: %ld", locking->lock);
kprintf(" wait_sem: %ld", locking->wait_sem);
struct advisory_lock *lock = NULL;
int32 index = 0;
while ((lock = (advisory_lock *)list_get_next_item(&locking->locks, lock)) != NULL) {
kprintf(" [%2ld] team: %ld\n", index, lock->team);
kprintf(" offset: %Ld\n", lock->offset);
kprintf(" length: %Ld\n", lock->length);
kprintf(" shared? %s\n", lock->shared ? "yes" : "no");
}
}
static void
_dump_mount(struct fs_mount *mount)
{
kprintf("MOUNT: %p\n", mount);
kprintf(" id: %ld\n", mount->id);
kprintf(" device_name: %s\n", mount->device_name);
kprintf(" fs_name: %s\n", mount->fs_name);
kprintf(" cookie: %p\n", mount->cookie);
kprintf(" root_vnode: %p\n", mount->root_vnode);
kprintf(" covers_vnode: %p\n", mount->covers_vnode);
kprintf(" partition: %p\n", mount->partition);
kprintf(" lock: %ld\n", mount->rlock.sem);
kprintf(" flags: %s%s\n", mount->unmounting ? " unmounting" : "",
mount->owns_file_device ? " owns_file_device" : "");
}
static void
_dump_vnode(struct vnode *vnode)
{
kprintf("VNODE: %p\n", vnode);
kprintf(" device: %ld\n", vnode->device);
kprintf(" id: %Ld\n", vnode->id);
kprintf(" ref_count: %ld\n", vnode->ref_count);
kprintf(" private_node: %p\n", vnode->private_node);
kprintf(" mount: %p\n", vnode->mount);
kprintf(" covered_by: %p\n", vnode->covered_by);
kprintf(" cache_ref: %p\n", vnode->cache);
kprintf(" flags: %s%s%s\n", vnode->remove ? "r" : "-",
vnode->busy ? "b" : "-", vnode->unpublished ? "u" : "-");
kprintf(" advisory_lock: %p\n", vnode->advisory_locking);
_dump_advisory_locking(vnode->advisory_locking);
}
static int
dump_mount(int argc, char **argv)
{
if (argc != 2) {
kprintf("usage: mount [id/address]\n");
return 0;
}
struct fs_mount *mount = NULL;
// if the argument looks like a hex number, treat it as such
if (strlen(argv[1]) > 2 && argv[1][0] == '0' && argv[1][1] == 'x') {
mount = (fs_mount *)strtoul(argv[1], NULL, 16);
if (IS_USER_ADDRESS(mount)) {
kprintf("invalid fs_mount address\n");
return 0;
}
} else {
mount_id id = atoll(argv[1]);
mount = (fs_mount *)hash_lookup(sMountsTable, (void *)&id);
if (mount == NULL) {
kprintf("fs_mount not found\n");
return 0;
}
}
_dump_mount(mount);
return 0;
}
static int
dump_mounts(int argc, char **argv)
{
struct hash_iterator iterator;
struct fs_mount *mount;
kprintf("address id root covers fs_name\n");
hash_open(sMountsTable, &iterator);
while ((mount = (struct fs_mount *)hash_next(sMountsTable, &iterator)) != NULL) {
kprintf("%p%4ld %p %p %s\n", mount, mount->id, mount->root_vnode,
mount->covers_vnode, mount->fs_name);
}
hash_close(sMountsTable, &iterator, false);
return 0;
}
static int
dump_vnode(int argc, char **argv)
{
if (argc < 2) {
kprintf("usage: vnode [id/device id/address]\n");
return 0;
}
struct vnode *vnode = NULL;
// if the argument looks like a hex number, treat it as such
if (strlen(argv[1]) > 2 && argv[1][0] == '0' && argv[1][1] == 'x') {
vnode = (struct vnode *)strtoul(argv[1], NULL, 16);
if (IS_USER_ADDRESS(vnode)) {
kprintf("invalid vnode address\n");
return 0;
}
_dump_vnode(vnode);
return 0;
}
struct hash_iterator iterator;
mount_id device = -1;
vnode_id id;
if (argc > 2) {
device = atoi(argv[1]);
id = atoll(argv[2]);
} else
id = atoll(argv[1]);
hash_open(sVnodeTable, &iterator);
while ((vnode = (struct vnode *)hash_next(sVnodeTable, &iterator)) != NULL) {
if (vnode->id != id || device != -1 && vnode->device != device)
continue;
_dump_vnode(vnode);
}
hash_close(sVnodeTable, &iterator, false);
return 0;
}
static int
dump_vnodes(int argc, char **argv)
{
// restrict dumped nodes to a certain device if requested
mount_id device = -1;
if (argc > 1)
device = atoi(argv[1]);
struct hash_iterator iterator;
struct vnode *vnode;
kprintf("address dev inode ref cache locking flags\n");
hash_open(sVnodeTable, &iterator);
while ((vnode = (struct vnode *)hash_next(sVnodeTable, &iterator)) != NULL) {
if (device != -1 && vnode->device != device)
continue;
kprintf("%p%4ld%10Ld%5ld %p %p %s%s%s\n", vnode, vnode->device, vnode->id,
vnode->ref_count, vnode->cache, vnode->advisory_locking,
vnode->remove ? "r" : "-", vnode->busy ? "b" : "-",
vnode->unpublished ? "u" : "-");
}
hash_close(sVnodeTable, &iterator, false);
return 0;
}
static int
dump_vnode_caches(int argc, char **argv)
{
struct hash_iterator iterator;
struct vnode *vnode;
kprintf("address dev inode cache size pages\n");
hash_open(sVnodeTable, &iterator);
while ((vnode = (struct vnode *)hash_next(sVnodeTable, &iterator)) != NULL) {
if (vnode->cache == NULL)
continue;
// count pages in cache
size_t numPages = 0;
for (struct vm_page *page = vnode->cache->cache->page_list;
page != NULL; page = page->cache_next) {
numPages++;
}
kprintf("%p%4ld%10Ld %p %8Ld%8ld\n", vnode, vnode->device, vnode->id, vnode->cache,
(vnode->cache->cache->virtual_size + B_PAGE_SIZE - 1) / B_PAGE_SIZE, numPages);
}
hash_close(sVnodeTable, &iterator, false);
return 0;
}
int
dump_io_context(int argc, char **argv)
{
if (argc > 2) {
kprintf("usage: io_context [team id/address]\n");
return 0;
}
struct io_context *context = NULL;
if (argc > 1) {
uint32 num = strtoul(argv[1], NULL, 0);
if (IS_KERNEL_ADDRESS(num))
context = (struct io_context *)num;
else {
struct team *team = team_get_team_struct_locked(num);
if (team == NULL) {
kprintf("could not find team with ID %ld\n", num);
return 0;
}
context = (struct io_context *)team->io_context;
}
} else
context = get_current_io_context(true);
kprintf("I/O CONTEXT: %p\n", context);
kprintf(" cwd vnode:\t%p\n", context->cwd);
kprintf(" used fds:\t%lu\n", context->num_used_fds);
kprintf(" max fds:\t%lu\n", context->table_size);
if (context->num_used_fds)
kprintf(" no. type ops ref open mode pos cookie\n");
for (uint32 i = 0; i < context->table_size; i++) {
struct file_descriptor *fd = context->fds[i];
if (fd == NULL)
continue;
kprintf(" %3lu: %ld %p %3ld %4ld %4lx %10Ld %p %s %p\n", i, fd->type, fd->ops,
fd->ref_count, fd->open_count, fd->open_mode, fd->pos, fd->cookie,
fd->type >= FDTYPE_INDEX && fd->type <= FDTYPE_QUERY ? "mount" : "vnode",
fd->u.vnode);
}
kprintf(" used monitors:\t%lu\n", context->num_monitors);
kprintf(" max monitors:\t%lu\n", context->max_monitors);
return 0;
}
#endif // ADD_DEBUGGER_COMMANDS
// #pragma mark - public VFS API
extern "C" status_t
new_vnode(mount_id mountID, vnode_id vnodeID, fs_vnode privateNode)
{
FUNCTION(("new_vnode(mountID = %ld, vnodeID = %Ld, node = %p)\n",
mountID, vnodeID, privateNode));
if (privateNode == NULL)
return B_BAD_VALUE;
mutex_lock(&sVnodeMutex);
// file system integrity check:
// test if the vnode already exists and bail out if this is the case!
// ToDo: the R5 implementation obviously checks for a different cookie
// and doesn't panic if they are equal
struct vnode *vnode = lookup_vnode(mountID, vnodeID);
if (vnode != NULL)
panic("vnode %ld:%Ld already exists (node = %p, vnode->node = %p)!", mountID, vnodeID, privateNode, vnode->private_node);
status_t status = create_new_vnode(&vnode, mountID, vnodeID);
if (status == B_OK) {
vnode->private_node = privateNode;
vnode->busy = true;
vnode->unpublished = true;
}
TRACE(("returns: %s\n", strerror(status)));
mutex_unlock(&sVnodeMutex);
return status;
}
extern "C" status_t
publish_vnode(mount_id mountID, vnode_id vnodeID, fs_vnode privateNode)
{
FUNCTION(("publish_vnode()\n"));
mutex_lock(&sVnodeMutex);
struct vnode *vnode = lookup_vnode(mountID, vnodeID);
status_t status = B_OK;
if (vnode != NULL && vnode->busy && vnode->unpublished
&& vnode->private_node == privateNode) {
vnode->busy = false;
vnode->unpublished = false;
} else if (vnode == NULL && privateNode != NULL) {
status = create_new_vnode(&vnode, mountID, vnodeID);
if (status == B_OK)
vnode->private_node = privateNode;
} else
status = B_BAD_VALUE;
TRACE(("returns: %s\n", strerror(status)));
mutex_unlock(&sVnodeMutex);
return status;
}
extern "C" status_t
get_vnode(mount_id mountID, vnode_id vnodeID, fs_vnode *_fsNode)
{
struct vnode *vnode;
status_t status = get_vnode(mountID, vnodeID, &vnode, true);
if (status < B_OK)
return status;
*_fsNode = vnode->private_node;
return B_OK;
}
extern "C" status_t
put_vnode(mount_id mountID, vnode_id vnodeID)
{
struct vnode *vnode;
mutex_lock(&sVnodeMutex);
vnode = lookup_vnode(mountID, vnodeID);
mutex_unlock(&sVnodeMutex);
if (vnode)
dec_vnode_ref_count(vnode, true);
return B_OK;
}
extern "C" status_t
remove_vnode(mount_id mountID, vnode_id vnodeID)
{
struct vnode *vnode;
bool remove = false;
mutex_lock(&sVnodeMutex);
vnode = lookup_vnode(mountID, vnodeID);
if (vnode != NULL) {
if (vnode->covered_by != NULL) {
// this vnode is in use
mutex_unlock(&sVnodeMutex);
return B_BUSY;
}
vnode->remove = true;
if (vnode->unpublished) {
// prepare the vnode for deletion
vnode->busy = true;
remove = true;
}
}
mutex_unlock(&sVnodeMutex);
if (remove) {
// if the vnode hasn't been published yet, we delete it here
atomic_add(&vnode->ref_count, -1);
free_vnode(vnode, true);
}
return B_OK;
}
extern "C" status_t
unremove_vnode(mount_id mountID, vnode_id vnodeID)
{
struct vnode *vnode;
mutex_lock(&sVnodeMutex);
vnode = lookup_vnode(mountID, vnodeID);
if (vnode)
vnode->remove = false;
mutex_unlock(&sVnodeMutex);
return B_OK;
}
// #pragma mark - private VFS API
// Functions the VFS exports for other parts of the kernel
/** Acquires another reference to the vnode that has to be released
* by calling vfs_put_vnode().
*/
void
vfs_acquire_vnode(void *_vnode)
{
inc_vnode_ref_count((struct vnode *)_vnode);
}
/** This is currently called from file_cache_create() only.
* It's probably a temporary solution as long as devfs requires that
* fs_read_pages()/fs_write_pages() are called with the standard
* open cookie and not with a device cookie.
* If that's done differently, remove this call; it has no other
* purpose.
*/
extern "C" status_t
vfs_get_cookie_from_fd(int fd, void **_cookie)
{
struct file_descriptor *descriptor;
descriptor = get_fd(get_current_io_context(true), fd);
if (descriptor == NULL)
return B_FILE_ERROR;
*_cookie = descriptor->cookie;
return B_OK;
}
extern "C" int
vfs_get_vnode_from_fd(int fd, bool kernel, void **vnode)
{
*vnode = get_vnode_from_fd(fd, kernel);
if (*vnode == NULL)
return B_FILE_ERROR;
return B_NO_ERROR;
}
extern "C" status_t
vfs_get_vnode_from_path(const char *path, bool kernel, void **_vnode)
{
TRACE(("vfs_get_vnode_from_path: entry. path = '%s', kernel %d\n", path, kernel));
KPath pathBuffer(B_PATH_NAME_LENGTH + 1);
if (pathBuffer.InitCheck() != B_OK)
return B_NO_MEMORY;
char *buffer = pathBuffer.LockBuffer();
strlcpy(buffer, path, pathBuffer.BufferSize());
struct vnode *vnode;
status_t status = path_to_vnode(buffer, true, &vnode, NULL, kernel);
if (status < B_OK)
return status;
*_vnode = vnode;
return B_OK;
}
extern "C" status_t
vfs_get_vnode(mount_id mountID, vnode_id vnodeID, void **_vnode)
{
struct vnode *vnode;
status_t status = get_vnode(mountID, vnodeID, &vnode, false);
if (status < B_OK)
return status;
*_vnode = vnode;
return B_OK;
}
extern "C" status_t
vfs_entry_ref_to_vnode(mount_id mountID, vnode_id directoryID,
const char *name, void **_vnode)
{
return entry_ref_to_vnode(mountID, directoryID, name, (struct vnode **)_vnode);
}
extern "C" void
vfs_vnode_to_node_ref(void *_vnode, mount_id *_mountID, vnode_id *_vnodeID)
{
struct vnode *vnode = (struct vnode *)_vnode;
*_mountID = vnode->device;
*_vnodeID = vnode->id;
}
/** Looks up a vnode with the given mount and vnode ID.
* Must only be used with "in-use" vnodes as it doesn't grab a reference
* to the node.
* It's currently only be used by file_cache_create().
*/
extern "C" status_t
vfs_lookup_vnode(mount_id mountID, vnode_id vnodeID, void **_vnode)
{
mutex_lock(&sVnodeMutex);
struct vnode *vnode = lookup_vnode(mountID, vnodeID);
mutex_unlock(&sVnodeMutex);
if (vnode == NULL)
return B_ERROR;
*_vnode = vnode;
return B_OK;
}
extern "C" status_t
vfs_get_fs_node_from_path(mount_id mountID, const char *path, bool kernel, void **_node)
{
TRACE(("vfs_get_fs_node_from_path(mountID = %ld, path = \"%s\", kernel %d)\n",
mountID, path, kernel));
KPath pathBuffer(B_PATH_NAME_LENGTH + 1);
if (pathBuffer.InitCheck() != B_OK)
return B_NO_MEMORY;
char *buffer = pathBuffer.LockBuffer();
strlcpy(buffer, path, pathBuffer.BufferSize());
struct vnode *vnode;
status_t status = path_to_vnode(buffer, true, &vnode, NULL, kernel);
if (status < B_OK)
return status;
if (vnode->device != mountID) {
// wrong mount ID - must not gain access on foreign file system nodes
put_vnode(vnode);
return B_BAD_VALUE;
}
*_node = vnode->private_node;
return B_OK;
}
/** Finds the full path to the file that contains the module \a moduleName,
* puts it into \a pathBuffer, and returns B_OK for success.
* If \a pathBuffer was too small, it returns \c B_BUFFER_OVERFLOW,
* \c B_ENTRY_NOT_FOUNT if no file could be found.
* \a pathBuffer is clobbered in any case and must not be relied on if this
* functions returns unsuccessfully.
*/
status_t
vfs_get_module_path(const char *basePath, const char *moduleName, char *pathBuffer,
size_t bufferSize)
{
struct vnode *dir, *file;
status_t status;
size_t length;
char *path;
if (bufferSize == 0 || strlcpy(pathBuffer, basePath, bufferSize) >= bufferSize)
return B_BUFFER_OVERFLOW;
status = path_to_vnode(pathBuffer, true, &dir, NULL, true);
if (status < B_OK)
return status;
// the path buffer had been clobbered by the above call
length = strlcpy(pathBuffer, basePath, bufferSize);
if (pathBuffer[length - 1] != '/')
pathBuffer[length++] = '/';
path = pathBuffer + length;
bufferSize -= length;
while (moduleName) {
int type;
char *nextPath = strchr(moduleName, '/');
if (nextPath == NULL)
length = strlen(moduleName);
else {
length = nextPath - moduleName;
nextPath++;
}
if (length + 1 >= bufferSize) {
status = B_BUFFER_OVERFLOW;
goto err;
}
memcpy(path, moduleName, length);
path[length] = '\0';
moduleName = nextPath;
status = vnode_path_to_vnode(dir, path, true, 0, &file, NULL, &type);
if (status < B_OK)
goto err;
put_vnode(dir);
if (S_ISDIR(type)) {
// goto the next directory
path[length] = '/';
path[length + 1] = '\0';
path += length + 1;
bufferSize -= length + 1;
dir = file;
} else if (S_ISREG(type)) {
// it's a file so it should be what we've searched for
put_vnode(file);
return B_OK;
} else {
TRACE(("vfs_get_module_path(): something is strange here: %d...\n", type));
status = B_ERROR;
goto err;
}
}
// if we got here, the moduleName just pointed to a directory, not to
// a real module - what should we do in this case?
status = B_ENTRY_NOT_FOUND;
err:
put_vnode(dir);
return status;
}
/** \brief Normalizes a given path.
*
* The path must refer to an existing or non-existing entry in an existing
* directory, that is chopping off the leaf component the remaining path must
* refer to an existing directory.
*
* The returned will be canonical in that it will be absolute, will not
* contain any "." or ".." components or duplicate occurrences of '/'s,
* and none of the directory components will by symbolic links.
*
* Any two paths referring to the same entry, will result in the same
* normalized path (well, that is pretty much the definition of `normalized',
* isn't it :-).
*
* \param path The path to be normalized.
* \param buffer The buffer into which the normalized path will be written.
* \param bufferSize The size of \a buffer.
* \param kernel \c true, if the IO context of the kernel shall be used,
* otherwise that of the team this thread belongs to. Only relevant,
* if the path is relative (to get the CWD).
* \return \c B_OK if everything went fine, another error code otherwise.
*/
status_t
vfs_normalize_path(const char *path, char *buffer, size_t bufferSize,
bool kernel)
{
if (!path || !buffer || bufferSize < 1)
return B_BAD_VALUE;
TRACE(("vfs_normalize_path(`%s')\n", path));
// copy the supplied path to the stack, so it can be modified
KPath mutablePathBuffer(B_PATH_NAME_LENGTH + 1);
if (mutablePathBuffer.InitCheck() != B_OK)
return B_NO_MEMORY;
char *mutablePath = mutablePathBuffer.LockBuffer();
if (strlcpy(mutablePath, path, B_PATH_NAME_LENGTH) >= B_PATH_NAME_LENGTH)
return B_NAME_TOO_LONG;
// get the dir vnode and the leaf name
struct vnode *dirNode;
char leaf[B_FILE_NAME_LENGTH];
status_t error = path_to_dir_vnode(mutablePath, &dirNode, leaf, kernel);
if (error != B_OK) {
TRACE(("vfs_normalize_path(): failed to get dir vnode: %s\n", strerror(error)));
return error;
}
// if the leaf is "." or "..", we directly get the correct directory
// vnode and ignore the leaf later
bool isDir = (strcmp(leaf, ".") == 0 || strcmp(leaf, "..") == 0);
if (isDir)
error = vnode_path_to_vnode(dirNode, leaf, false, 0, &dirNode, NULL, NULL);
if (error != B_OK) {
TRACE(("vfs_normalize_path(): failed to get dir vnode for \".\" or \"..\": %s\n",
strerror(error)));
return error;
}
// get the directory path
error = dir_vnode_to_path(dirNode, buffer, bufferSize);
put_vnode(dirNode);
if (error < B_OK) {
TRACE(("vfs_normalize_path(): failed to get dir path: %s\n", strerror(error)));
return error;
}
// append the leaf name
if (!isDir) {
// insert a directory separator only if this is not the file system root
if ((strcmp(buffer, "/") != 0
&& strlcat(buffer, "/", bufferSize) >= bufferSize)
|| strlcat(buffer, leaf, bufferSize) >= bufferSize) {
return B_NAME_TOO_LONG;
}
}
TRACE(("vfs_normalize_path() -> `%s'\n", buffer));
return B_OK;
}
extern "C" void
vfs_put_vnode(void *_vnode)
{
put_vnode((struct vnode *)_vnode);
}
extern "C" status_t
vfs_get_cwd(mount_id *_mountID, vnode_id *_vnodeID)
{
// Get current working directory from io context
struct io_context *context = get_current_io_context(false);
status_t status = B_OK;
mutex_lock(&context->io_mutex);
if (context->cwd != NULL) {
*_mountID = context->cwd->device;
*_vnodeID = context->cwd->id;
} else
status = B_ERROR;
mutex_unlock(&context->io_mutex);
return status;
}
extern "C" bool
vfs_can_page(void *_vnode, void *cookie)
{
struct vnode *vnode = (struct vnode *)_vnode;
FUNCTION(("vfs_canpage: vnode 0x%p\n", vnode));
if (FS_CALL(vnode, can_page))
return FS_CALL(vnode, can_page)(vnode->mount->cookie, vnode->private_node, cookie);
return false;
}
extern "C" status_t
vfs_read_pages(void *_vnode, void *cookie, off_t pos, const iovec *vecs, size_t count, size_t *_numBytes)
{
struct vnode *vnode = (struct vnode *)_vnode;
FUNCTION(("vfs_read_pages: vnode %p, vecs %p, pos %Ld\n", vnode, vecs, pos));
return FS_CALL(vnode, read_pages)(vnode->mount->cookie, vnode->private_node, cookie, pos, vecs, count, _numBytes);
}
extern "C" status_t
vfs_write_pages(void *_vnode, void *cookie, off_t pos, const iovec *vecs, size_t count, size_t *_numBytes)
{
struct vnode *vnode = (struct vnode *)_vnode;
FUNCTION(("vfs_write_pages: vnode %p, vecs %p, pos %Ld\n", vnode, vecs, pos));
return FS_CALL(vnode, write_pages)(vnode->mount->cookie, vnode->private_node, cookie, pos, vecs, count, _numBytes);
}
/** Gets the vnode's vm_cache object. If it didn't have one, it will be
* created if \a allocate is \c true.
* In case it's successful, it will also grab a reference to the cache
* it returns.
*/
extern "C" status_t
vfs_get_vnode_cache(void *_vnode, vm_cache_ref **_cache, bool allocate)
{
struct vnode *vnode = (struct vnode *)_vnode;
if (vnode->cache != NULL) {
vm_cache_acquire_ref(vnode->cache);
*_cache = vnode->cache;
return B_OK;
}
mutex_lock(&sVnodeMutex);
status_t status = B_OK;
// The cache could have been created in the meantime
if (vnode->cache == NULL) {
if (allocate)
status = vm_create_vnode_cache(vnode, &vnode->cache);
else
status = B_BAD_VALUE;
} else
vm_cache_acquire_ref(vnode->cache);
if (status == B_OK)
*_cache = vnode->cache;
mutex_unlock(&sVnodeMutex);
return status;
}
status_t
vfs_get_file_map(void *_vnode, off_t offset, size_t size, file_io_vec *vecs, size_t *_count)
{
struct vnode *vnode = (struct vnode *)_vnode;
FUNCTION(("vfs_get_file_map: vnode %p, vecs %p, offset %Ld, size = %lu\n", vnode, vecs, offset, size));
return FS_CALL(vnode, get_file_map)(vnode->mount->cookie, vnode->private_node, offset, size, vecs, _count);
}
status_t
vfs_stat_vnode(void *_vnode, struct stat *stat)
{
struct vnode *vnode = (struct vnode *)_vnode;
status_t status = FS_CALL(vnode, read_stat)(vnode->mount->cookie,
vnode->private_node, stat);
// fill in the st_dev and st_ino fields
if (status == B_OK) {
stat->st_dev = vnode->device;
stat->st_ino = vnode->id;
}
return status;
}
status_t
vfs_get_vnode_name(void *_vnode, char *name, size_t nameSize)
{
return get_vnode_name((struct vnode *)_vnode, NULL, name, nameSize);
}
/** Closes all file descriptors of the specified I/O context that
* don't have the O_CLOEXEC flag set.
*/
void
vfs_exec_io_context(void *_context)
{
struct io_context *context = (struct io_context *)_context;
uint32 i;
for (i = 0; i < context->table_size; i++) {
mutex_lock(&context->io_mutex);
struct file_descriptor *descriptor = context->fds[i];
bool remove = false;
if (descriptor != NULL && fd_close_on_exec(context, i)) {
context->fds[i] = NULL;
context->num_used_fds--;
remove = true;
}
mutex_unlock(&context->io_mutex);
if (remove) {
close_fd(descriptor);
put_fd(descriptor);
}
}
}
/** Sets up a new io_control structure, and inherits the properties
* of the parent io_control if it is given.
*/
void *
vfs_new_io_context(void *_parentContext)
{
size_t tableSize;
struct io_context *context;
struct io_context *parentContext;
context = (io_context *)malloc(sizeof(struct io_context));
if (context == NULL)
return NULL;
memset(context, 0, sizeof(struct io_context));
parentContext = (struct io_context *)_parentContext;
if (parentContext)
tableSize = parentContext->table_size;
else
tableSize = DEFAULT_FD_TABLE_SIZE;
// allocate space for FDs and their close-on-exec flag
context->fds = (file_descriptor **)malloc(sizeof(struct file_descriptor *) * tableSize
+ tableSize / 8);
if (context->fds == NULL) {
free(context);
return NULL;
}
memset(context->fds, 0, sizeof(struct file_descriptor *) * tableSize
+ tableSize / 8);
context->fds_close_on_exec = (uint8 *)(context->fds + tableSize);
if (mutex_init(&context->io_mutex, "I/O context") < 0) {
free(context->fds);
free(context);
return NULL;
}
// Copy all parent files which don't have the O_CLOEXEC flag set
if (parentContext) {
size_t i;
mutex_lock(&parentContext->io_mutex);
context->cwd = parentContext->cwd;
if (context->cwd)
inc_vnode_ref_count(context->cwd);
for (i = 0; i < tableSize; i++) {
struct file_descriptor *descriptor = parentContext->fds[i];
if (descriptor != NULL && !fd_close_on_exec(parentContext, i)) {
context->fds[i] = descriptor;
context->num_used_fds++;
atomic_add(&descriptor->ref_count, 1);
atomic_add(&descriptor->open_count, 1);
}
}
mutex_unlock(&parentContext->io_mutex);
} else {
context->cwd = sRoot;
if (context->cwd)
inc_vnode_ref_count(context->cwd);
}
context->table_size = tableSize;
list_init(&context->node_monitors);
context->max_monitors = MAX_NODE_MONITORS;
return context;
}
status_t
vfs_free_io_context(void *_ioContext)
{
struct io_context *context = (struct io_context *)_ioContext;
uint32 i;
if (context->cwd)
dec_vnode_ref_count(context->cwd, false);
mutex_lock(&context->io_mutex);
for (i = 0; i < context->table_size; i++) {
if (struct file_descriptor *descriptor = context->fds[i]) {
close_fd(descriptor);
put_fd(descriptor);
}
}
mutex_destroy(&context->io_mutex);
remove_node_monitors(context);
free(context->fds);
free(context);
return B_OK;
}
static status_t
vfs_resize_fd_table(struct io_context *context, const int newSize)
{
void *fds;
int status = B_OK;
if (newSize <= 0 || newSize > MAX_FD_TABLE_SIZE)
return EINVAL;
mutex_lock(&context->io_mutex);
if ((size_t)newSize < context->table_size) {
// shrink the fd table
int i;
// Make sure none of the fds being dropped are in use
for(i = context->table_size; i-- > newSize;) {
if (context->fds[i]) {
status = EBUSY;
goto out;
}
}
fds = malloc(sizeof(struct file_descriptor *) * newSize);
if (fds == NULL) {
status = ENOMEM;
goto out;
}
memcpy(fds, context->fds, sizeof(struct file_descriptor *) * newSize);
} else {
// enlarge the fd table
fds = malloc(sizeof(struct file_descriptor *) * newSize);
if (fds == NULL) {
status = ENOMEM;
goto out;
}
// copy the fd array, and zero the additional slots
memcpy(fds, context->fds, sizeof(void *) * context->table_size);
memset((char *)fds + (sizeof(void *) * context->table_size), 0,
sizeof(void *) * (newSize - context->table_size));
}
free(context->fds);
context->fds = (file_descriptor **)fds;
context->table_size = newSize;
out:
mutex_unlock(&context->io_mutex);
return status;
}
int
vfs_getrlimit(int resource, struct rlimit * rlp)
{
if (!rlp)
return -1;
switch (resource) {
case RLIMIT_NOFILE:
{
struct io_context *ioctx = get_current_io_context(false);
mutex_lock(&ioctx->io_mutex);
rlp->rlim_cur = ioctx->table_size;
rlp->rlim_max = MAX_FD_TABLE_SIZE;
mutex_unlock(&ioctx->io_mutex);
return 0;
}
default:
return -1;
}
}
int
vfs_setrlimit(int resource, const struct rlimit * rlp)
{
if (!rlp)
return -1;
switch (resource) {
case RLIMIT_NOFILE:
return vfs_resize_fd_table(get_current_io_context(false), rlp->rlim_cur);
default:
return -1;
}
}
status_t
vfs_init(kernel_args *args)
{
sVnodeTable = hash_init(VNODE_HASH_TABLE_SIZE, offsetof(struct vnode, next),
&vnode_compare, &vnode_hash);
if (sVnodeTable == NULL)
panic("vfs_init: error creating vnode hash table\n");
list_init_etc(&sUnusedVnodeList, offsetof(struct vnode, unused_link));
sMountsTable = hash_init(MOUNTS_HASH_TABLE_SIZE, offsetof(struct fs_mount, next),
&mount_compare, &mount_hash);
if (sMountsTable == NULL)
panic("vfs_init: error creating mounts hash table\n");
node_monitor_init();
sRoot = NULL;
if (mutex_init(&sFileSystemsMutex, "vfs_lock") < 0)
panic("vfs_init: error allocating file systems lock\n");
if (recursive_lock_init(&sMountOpLock, "vfs_mount_op_lock") < 0)
panic("vfs_init: error allocating mount op lock\n");
if (mutex_init(&sMountMutex, "vfs_mount_lock") < 0)
panic("vfs_init: error allocating mount lock\n");
if (mutex_init(&sVnodeMutex, "vfs_vnode_lock") < 0)
panic("vfs_init: error allocating vnode lock\n");
if (block_cache_init() != B_OK)
return B_ERROR;
#ifdef ADD_DEBUGGER_COMMANDS
// add some debugger commands
add_debugger_command("vnode", &dump_vnode, "info about the specified vnode");
add_debugger_command("vnodes", &dump_vnodes, "list all vnodes (from the specified device)");
add_debugger_command("vnode_caches", &dump_vnode_caches, "list all vnode caches");
add_debugger_command("mount", &dump_mount, "info about the specified fs_mount");
add_debugger_command("mounts", &dump_mounts, "list all fs_mounts");
add_debugger_command("io_context", &dump_io_context, "info about the I/O context");
#endif
register_low_memory_handler(&vnode_low_memory_handler, NULL, 0);
return file_cache_init();
}
// #pragma mark -
// The filetype-dependent implementations (fd_ops + open/create/rename/remove, ...)
/** Calls fs_open() on the given vnode and returns a new
* file descriptor for it
*/
static int
create_vnode(struct vnode *directory, const char *name, int openMode, int perms, bool kernel)
{
struct vnode *vnode;
fs_cookie cookie;
vnode_id newID;
int status;
if (FS_CALL(directory, create) == NULL)
return EROFS;
status = FS_CALL(directory, create)(directory->mount->cookie, directory->private_node, name, openMode, perms, &cookie, &newID);
if (status < B_OK)
return status;
mutex_lock(&sVnodeMutex);
vnode = lookup_vnode(directory->device, newID);
mutex_unlock(&sVnodeMutex);
if (vnode == NULL) {
dprintf("vfs: fs_create() returned success but there is no vnode!");
return EINVAL;
}
if ((status = get_new_fd(FDTYPE_FILE, NULL, vnode, cookie, openMode, kernel)) >= 0)
return status;
// something went wrong, clean up
FS_CALL(vnode, close)(vnode->mount->cookie, vnode->private_node, cookie);
FS_CALL(vnode, free_cookie)(vnode->mount->cookie, vnode->private_node, cookie);
put_vnode(vnode);
FS_CALL(directory, unlink)(directory->mount->cookie, directory->private_node, name);
return status;
}
/** Calls fs_open() on the given vnode and returns a new
* file descriptor for it
*/
static int
open_vnode(struct vnode *vnode, int openMode, bool kernel)
{
fs_cookie cookie;
int status;
status = FS_CALL(vnode, open)(vnode->mount->cookie, vnode->private_node, openMode, &cookie);
if (status < 0)
return status;
status = get_new_fd(FDTYPE_FILE, NULL, vnode, cookie, openMode, kernel);
if (status < 0) {
FS_CALL(vnode, close)(vnode->mount->cookie, vnode->private_node, cookie);
FS_CALL(vnode, free_cookie)(vnode->mount->cookie, vnode->private_node, cookie);
}
return status;
}
/** Calls fs open_dir() on the given vnode and returns a new
* file descriptor for it
*/
static int
open_dir_vnode(struct vnode *vnode, bool kernel)
{
fs_cookie cookie;
int status;
status = FS_CALL(vnode, open_dir)(vnode->mount->cookie, vnode->private_node, &cookie);
if (status < B_OK)
return status;
// file is opened, create a fd
status = get_new_fd(FDTYPE_DIR, NULL, vnode, cookie, 0, kernel);
if (status >= 0)
return status;
FS_CALL(vnode, close_dir)(vnode->mount->cookie, vnode->private_node, cookie);
FS_CALL(vnode, free_dir_cookie)(vnode->mount->cookie, vnode->private_node, cookie);
return status;
}
/** Calls fs open_attr_dir() on the given vnode and returns a new
* file descriptor for it.
* Used by attr_dir_open(), and attr_dir_open_fd().
*/
static int
open_attr_dir_vnode(struct vnode *vnode, bool kernel)
{
fs_cookie cookie;
int status;
if (FS_CALL(vnode, open_attr_dir) == NULL)
return EOPNOTSUPP;
status = FS_CALL(vnode, open_attr_dir)(vnode->mount->cookie, vnode->private_node, &cookie);
if (status < 0)
return status;
// file is opened, create a fd
status = get_new_fd(FDTYPE_ATTR_DIR, NULL, vnode, cookie, 0, kernel);
if (status >= 0)
return status;
FS_CALL(vnode, close_attr_dir)(vnode->mount->cookie, vnode->private_node, cookie);
FS_CALL(vnode, free_attr_dir_cookie)(vnode->mount->cookie, vnode->private_node, cookie);
return status;
}
static int
file_create_entry_ref(mount_id mountID, vnode_id directoryID, const char *name, int openMode, int perms, bool kernel)
{
struct vnode *directory;
int status;
FUNCTION(("file_create_entry_ref: name = '%s', omode %x, perms %d, kernel %d\n", name, openMode, perms, kernel));
// get directory to put the new file in
status = get_vnode(mountID, directoryID, &directory, false);
if (status < B_OK)
return status;
status = create_vnode(directory, name, openMode, perms, kernel);
put_vnode(directory);
return status;
}
static int
file_create(int fd, char *path, int openMode, int perms, bool kernel)
{
char name[B_FILE_NAME_LENGTH];
struct vnode *directory;
int status;
FUNCTION(("file_create: path '%s', omode %x, perms %d, kernel %d\n", path, openMode, perms, kernel));
// get directory to put the new file in
status = fd_and_path_to_dir_vnode(fd, path, &directory, name, kernel);
if (status < 0)
return status;
status = create_vnode(directory, name, openMode, perms, kernel);
put_vnode(directory);
return status;
}
static int
file_open_entry_ref(mount_id mountID, vnode_id directoryID, const char *name, int openMode, bool kernel)
{
struct vnode *vnode;
int status;
if (name == NULL || *name == '\0')
return B_BAD_VALUE;
FUNCTION(("file_open_entry_ref(ref = (%ld, %Ld, %s), openMode = %d)\n",
mountID, directoryID, name, openMode));
// get the vnode matching the entry_ref
status = entry_ref_to_vnode(mountID, directoryID, name, &vnode);
if (status < B_OK)
return status;
status = open_vnode(vnode, openMode, kernel);
if (status < B_OK)
put_vnode(vnode);
cache_node_opened(vnode, FDTYPE_FILE, vnode->cache, mountID, directoryID, vnode->id, name);
return status;
}
static int
file_open(int fd, char *path, int openMode, bool kernel)
{
int status = B_OK;
bool traverse = ((openMode & O_NOTRAVERSE) == 0);
FUNCTION(("file_open: fd: %d, entry path = '%s', omode %d, kernel %d\n",
fd, path, openMode, kernel));
// get the vnode matching the vnode + path combination
struct vnode *vnode = NULL;
vnode_id parentID;
status = fd_and_path_to_vnode(fd, path, traverse, &vnode, &parentID, kernel);
if (status != B_OK)
return status;
// open the vnode
status = open_vnode(vnode, openMode, kernel);
// put only on error -- otherwise our reference was transferred to the FD
if (status < B_OK)
put_vnode(vnode);
cache_node_opened(vnode, FDTYPE_FILE, vnode->cache,
vnode->device, parentID, vnode->id, NULL);
return status;
}
static status_t
file_close(struct file_descriptor *descriptor)
{
struct vnode *vnode = descriptor->u.vnode;
status_t status = B_OK;
FUNCTION(("file_close(descriptor = %p)\n", descriptor));
cache_node_closed(vnode, FDTYPE_FILE, vnode->cache, vnode->device, vnode->id);
if (FS_CALL(vnode, close))
status = FS_CALL(vnode, close)(vnode->mount->cookie, vnode->private_node, descriptor->cookie);
if (status == B_OK) {
// remove all outstanding locks for this team
release_advisory_lock(vnode, NULL);
}
return status;
}
static void
file_free_fd(struct file_descriptor *descriptor)
{
struct vnode *vnode = descriptor->u.vnode;
if (vnode != NULL) {
FS_CALL(vnode, free_cookie)(vnode->mount->cookie, vnode->private_node, descriptor->cookie);
put_vnode(vnode);
}
}
static status_t
file_read(struct file_descriptor *descriptor, off_t pos, void *buffer, size_t *length)
{
struct vnode *vnode = descriptor->u.vnode;
FUNCTION(("file_read: buf %p, pos %Ld, len %p = %ld\n", buffer, pos, length, *length));
return FS_CALL(vnode, read)(vnode->mount->cookie, vnode->private_node, descriptor->cookie, pos, buffer, length);
}
static status_t
file_write(struct file_descriptor *descriptor, off_t pos, const void *buffer, size_t *length)
{
struct vnode *vnode = descriptor->u.vnode;
FUNCTION(("file_write: buf %p, pos %Ld, len %p\n", buffer, pos, length));
return FS_CALL(vnode, write)(vnode->mount->cookie, vnode->private_node, descriptor->cookie, pos, buffer, length);
}
static off_t
file_seek(struct file_descriptor *descriptor, off_t pos, int seekType)
{
off_t offset;
FUNCTION(("file_seek(pos = %Ld, seekType = %d)\n", pos, seekType));
// ToDo: seek should fail for pipes and FIFOs...
switch (seekType) {
case SEEK_SET:
offset = 0;
break;
case SEEK_CUR:
offset = descriptor->pos;
break;
case SEEK_END:
{
struct vnode *vnode = descriptor->u.vnode;
struct stat stat;
status_t status;
if (FS_CALL(vnode, read_stat) == NULL)
return EOPNOTSUPP;
status = FS_CALL(vnode, read_stat)(vnode->mount->cookie, vnode->private_node, &stat);
if (status < B_OK)
return status;
offset = stat.st_size;
break;
}
default:
return B_BAD_VALUE;
}
// assumes off_t is 64 bits wide
if (offset > 0 && LONGLONG_MAX - offset < pos)
return EOVERFLOW;
pos += offset;
if (pos < 0)
return B_BAD_VALUE;
return descriptor->pos = pos;
}
static status_t
file_select(struct file_descriptor *descriptor, uint8 event, uint32 ref,
struct select_sync *sync)
{
FUNCTION(("file_select(%p, %u, %lu, %p)\n", descriptor, event, ref, sync));
struct vnode *vnode = descriptor->u.vnode;
// If the FS has no select() hook, notify select() now.
if (FS_CALL(vnode, select) == NULL)
return notify_select_event((selectsync*)sync, ref, event);
return FS_CALL(vnode, select)(vnode->mount->cookie, vnode->private_node,
descriptor->cookie, event, ref, (selectsync*)sync);
}
static status_t
file_deselect(struct file_descriptor *descriptor, uint8 event,
struct select_sync *sync)
{
struct vnode *vnode = descriptor->u.vnode;
if (FS_CALL(vnode, deselect) == NULL)
return B_OK;
return FS_CALL(vnode, deselect)(vnode->mount->cookie, vnode->private_node,
descriptor->cookie, event, (selectsync*)sync);
}
static status_t
dir_create_entry_ref(mount_id mountID, vnode_id parentID, const char *name, int perms, bool kernel)
{
struct vnode *vnode;
vnode_id newID;
status_t status;
if (name == NULL || *name == '\0')
return B_BAD_VALUE;
FUNCTION(("dir_create_entry_ref(dev = %ld, ino = %Ld, name = '%s', perms = %d)\n", mountID, parentID, name, perms));
status = get_vnode(mountID, parentID, &vnode, kernel);
if (status < B_OK)
return status;
if (FS_CALL(vnode, create_dir))
status = FS_CALL(vnode, create_dir)(vnode->mount->cookie, vnode->private_node, name, perms, &newID);
else
status = EROFS;
put_vnode(vnode);
return status;
}
static status_t
dir_create(int fd, char *path, int perms, bool kernel)
{
char filename[B_FILE_NAME_LENGTH];
struct vnode *vnode;
vnode_id newID;
status_t status;
FUNCTION(("dir_create: path '%s', perms %d, kernel %d\n", path, perms, kernel));
status = fd_and_path_to_dir_vnode(fd, path, &vnode, filename, kernel);
if (status < 0)
return status;
if (FS_CALL(vnode, create_dir))
status = FS_CALL(vnode, create_dir)(vnode->mount->cookie, vnode->private_node, filename, perms, &newID);
else
status = EROFS;
put_vnode(vnode);
return status;
}
static int
dir_open_entry_ref(mount_id mountID, vnode_id parentID, const char *name, bool kernel)
{
struct vnode *vnode;
int status;
FUNCTION(("dir_open_entry_ref()\n"));
if (name && *name == '\0')
return B_BAD_VALUE;
// get the vnode matching the entry_ref/node_ref
if (name)
status = entry_ref_to_vnode(mountID, parentID, name, &vnode);
else
status = get_vnode(mountID, parentID, &vnode, false);
if (status < B_OK)
return status;
status = open_dir_vnode(vnode, kernel);
if (status < B_OK)
put_vnode(vnode);
cache_node_opened(vnode, FDTYPE_DIR, vnode->cache, mountID, parentID, vnode->id, name);
return status;
}
static int
dir_open(int fd, char *path, bool kernel)
{
int status = B_OK;
FUNCTION(("dir_open: fd: %d, entry path = '%s', kernel %d\n", fd, path, kernel));
// get the vnode matching the vnode + path combination
struct vnode *vnode = NULL;
vnode_id parentID;
status = fd_and_path_to_vnode(fd, path, true, &vnode, &parentID, kernel);
if (status != B_OK)
return status;
// open the dir
status = open_dir_vnode(vnode, kernel);
if (status < B_OK)
put_vnode(vnode);
cache_node_opened(vnode, FDTYPE_DIR, vnode->cache, vnode->device, parentID, vnode->id, NULL);
return status;
}
static status_t
dir_close(struct file_descriptor *descriptor)
{
struct vnode *vnode = descriptor->u.vnode;
FUNCTION(("dir_close(descriptor = %p)\n", descriptor));
cache_node_closed(vnode, FDTYPE_DIR, vnode->cache, vnode->device, vnode->id);
if (FS_CALL(vnode, close_dir))
return FS_CALL(vnode, close_dir)(vnode->mount->cookie, vnode->private_node, descriptor->cookie);
return B_OK;
}
static void
dir_free_fd(struct file_descriptor *descriptor)
{
struct vnode *vnode = descriptor->u.vnode;
if (vnode != NULL) {
FS_CALL(vnode, free_dir_cookie)(vnode->mount->cookie, vnode->private_node, descriptor->cookie);
put_vnode(vnode);
}
}
static status_t
dir_read(struct file_descriptor *descriptor, struct dirent *buffer, size_t bufferSize, uint32 *_count)
{
return dir_read(descriptor->u.vnode, descriptor->cookie, buffer, bufferSize, _count);
}
static void
fix_dirent(struct vnode *parent, struct dirent *entry)
{
// set d_pdev and d_pino
entry->d_pdev = parent->device;
entry->d_pino = parent->id;
// If this is the ".." entry and the directory is the root of a FS,
// we need to replace d_dev and d_ino with the actual values.
if (strcmp(entry->d_name, "..") == 0
&& parent->mount->root_vnode == parent
&& parent->mount->covers_vnode) {
inc_vnode_ref_count(parent); // vnode_path_to_vnode() puts the node
struct vnode *vnode;
status_t status = vnode_path_to_vnode(parent, "..", false, 0, &vnode,
NULL, NULL);
if (status == B_OK) {
entry->d_dev = vnode->device;
entry->d_ino = vnode->id;
}
} else {
// resolve mount points
struct vnode *vnode = NULL;
status_t status = get_vnode(entry->d_dev, entry->d_ino, &vnode, false);
if (status != B_OK)
return;
recursive_lock_lock(&sMountOpLock);
if (vnode->covered_by) {
entry->d_dev = vnode->covered_by->device;
entry->d_ino = vnode->covered_by->id;
}
recursive_lock_unlock(&sMountOpLock);
put_vnode(vnode);
}
}
static status_t
dir_read(struct vnode *vnode, fs_cookie cookie, struct dirent *buffer, size_t bufferSize, uint32 *_count)
{
if (!FS_CALL(vnode, read_dir))
return EOPNOTSUPP;
status_t error = FS_CALL(vnode, read_dir)(vnode->mount->cookie,vnode->private_node,cookie,buffer,bufferSize,_count);
if (error != B_OK)
return error;
// we need to adjust the read dirents
if (*_count > 0) {
// XXX: Currently reading only one dirent is supported. Make this a loop!
fix_dirent(vnode, buffer);
}
return error;
}
static status_t
dir_rewind(struct file_descriptor *descriptor)
{
struct vnode *vnode = descriptor->u.vnode;
if (FS_CALL(vnode, rewind_dir))
return FS_CALL(vnode, rewind_dir)(vnode->mount->cookie,vnode->private_node,descriptor->cookie);
return EOPNOTSUPP;
}
static status_t
dir_remove(int fd, char *path, bool kernel)
{
char name[B_FILE_NAME_LENGTH];
struct vnode *directory;
status_t status;
status = fd_and_path_to_dir_vnode(fd, path, &directory, name, kernel);
if (status < 0)
return status;
if (FS_CALL(directory, remove_dir)) {
status = FS_CALL(directory, remove_dir)(directory->mount->cookie,
directory->private_node, name);
} else
status = EROFS;
put_vnode(directory);
return status;
}
static status_t
common_ioctl(struct file_descriptor *descriptor, ulong op, void *buffer, size_t length)
{
struct vnode *vnode = descriptor->u.vnode;
if (FS_CALL(vnode, ioctl)) {
return FS_CALL(vnode, ioctl)(vnode->mount->cookie, vnode->private_node,
descriptor->cookie, op, buffer, length);
}
return EOPNOTSUPP;
}
static status_t
common_fcntl(int fd, int op, uint32 argument, bool kernel)
{
struct file_descriptor *descriptor;
struct vnode *vnode;
struct flock flock;
status_t status;
FUNCTION(("common_fcntl(fd = %d, op = %d, argument = %lx, %s)\n",
fd, op, argument, kernel ? "kernel" : "user"));
descriptor = get_fd_and_vnode(fd, &vnode, kernel);
if (descriptor == NULL)
return B_FILE_ERROR;
if (op == F_SETLK || op == F_SETLKW || op == F_GETLK) {
if (descriptor->type != FDTYPE_FILE)
return B_BAD_VALUE;
if (user_memcpy(&flock, (struct flock *)argument, sizeof(struct flock)) < B_OK)
return B_BAD_ADDRESS;
}
switch (op) {
case F_SETFD:
{
struct io_context *context = get_current_io_context(kernel);
// Set file descriptor flags
// O_CLOEXEC is the only flag available at this time
mutex_lock(&context->io_mutex);
fd_set_close_on_exec(context, fd, argument == FD_CLOEXEC);
mutex_unlock(&context->io_mutex);
status = B_OK;
break;
}
case F_GETFD:
{
struct io_context *context = get_current_io_context(kernel);
// Get file descriptor flags
mutex_lock(&context->io_mutex);
status = fd_close_on_exec(context, fd) ? FD_CLOEXEC : 0;
mutex_unlock(&context->io_mutex);
break;
}
case F_SETFL:
// Set file descriptor open mode
if (FS_CALL(vnode, set_flags)) {
// we only accept changes to O_APPEND and O_NONBLOCK
argument &= O_APPEND | O_NONBLOCK;
status = FS_CALL(vnode, set_flags)(vnode->mount->cookie,
vnode->private_node, descriptor->cookie, (int)argument);
if (status == B_OK) {
// update this descriptor's open_mode field
descriptor->open_mode = (descriptor->open_mode & ~(O_APPEND | O_NONBLOCK))
| argument;
}
} else
status = EOPNOTSUPP;
break;
case F_GETFL:
// Get file descriptor open mode
status = descriptor->open_mode;
break;
case F_DUPFD:
{
struct io_context *context = get_current_io_context(kernel);
status = new_fd_etc(context, descriptor, (int)argument);
if (status >= 0) {
mutex_lock(&context->io_mutex);
fd_set_close_on_exec(context, fd, false);
mutex_unlock(&context->io_mutex);
atomic_add(&descriptor->ref_count, 1);
}
break;
}
case F_GETLK:
status = get_advisory_lock(descriptor->u.vnode, &flock);
if (status == B_OK) {
// copy back flock structure
status = user_memcpy((struct flock *)argument, &flock, sizeof(struct flock));
}
break;
case F_SETLK:
case F_SETLKW:
status = normalize_flock(descriptor, &flock);
if (status < B_OK)
break;
if (flock.l_type == F_UNLCK)
status = release_advisory_lock(descriptor->u.vnode, &flock);
else {
// the open mode must match the lock type
if ((descriptor->open_mode & O_RWMASK) == O_RDONLY && flock.l_type == F_WRLCK
|| (descriptor->open_mode & O_RWMASK) == O_WRONLY && flock.l_type == F_RDLCK)
status = B_FILE_ERROR;
else
status = acquire_advisory_lock(descriptor->u.vnode, &flock, op == F_SETLKW);
}
break;
// ToDo: add support for more ops?
default:
status = B_BAD_VALUE;
}
put_fd(descriptor);
return status;
}
static status_t
common_sync(int fd, bool kernel)
{
struct file_descriptor *descriptor;
struct vnode *vnode;
status_t status;
FUNCTION(("common_fsync: entry. fd %d kernel %d\n", fd, kernel));
descriptor = get_fd_and_vnode(fd, &vnode, kernel);
if (descriptor == NULL)
return B_FILE_ERROR;
if (FS_CALL(vnode, fsync) != NULL)
status = FS_CALL(vnode, fsync)(vnode->mount->cookie, vnode->private_node);
else
status = EOPNOTSUPP;
put_fd(descriptor);
return status;
}
static status_t
common_lock_node(int fd, bool kernel)
{
// TODO: Implement!
return EOPNOTSUPP;
}
static status_t
common_unlock_node(int fd, bool kernel)
{
// TODO: Implement!
return EOPNOTSUPP;
}
static status_t
common_read_link(int fd, char *path, char *buffer, size_t *_bufferSize,
bool kernel)
{
struct vnode *vnode;
status_t status;
status = fd_and_path_to_vnode(fd, path, false, &vnode, NULL, kernel);
if (status < B_OK)
return status;
if (FS_CALL(vnode, read_link) != NULL) {
status = FS_CALL(vnode, read_link)(vnode->mount->cookie,
vnode->private_node, buffer, _bufferSize);
} else
status = B_BAD_VALUE;
put_vnode(vnode);
return status;
}
static status_t
common_write_link(char *path, char *toPath, bool kernel)
{
struct vnode *vnode;
status_t status;
status = path_to_vnode(path, false, &vnode, NULL, kernel);
if (status < B_OK)
return status;
if (FS_CALL(vnode, write_link) != NULL)
status = FS_CALL(vnode, write_link)(vnode->mount->cookie, vnode->private_node, toPath);
else
status = EOPNOTSUPP;
put_vnode(vnode);
return status;
}
static status_t
common_create_symlink(int fd, char *path, const char *toPath, int mode,
bool kernel)
{
// path validity checks have to be in the calling function!
char name[B_FILE_NAME_LENGTH];
struct vnode *vnode;
status_t status;
FUNCTION(("common_create_symlink(fd = %d, path = %s, toPath = %s, mode = %d, kernel = %d)\n", fd, path, toPath, mode, kernel));
status = fd_and_path_to_dir_vnode(fd, path, &vnode, name, kernel);
if (status < B_OK)
return status;
if (FS_CALL(vnode, create_symlink) != NULL)
status = FS_CALL(vnode, create_symlink)(vnode->mount->cookie, vnode->private_node, name, toPath, mode);
else
status = EROFS;
put_vnode(vnode);
return status;
}
static status_t
common_create_link(char *path, char *toPath, bool kernel)
{
// path validity checks have to be in the calling function!
char name[B_FILE_NAME_LENGTH];
struct vnode *directory, *vnode;
status_t status;
FUNCTION(("common_create_link(path = %s, toPath = %s, kernel = %d)\n", path, toPath, kernel));
status = path_to_dir_vnode(path, &directory, name, kernel);
if (status < B_OK)
return status;
status = path_to_vnode(toPath, true, &vnode, NULL, kernel);
if (status < B_OK)
goto err;
if (directory->mount != vnode->mount) {
status = B_CROSS_DEVICE_LINK;
goto err1;
}
if (FS_CALL(vnode, link) != NULL)
status = FS_CALL(vnode, link)(directory->mount->cookie, directory->private_node, name, vnode->private_node);
else
status = EROFS;
err1:
put_vnode(vnode);
err:
put_vnode(directory);
return status;
}
static status_t
common_unlink(int fd, char *path, bool kernel)
{
char filename[B_FILE_NAME_LENGTH];
struct vnode *vnode;
status_t status;
FUNCTION(("common_unlink: fd: %d, path '%s', kernel %d\n", fd, path, kernel));
status = fd_and_path_to_dir_vnode(fd, path, &vnode, filename, kernel);
if (status < 0)
return status;
if (FS_CALL(vnode, unlink) != NULL)
status = FS_CALL(vnode, unlink)(vnode->mount->cookie, vnode->private_node, filename);
else
status = EROFS;
put_vnode(vnode);
return status;
}
static status_t
common_access(char *path, int mode, bool kernel)
{
struct vnode *vnode;
status_t status;
status = path_to_vnode(path, true, &vnode, NULL, kernel);
if (status < B_OK)
return status;
if (FS_CALL(vnode, access) != NULL)
status = FS_CALL(vnode, access)(vnode->mount->cookie, vnode->private_node, mode);
else
status = B_OK;
put_vnode(vnode);
return status;
}
static status_t
common_rename(int fd, char *path, int newFD, char *newPath, bool kernel)
{
struct vnode *fromVnode, *toVnode;
char fromName[B_FILE_NAME_LENGTH];
char toName[B_FILE_NAME_LENGTH];
status_t status;
FUNCTION(("common_rename(fd = %d, path = %s, newFD = %d, newPath = %s, kernel = %d)\n", fd, path, newFD, newPath, kernel));
status = fd_and_path_to_dir_vnode(fd, path, &fromVnode, fromName, kernel);
if (status < 0)
return status;
status = fd_and_path_to_dir_vnode(newFD, newPath, &toVnode, toName, kernel);
if (status < 0)
goto err;
if (fromVnode->device != toVnode->device) {
status = B_CROSS_DEVICE_LINK;
goto err1;
}
if (FS_CALL(fromVnode, rename) != NULL)
status = FS_CALL(fromVnode, rename)(fromVnode->mount->cookie, fromVnode->private_node, fromName, toVnode->private_node, toName);
else
status = EROFS;
err1:
put_vnode(toVnode);
err:
put_vnode(fromVnode);
return status;
}
static status_t
common_read_stat(struct file_descriptor *descriptor, struct stat *stat)
{
struct vnode *vnode = descriptor->u.vnode;
FUNCTION(("common_read_stat: stat %p\n", stat));
status_t status = FS_CALL(vnode, read_stat)(vnode->mount->cookie,
vnode->private_node, stat);
// fill in the st_dev and st_ino fields
if (status == B_OK) {
stat->st_dev = vnode->device;
stat->st_ino = vnode->id;
}
return status;
}
static status_t
common_write_stat(struct file_descriptor *descriptor, const struct stat *stat, int statMask)
{
struct vnode *vnode = descriptor->u.vnode;
FUNCTION(("common_write_stat(vnode = %p, stat = %p, statMask = %d)\n", vnode, stat, statMask));
if (!FS_CALL(vnode, write_stat))
return EROFS;
return FS_CALL(vnode, write_stat)(vnode->mount->cookie, vnode->private_node, stat, statMask);
}
static status_t
common_path_read_stat(int fd, char *path, bool traverseLeafLink,
struct stat *stat, bool kernel)
{
struct vnode *vnode;
status_t status;
FUNCTION(("common_path_read_stat: fd: %d, path '%s', stat %p,\n", fd, path, stat));
status = fd_and_path_to_vnode(fd, path, traverseLeafLink, &vnode, NULL, kernel);
if (status < 0)
return status;
status = FS_CALL(vnode, read_stat)(vnode->mount->cookie, vnode->private_node, stat);
// fill in the st_dev and st_ino fields
if (status == B_OK) {
stat->st_dev = vnode->device;
stat->st_ino = vnode->id;
}
put_vnode(vnode);
return status;
}
static status_t
common_path_write_stat(int fd, char *path, bool traverseLeafLink,
const struct stat *stat, int statMask, bool kernel)
{
struct vnode *vnode;
status_t status;
FUNCTION(("common_write_stat: fd: %d, path '%s', stat %p, stat_mask %d, kernel %d\n", fd, path, stat, statMask, kernel));
status = fd_and_path_to_vnode(fd, path, traverseLeafLink, &vnode, NULL, kernel);
if (status < 0)
return status;
if (FS_CALL(vnode, write_stat))
status = FS_CALL(vnode, write_stat)(vnode->mount->cookie, vnode->private_node, stat, statMask);
else
status = EROFS;
put_vnode(vnode);
return status;
}
static int
attr_dir_open(int fd, char *path, bool kernel)
{
struct vnode *vnode;
int status;
FUNCTION(("attr_dir_open(fd = %d, path = '%s', kernel = %d)\n", fd, path, kernel));
status = fd_and_path_to_vnode(fd, path, true, &vnode, NULL, kernel);
if (status < B_OK)
return status;
status = open_attr_dir_vnode(vnode, kernel);
if (status < 0)
put_vnode(vnode);
return status;
}
static status_t
attr_dir_close(struct file_descriptor *descriptor)
{
struct vnode *vnode = descriptor->u.vnode;
FUNCTION(("attr_dir_close(descriptor = %p)\n", descriptor));
if (FS_CALL(vnode, close_attr_dir))
return FS_CALL(vnode, close_attr_dir)(vnode->mount->cookie, vnode->private_node, descriptor->cookie);
return B_OK;
}
static void
attr_dir_free_fd(struct file_descriptor *descriptor)
{
struct vnode *vnode = descriptor->u.vnode;
if (vnode != NULL) {
FS_CALL(vnode, free_attr_dir_cookie)(vnode->mount->cookie, vnode->private_node, descriptor->cookie);
put_vnode(vnode);
}
}
static status_t
attr_dir_read(struct file_descriptor *descriptor, struct dirent *buffer, size_t bufferSize, uint32 *_count)
{
struct vnode *vnode = descriptor->u.vnode;
FUNCTION(("attr_dir_read(descriptor = %p)\n", descriptor));
if (FS_CALL(vnode, read_attr_dir))
return FS_CALL(vnode, read_attr_dir)(vnode->mount->cookie, vnode->private_node, descriptor->cookie, buffer, bufferSize, _count);
return EOPNOTSUPP;
}
static status_t
attr_dir_rewind(struct file_descriptor *descriptor)
{
struct vnode *vnode = descriptor->u.vnode;
FUNCTION(("attr_dir_rewind(descriptor = %p)\n", descriptor));
if (FS_CALL(vnode, rewind_attr_dir))
return FS_CALL(vnode, rewind_attr_dir)(vnode->mount->cookie, vnode->private_node, descriptor->cookie);
return EOPNOTSUPP;
}
static int
attr_create(int fd, const char *name, uint32 type, int openMode, bool kernel)
{
struct vnode *vnode;
fs_cookie cookie;
int status;
if (name == NULL || *name == '\0')
return B_BAD_VALUE;
vnode = get_vnode_from_fd(fd, kernel);
if (vnode == NULL)
return B_FILE_ERROR;
if (FS_CALL(vnode, create_attr) == NULL) {
status = EROFS;
goto err;
}
status = FS_CALL(vnode, create_attr)(vnode->mount->cookie, vnode->private_node, name, type, openMode, &cookie);
if (status < B_OK)
goto err;
if ((status = get_new_fd(FDTYPE_ATTR, NULL, vnode, cookie, openMode, kernel)) >= 0)
return status;
FS_CALL(vnode, close_attr)(vnode->mount->cookie, vnode->private_node, cookie);
FS_CALL(vnode, free_attr_cookie)(vnode->mount->cookie, vnode->private_node, cookie);
FS_CALL(vnode, remove_attr)(vnode->mount->cookie, vnode->private_node, name);
err:
put_vnode(vnode);
return status;
}
static int
attr_open(int fd, const char *name, int openMode, bool kernel)
{
struct vnode *vnode;
fs_cookie cookie;
int status;
if (name == NULL || *name == '\0')
return B_BAD_VALUE;
vnode = get_vnode_from_fd(fd, kernel);
if (vnode == NULL)
return B_FILE_ERROR;
if (FS_CALL(vnode, open_attr) == NULL) {
status = EOPNOTSUPP;
goto err;
}
status = FS_CALL(vnode, open_attr)(vnode->mount->cookie, vnode->private_node, name, openMode, &cookie);
if (status < B_OK)
goto err;
// now we only need a file descriptor for this attribute and we're done
if ((status = get_new_fd(FDTYPE_ATTR, NULL, vnode, cookie, openMode, kernel)) >= 0)
return status;
FS_CALL(vnode, close_attr)(vnode->mount->cookie, vnode->private_node, cookie);
FS_CALL(vnode, free_attr_cookie)(vnode->mount->cookie, vnode->private_node, cookie);
err:
put_vnode(vnode);
return status;
}
static status_t
attr_close(struct file_descriptor *descriptor)
{
struct vnode *vnode = descriptor->u.vnode;
FUNCTION(("attr_close(descriptor = %p)\n", descriptor));
if (FS_CALL(vnode, close_attr))
return FS_CALL(vnode, close_attr)(vnode->mount->cookie, vnode->private_node, descriptor->cookie);
return B_OK;
}
static void
attr_free_fd(struct file_descriptor *descriptor)
{
struct vnode *vnode = descriptor->u.vnode;
if (vnode != NULL) {
FS_CALL(vnode, free_attr_cookie)(vnode->mount->cookie, vnode->private_node, descriptor->cookie);
put_vnode(vnode);
}
}
static status_t
attr_read(struct file_descriptor *descriptor, off_t pos, void *buffer, size_t *length)
{
struct vnode *vnode = descriptor->u.vnode;
FUNCTION(("attr_read: buf %p, pos %Ld, len %p = %ld\n", buffer, pos, length, *length));
if (!FS_CALL(vnode, read_attr))
return EOPNOTSUPP;
return FS_CALL(vnode, read_attr)(vnode->mount->cookie, vnode->private_node, descriptor->cookie, pos, buffer, length);
}
static status_t
attr_write(struct file_descriptor *descriptor, off_t pos, const void *buffer, size_t *length)
{
struct vnode *vnode = descriptor->u.vnode;
FUNCTION(("attr_write: buf %p, pos %Ld, len %p\n", buffer, pos, length));
if (!FS_CALL(vnode, write_attr))
return EOPNOTSUPP;
return FS_CALL(vnode, write_attr)(vnode->mount->cookie, vnode->private_node, descriptor->cookie, pos, buffer, length);
}
static off_t
attr_seek(struct file_descriptor *descriptor, off_t pos, int seekType)
{
off_t offset;
switch (seekType) {
case SEEK_SET:
offset = 0;
break;
case SEEK_CUR:
offset = descriptor->pos;
break;
case SEEK_END:
{
struct vnode *vnode = descriptor->u.vnode;
struct stat stat;
status_t status;
if (FS_CALL(vnode, read_stat) == NULL)
return EOPNOTSUPP;
status = FS_CALL(vnode, read_attr_stat)(vnode->mount->cookie, vnode->private_node, descriptor->cookie, &stat);
if (status < B_OK)
return status;
offset = stat.st_size;
break;
}
default:
return B_BAD_VALUE;
}
// assumes off_t is 64 bits wide
if (offset > 0 && LONGLONG_MAX - offset < pos)
return EOVERFLOW;
pos += offset;
if (pos < 0)
return B_BAD_VALUE;
return descriptor->pos = pos;
}
static status_t
attr_read_stat(struct file_descriptor *descriptor, struct stat *stat)
{
struct vnode *vnode = descriptor->u.vnode;
FUNCTION(("attr_read_stat: stat 0x%p\n", stat));
if (!FS_CALL(vnode, read_attr_stat))
return EOPNOTSUPP;
return FS_CALL(vnode, read_attr_stat)(vnode->mount->cookie, vnode->private_node, descriptor->cookie, stat);
}
static status_t
attr_write_stat(struct file_descriptor *descriptor, const struct stat *stat, int statMask)
{
struct vnode *vnode = descriptor->u.vnode;
FUNCTION(("attr_write_stat: stat = %p, statMask %d\n", stat, statMask));
if (!FS_CALL(vnode, write_attr_stat))
return EROFS;
return FS_CALL(vnode, write_attr_stat)(vnode->mount->cookie, vnode->private_node, descriptor->cookie, stat, statMask);
}
static status_t
attr_remove(int fd, const char *name, bool kernel)
{
struct file_descriptor *descriptor;
struct vnode *vnode;
status_t status;
if (name == NULL || *name == '\0')
return B_BAD_VALUE;
FUNCTION(("attr_remove: fd = %d, name = \"%s\", kernel %d\n", fd, name, kernel));
descriptor = get_fd_and_vnode(fd, &vnode, kernel);
if (descriptor == NULL)
return B_FILE_ERROR;
if (FS_CALL(vnode, remove_attr))
status = FS_CALL(vnode, remove_attr)(vnode->mount->cookie, vnode->private_node, name);
else
status = EROFS;
put_fd(descriptor);
return status;
}
static status_t
attr_rename(int fromfd, const char *fromName, int tofd, const char *toName, bool kernel)
{
struct file_descriptor *fromDescriptor, *toDescriptor;
struct vnode *fromVnode, *toVnode;
status_t status;
if (fromName == NULL || *fromName == '\0' || toName == NULL || *toName == '\0')
return B_BAD_VALUE;
FUNCTION(("attr_rename: from fd = %d, from name = \"%s\", to fd = %d, to name = \"%s\", kernel %d\n", fromfd, fromName, tofd, toName, kernel));
fromDescriptor = get_fd_and_vnode(fromfd, &fromVnode, kernel);
if (fromDescriptor == NULL)
return B_FILE_ERROR;
toDescriptor = get_fd_and_vnode(tofd, &toVnode, kernel);
if (toDescriptor == NULL) {
status = B_FILE_ERROR;
goto err;
}
// are the files on the same volume?
if (fromVnode->device != toVnode->device) {
status = B_CROSS_DEVICE_LINK;
goto err1;
}
if (FS_CALL(fromVnode, rename_attr))
status = FS_CALL(fromVnode, rename_attr)(fromVnode->mount->cookie, fromVnode->private_node, fromName, toVnode->private_node, toName);
else
status = EROFS;
err1:
put_fd(toDescriptor);
err:
put_fd(fromDescriptor);
return status;
}
static status_t
index_dir_open(mount_id mountID, bool kernel)
{
struct fs_mount *mount;
fs_cookie cookie;
FUNCTION(("index_dir_open(mountID = %ld, kernel = %d)\n", mountID, kernel));
status_t status = get_mount(mountID, &mount);
if (status < B_OK)
return status;
if (FS_MOUNT_CALL(mount, open_index_dir) == NULL) {
status = EOPNOTSUPP;
goto out;
}
status = FS_MOUNT_CALL(mount, open_index_dir)(mount->cookie, &cookie);
if (status < B_OK)
goto out;
// get fd for the index directory
status = get_new_fd(FDTYPE_INDEX_DIR, mount, NULL, cookie, 0, kernel);
if (status >= 0)
goto out;
// something went wrong
FS_MOUNT_CALL(mount, close_index_dir)(mount->cookie, cookie);
FS_MOUNT_CALL(mount, free_index_dir_cookie)(mount->cookie, cookie);
out:
put_mount(mount);
return status;
}
static status_t
index_dir_close(struct file_descriptor *descriptor)
{
struct fs_mount *mount = descriptor->u.mount;
FUNCTION(("index_dir_close(descriptor = %p)\n", descriptor));
if (FS_MOUNT_CALL(mount, close_index_dir))
return FS_MOUNT_CALL(mount, close_index_dir)(mount->cookie, descriptor->cookie);
return B_OK;
}
static void
index_dir_free_fd(struct file_descriptor *descriptor)
{
struct fs_mount *mount = descriptor->u.mount;
if (mount != NULL) {
FS_MOUNT_CALL(mount, free_index_dir_cookie)(mount->cookie, descriptor->cookie);
// ToDo: find a replacement ref_count object - perhaps the root dir?
//put_vnode(vnode);
}
}
static status_t
index_dir_read(struct file_descriptor *descriptor, struct dirent *buffer, size_t bufferSize, uint32 *_count)
{
struct fs_mount *mount = descriptor->u.mount;
if (FS_MOUNT_CALL(mount, read_index_dir))
return FS_MOUNT_CALL(mount, read_index_dir)(mount->cookie, descriptor->cookie, buffer, bufferSize, _count);
return EOPNOTSUPP;
}
static status_t
index_dir_rewind(struct file_descriptor *descriptor)
{
struct fs_mount *mount = descriptor->u.mount;
if (FS_MOUNT_CALL(mount, rewind_index_dir))
return FS_MOUNT_CALL(mount, rewind_index_dir)(mount->cookie, descriptor->cookie);
return EOPNOTSUPP;
}
static status_t
index_create(mount_id mountID, const char *name, uint32 type, uint32 flags, bool kernel)
{
FUNCTION(("index_create(mountID = %ld, name = %s, kernel = %d)\n", mountID, name, kernel));
struct fs_mount *mount;
status_t status = get_mount(mountID, &mount);
if (status < B_OK)
return status;
if (FS_MOUNT_CALL(mount, create_index) == NULL) {
status = EROFS;
goto out;
}
status = FS_MOUNT_CALL(mount, create_index)(mount->cookie, name, type, flags);
out:
put_mount(mount);
return status;
}
#if 0
static status_t
index_read_stat(struct file_descriptor *descriptor, struct stat *stat)
{
struct vnode *vnode = descriptor->u.vnode;
// ToDo: currently unused!
FUNCTION(("index_read_stat: stat 0x%p\n", stat));
if (!FS_CALL(vnode, read_index_stat))
return EOPNOTSUPP;
return EOPNOTSUPP;
//return FS_CALL(vnode, read_index_stat)(vnode->mount->cookie, vnode->private_node, descriptor->cookie, stat);
}
static void
index_free_fd(struct file_descriptor *descriptor)
{
struct vnode *vnode = descriptor->u.vnode;
if (vnode != NULL) {
FS_CALL(vnode, free_index_cookie)(vnode->mount->cookie, vnode->private_node, descriptor->cookie);
put_vnode(vnode);
}
}
#endif
static status_t
index_name_read_stat(mount_id mountID, const char *name, struct stat *stat, bool kernel)
{
FUNCTION(("index_remove(mountID = %ld, name = %s, kernel = %d)\n", mountID, name, kernel));
struct fs_mount *mount;
status_t status = get_mount(mountID, &mount);
if (status < B_OK)
return status;
if (FS_MOUNT_CALL(mount, read_index_stat) == NULL) {
status = EOPNOTSUPP;
goto out;
}
status = FS_MOUNT_CALL(mount, read_index_stat)(mount->cookie, name, stat);
out:
put_mount(mount);
return status;
}
static status_t
index_remove(mount_id mountID, const char *name, bool kernel)
{
FUNCTION(("index_remove(mountID = %ld, name = %s, kernel = %d)\n", mountID, name, kernel));
struct fs_mount *mount;
status_t status = get_mount(mountID, &mount);
if (status < B_OK)
return status;
if (FS_MOUNT_CALL(mount, remove_index) == NULL) {
status = EROFS;
goto out;
}
status = FS_MOUNT_CALL(mount, remove_index)(mount->cookie, name);
out:
put_mount(mount);
return status;
}
/** ToDo: the query FS API is still the pretty much the same as in R5.
* It would be nice if the FS would find some more kernel support
* for them.
* For example, query parsing should be moved into the kernel.
*/
static int
query_open(dev_t device, const char *query, uint32 flags,
port_id port, int32 token, bool kernel)
{
struct fs_mount *mount;
fs_cookie cookie;
FUNCTION(("query_open(device = %ld, query = \"%s\", kernel = %d)\n", device, query, kernel));
status_t status = get_mount(device, &mount);
if (status < B_OK)
return status;
if (FS_MOUNT_CALL(mount, open_query) == NULL) {
status = EOPNOTSUPP;
goto out;
}
status = FS_MOUNT_CALL(mount, open_query)(mount->cookie, query, flags, port, token, &cookie);
if (status < B_OK)
goto out;
// get fd for the index directory
status = get_new_fd(FDTYPE_QUERY, mount, NULL, cookie, 0, kernel);
if (status >= 0)
goto out;
// something went wrong
FS_MOUNT_CALL(mount, close_query)(mount->cookie, cookie);
FS_MOUNT_CALL(mount, free_query_cookie)(mount->cookie, cookie);
out:
put_mount(mount);
return status;
}
static status_t
query_close(struct file_descriptor *descriptor)
{
struct fs_mount *mount = descriptor->u.mount;
FUNCTION(("query_close(descriptor = %p)\n", descriptor));
if (FS_MOUNT_CALL(mount, close_query))
return FS_MOUNT_CALL(mount, close_query)(mount->cookie, descriptor->cookie);
return B_OK;
}
static void
query_free_fd(struct file_descriptor *descriptor)
{
struct fs_mount *mount = descriptor->u.mount;
if (mount != NULL) {
FS_MOUNT_CALL(mount, free_query_cookie)(mount->cookie, descriptor->cookie);
// ToDo: find a replacement ref_count object - perhaps the root dir?
//put_vnode(vnode);
}
}
static status_t
query_read(struct file_descriptor *descriptor, struct dirent *buffer, size_t bufferSize, uint32 *_count)
{
struct fs_mount *mount = descriptor->u.mount;
if (FS_MOUNT_CALL(mount, read_query))
return FS_MOUNT_CALL(mount, read_query)(mount->cookie, descriptor->cookie, buffer, bufferSize, _count);
return EOPNOTSUPP;
}
static status_t
query_rewind(struct file_descriptor *descriptor)
{
struct fs_mount *mount = descriptor->u.mount;
if (FS_MOUNT_CALL(mount, rewind_query))
return FS_MOUNT_CALL(mount, rewind_query)(mount->cookie, descriptor->cookie);
return EOPNOTSUPP;
}
// #pragma mark -
// General File System functions
static dev_t
fs_mount(char *path, const char *device, const char *fsName, uint32 flags,
const char *args, bool kernel)
{
struct fs_mount *mount;
status_t status = 0;
FUNCTION(("fs_mount: entry. path = '%s', fs_name = '%s'\n", path, fsName));
// The path is always safe, we just have to make sure that fsName is
// almost valid - we can't make any assumptions about args, though.
// A NULL fsName is OK, if a device was given and the FS is not virtual.
// We'll get it from the DDM later.
if (fsName == NULL) {
if (!device || flags & B_MOUNT_VIRTUAL_DEVICE)
return B_BAD_VALUE;
} else if (fsName[0] == '\0')
return B_BAD_VALUE;
RecursiveLocker mountOpLocker(sMountOpLock);
// Helper to delete a newly created file device on failure.
// Not exactly beautiful, but helps to keep the code below cleaner.
struct FileDeviceDeleter {
FileDeviceDeleter() : id(-1) {}
~FileDeviceDeleter()
{
KDiskDeviceManager::Default()->DeleteFileDevice(id);
}
partition_id id;
} fileDeviceDeleter;
// If the file system is not a "virtual" one, the device argument should
// point to a real file/device (if given at all).
// get the partition
KDiskDeviceManager *ddm = KDiskDeviceManager::Default();
KPartition *partition = NULL;
bool newlyCreatedFileDevice = false;
if (!(flags & B_MOUNT_VIRTUAL_DEVICE) && device) {
// normalize the device path
KPath normalizedDevice;
status = normalizedDevice.SetTo(device, true);
if (status != B_OK)
return status;
// get a corresponding partition from the DDM
partition = ddm->RegisterPartition(normalizedDevice.Path(), true);
if (!partition) {
// Partition not found: This either means, the user supplied
// an invalid path, or the path refers to an image file. We try
// to let the DDM create a file device for the path.
partition_id deviceID = ddm->CreateFileDevice(
normalizedDevice.Path(), &newlyCreatedFileDevice);
if (deviceID >= 0) {
partition = ddm->RegisterPartition(deviceID, true);
if (newlyCreatedFileDevice)
fileDeviceDeleter.id = deviceID;
// TODO: We must wait here, until the partition scan job is done.
}
}
if (!partition) {
TRACE(("fs_mount(): Partition `%s' not found.\n",
normalizedDevice.Path()));
return B_ENTRY_NOT_FOUND;
}
}
PartitionRegistrar partitionRegistrar(partition, true);
// Write lock the partition's device. For the time being, we keep the lock
// until we're done mounting -- not nice, but ensure, that no-one is
// interfering.
// TODO: Find a better solution.
KDiskDevice *diskDevice = NULL;
if (partition) {
diskDevice = ddm->WriteLockDevice(partition->Device()->ID());
if (!diskDevice) {
TRACE(("fs_mount(): Failed to lock disk device!\n"));
return B_ERROR;
}
}
DeviceWriteLocker writeLocker(diskDevice, true);
if (partition) {
// make sure, that the partition is not busy
if (partition->IsBusy() || partition->IsDescendantBusy()) {
TRACE(("fs_mount(): Partition is busy.\n"));
return B_BUSY;
}
// if no FS name had been supplied, we get it from the partition
if (!fsName) {
KDiskSystem *diskSystem = partition->DiskSystem();
if (!diskSystem) {
TRACE(("fs_mount(): No FS name was given, and the DDM didn't "
"recognize it.\n"));
return B_BAD_VALUE;
}
if (!diskSystem->IsFileSystem()) {
TRACE(("fs_mount(): No FS name was given, and the DDM found a "
"partitioning system.\n"));
return B_BAD_VALUE;
}
// The disk system name will not change, and the KDiskSystem
// object will not go away while the disk device is locked (and
// the partition has a reference to it), so this is safe.
fsName = diskSystem->Name();
}
}
mount = (struct fs_mount *)malloc(sizeof(struct fs_mount));
if (mount == NULL)
return B_NO_MEMORY;
list_init_etc(&mount->vnodes, offsetof(struct vnode, mount_link));
mount->fs_name = get_file_system_name(fsName);
if (mount->fs_name == NULL) {
status = B_NO_MEMORY;
goto err1;
}
mount->device_name = strdup(device);
// "device" can be NULL
mount->fs = get_file_system(fsName);
if (mount->fs == NULL) {
status = ENODEV;
goto err3;
}
status = recursive_lock_init(&mount->rlock, "mount rlock");
if (status < B_OK)
goto err4;
// initialize structure
mount->id = sNextMountID++;
mount->partition = NULL;
mount->root_vnode = NULL;
mount->covers_vnode = NULL;
mount->cookie = NULL;
mount->unmounting = false;
mount->owns_file_device = false;
// insert mount struct into list before we call FS's mount() function
// so that vnodes can be created for this mount
mutex_lock(&sMountMutex);
hash_insert(sMountsTable, mount);
mutex_unlock(&sMountMutex);
vnode_id rootID;
if (!sRoot) {
// we haven't mounted anything yet
if (strcmp(path, "/") != 0) {
status = B_ERROR;
goto err5;
}
status = FS_MOUNT_CALL(mount, mount)(mount->id, device, flags, args, &mount->cookie, &rootID);
if (status < 0) {
// ToDo: why should we hide the error code from the file system here?
//status = ERR_VFS_GENERAL;
goto err5;
}
} else {
struct vnode *coveredVnode;
status = path_to_vnode(path, true, &coveredVnode, NULL, kernel);
if (status < B_OK)
goto err5;
// make sure covered_vnode is a DIR
struct stat coveredNodeStat;
status = FS_CALL(coveredVnode, read_stat)(coveredVnode->mount->cookie,
coveredVnode->private_node, &coveredNodeStat);
if (status < B_OK)
goto err5;
if (!S_ISDIR(coveredNodeStat.st_mode)) {
status = B_NOT_A_DIRECTORY;
goto err5;
}
if (coveredVnode->mount->root_vnode == coveredVnode) {
// this is already a mount point
status = B_BUSY;
goto err5;
}
mount->covers_vnode = coveredVnode;
// mount it
status = FS_MOUNT_CALL(mount, mount)(mount->id, device, flags, args, &mount->cookie, &rootID);
if (status < B_OK)
goto err6;
}
// the root node is supposed to be owned by the file system - it must
// exist at this point
mount->root_vnode = lookup_vnode(mount->id, rootID);
if (mount->root_vnode == NULL || mount->root_vnode->ref_count != 1) {
panic("fs_mount: file system does not own its root node!\n");
status = B_ERROR;
goto err7;
}
// No race here, since fs_mount() is the only function changing
// covers_vnode (and holds sMountOpLock at that time).
if (mount->covers_vnode)
mount->covers_vnode->covered_by = mount->root_vnode;
if (!sRoot)
sRoot = mount->root_vnode;
// supply the partition (if any) with the mount cookie and mark it mounted
if (partition) {
partition->SetMountCookie(mount->cookie);
partition->SetVolumeID(mount->id);
// keep a partition reference as long as the partition is mounted
partitionRegistrar.Detach();
mount->partition = partition;
mount->owns_file_device = newlyCreatedFileDevice;
fileDeviceDeleter.id = -1;
}
notify_mount(mount->id, mount->covers_vnode ? mount->covers_vnode->device : -1,
mount->covers_vnode ? mount->covers_vnode->id : -1);
return mount->id;
err7:
FS_MOUNT_CALL(mount, unmount)(mount->cookie);
err6:
if (mount->covers_vnode)
put_vnode(mount->covers_vnode);
err5:
mutex_lock(&sMountMutex);
hash_remove(sMountsTable, mount);
mutex_unlock(&sMountMutex);
recursive_lock_destroy(&mount->rlock);
err4:
put_file_system(mount->fs);
free(mount->device_name);
err3:
free(mount->fs_name);
err1:
free(mount);
return status;
}
static status_t
fs_unmount(char *path, uint32 flags, bool kernel)
{
struct fs_mount *mount;
struct vnode *vnode;
status_t err;
FUNCTION(("vfs_unmount: entry. path = '%s', kernel %d\n", path, kernel));
err = path_to_vnode(path, true, &vnode, NULL, kernel);
if (err < 0)
return B_ENTRY_NOT_FOUND;
RecursiveLocker mountOpLocker(sMountOpLock);
mount = find_mount(vnode->device);
if (!mount)
panic("vfs_unmount: find_mount() failed on root vnode @%p of mount\n", vnode);
if (mount->root_vnode != vnode) {
// not mountpoint
put_vnode(vnode);
return B_BAD_VALUE;
}
// if the volume is associated with a partition, lock the device of the
// partition as long as we are unmounting
KDiskDeviceManager* ddm = KDiskDeviceManager::Default();
KPartition *partition = mount->partition;
KDiskDevice *diskDevice = NULL;
if (partition) {
diskDevice = ddm->WriteLockDevice(partition->Device()->ID());
if (!diskDevice) {
TRACE(("fs_unmount(): Failed to lock disk device!\n"));
return B_ERROR;
}
}
DeviceWriteLocker writeLocker(diskDevice, true);
// make sure, that the partition is not busy
if (partition) {
if (partition->IsBusy() || partition->IsDescendantBusy()) {
TRACE(("fs_unmount(): Partition is busy.\n"));
return B_BUSY;
}
}
// grab the vnode master mutex to keep someone from creating
// a vnode while we're figuring out if we can continue
mutex_lock(&sVnodeMutex);
// simplify the loop below: we decrement the root vnode ref_count
// by the known number of references: one for the file system, one
// from the path_to_vnode() call above
mount->root_vnode->ref_count -= 2;
bool disconnectedDescriptors = false;
while (true) {
bool busy = false;
// cycle through the list of vnodes associated with this mount and
// make sure all of them are not busy or have refs on them
vnode = NULL;
while ((vnode = (struct vnode *)list_get_next_item(&mount->vnodes, vnode)) != NULL) {
if (vnode->busy || vnode->ref_count != 0) {
// there are still vnodes in use on this mount, so we cannot
// unmount yet
busy = true;
break;
}
}
if (!busy)
break;
if ((flags & B_FORCE_UNMOUNT) == 0) {
mount->root_vnode->ref_count += 2;
mutex_unlock(&sVnodeMutex);
put_vnode(mount->root_vnode);
return B_BUSY;
}
if (disconnectedDescriptors) {
// wait a bit until the last access is finished, and then try again
mutex_unlock(&sVnodeMutex);
snooze(100000);
mutex_lock(&sVnodeMutex);
continue;
}
// the file system is still busy - but we're forced to unmount it,
// so let's disconnect all open file descriptors
mount->unmounting = true;
// prevent new vnodes from being created
mutex_unlock(&sVnodeMutex);
// iterate over all teams and peek into their file descriptors
int32 nextTeamID = 0;
while (true) {
struct io_context *context = NULL;
sem_id contextMutex = -1;
struct team *team = NULL;
team_id lastTeamID;
cpu_status state = disable_interrupts();
GRAB_TEAM_LOCK();
lastTeamID = peek_next_thread_id();
if (nextTeamID < lastTeamID) {
// get next valid team
while (nextTeamID < lastTeamID
&& !(team = team_get_team_struct_locked(nextTeamID))) {
nextTeamID++;
}
if (team) {
context = (io_context *)team->io_context;
contextMutex = context->io_mutex.sem;
nextTeamID++;
}
}
RELEASE_TEAM_LOCK();
restore_interrupts(state);
if (context == NULL)
break;
// we now have a context - since we couldn't lock it while having
// safe access to the team structure, we now need to lock the mutex
// manually
if (acquire_sem(contextMutex) != B_OK) {
// team seems to be gone, go over to the next team
continue;
}
// the team cannot be deleted completely while we're owning its
// io_context mutex, so we can safely play with it now
context->io_mutex.holder = thread_get_current_thread_id();
if (context->cwd != NULL && context->cwd->mount == mount) {
put_vnode(context->cwd);
if (context->cwd == mount->root_vnode) {
// redirect the current working directory to the covered vnode
context->cwd = mount->covers_vnode;
inc_vnode_ref_count(context->cwd);
} else
context->cwd = NULL;
}
for (uint32 i = 0; i < context->table_size; i++) {
if (struct file_descriptor *descriptor = context->fds[i]) {
inc_fd_ref_count(descriptor);
// if this descriptor points at this mount, we
// need to disconnect it to be able to unmount
vnode = fd_vnode(descriptor);
if (vnode != NULL && vnode->mount == mount
|| vnode == NULL && descriptor->u.mount == mount)
disconnect_fd(descriptor);
put_fd(descriptor);
}
}
mutex_unlock(&context->io_mutex);
}
disconnectedDescriptors = true;
mutex_lock(&sVnodeMutex);
}
// we can safely continue, mark all of the vnodes busy and this mount
// structure in unmounting state
mount->unmounting = true;
while ((vnode = (struct vnode *)list_get_next_item(&mount->vnodes, vnode)) != NULL) {
vnode->busy = true;
}
mutex_unlock(&sVnodeMutex);
mount->covers_vnode->covered_by = NULL;
put_vnode(mount->covers_vnode);
// Free all vnodes associated with this mount.
// They will be removed from the mount list by free_vnode(), so
// we don't have to do this.
while ((vnode = (struct vnode *)list_get_first_item(&mount->vnodes)) != NULL) {
free_vnode(vnode, false);
}
// remove the mount structure from the hash table
mutex_lock(&sMountMutex);
hash_remove(sMountsTable, mount);
mutex_unlock(&sMountMutex);
mountOpLocker.Unlock();
FS_MOUNT_CALL(mount, unmount)(mount->cookie);
notify_unmount(mount->id);
// release the file system
put_file_system(mount->fs);
// dereference the partition and mark it unmounted
if (partition) {
partition->SetVolumeID(-1);
partition->SetMountCookie(NULL);
if (mount->owns_file_device)
KDiskDeviceManager::Default()->DeleteFileDevice(partition->ID());
partition->Unregister();
}
free(mount->device_name);
free(mount->fs_name);
free(mount);
return B_OK;
}
static status_t
fs_sync(dev_t device)
{
struct fs_mount *mount;
status_t status = get_mount(device, &mount);
if (status < B_OK)
return status;
mutex_lock(&sMountMutex);
if (FS_MOUNT_CALL(mount, sync))
status = FS_MOUNT_CALL(mount, sync)(mount->cookie);
mutex_unlock(&sMountMutex);
// synchronize all vnodes
recursive_lock_lock(&mount->rlock);
struct vnode *vnode = NULL;
while ((vnode = (struct vnode *)list_get_next_item(&mount->vnodes, vnode)) != NULL) {
if (vnode->cache)
vm_cache_write_modified(vnode->cache);
}
recursive_lock_unlock(&mount->rlock);
put_mount(mount);
return status;
}
static status_t
fs_read_info(dev_t device, struct fs_info *info)
{
struct fs_mount *mount;
status_t status = get_mount(device, &mount);
if (status < B_OK)
return status;
// fill in info the file system doesn't (have to) know about
memset(info, 0, sizeof(struct fs_info));
info->dev = mount->id;
info->root = mount->root_vnode->id;
strlcpy(info->fsh_name, mount->fs_name, sizeof(info->fsh_name));
if (mount->device_name != NULL)
strlcpy(info->device_name, mount->device_name, sizeof(info->device_name));
if (FS_MOUNT_CALL(mount, read_fs_info))
status = FS_MOUNT_CALL(mount, read_fs_info)(mount->cookie, info);
// if the call is not supported by the file system, there are still
// the parts that we filled out ourselves
put_mount(mount);
return status;
}
static status_t
fs_write_info(dev_t device, const struct fs_info *info, int mask)
{
struct fs_mount *mount;
status_t status = get_mount(device, &mount);
if (status < B_OK)
return status;
if (FS_MOUNT_CALL(mount, write_fs_info))
status = FS_MOUNT_CALL(mount, write_fs_info)(mount->cookie, info, mask);
else
status = EROFS;
put_mount(mount);
return status;
}
static dev_t
fs_next_device(int32 *_cookie)
{
struct fs_mount *mount = NULL;
dev_t device = *_cookie;
mutex_lock(&sMountMutex);
// Since device IDs are assigned sequentially, this algorithm
// does work good enough. It makes sure that the device list
// returned is sorted, and that no device is skipped when an
// already visited device got unmounted.
while (device < sNextMountID) {
mount = find_mount(device++);
if (mount != NULL && mount->cookie != NULL)
break;
}
*_cookie = device;
if (mount != NULL)
device = mount->id;
else
device = B_BAD_VALUE;
mutex_unlock(&sMountMutex);
return device;
}
static status_t
get_cwd(char *buffer, size_t size, bool kernel)
{
// Get current working directory from io context
struct io_context *context = get_current_io_context(kernel);
status_t status;
FUNCTION(("vfs_get_cwd: buf %p, size %ld\n", buffer, size));
mutex_lock(&context->io_mutex);
if (context->cwd)
status = dir_vnode_to_path(context->cwd, buffer, size);
else
status = B_ERROR;
mutex_unlock(&context->io_mutex);
return status;
}
static status_t
set_cwd(int fd, char *path, bool kernel)
{
struct io_context *context;
struct vnode *vnode = NULL;
struct vnode *oldDirectory;
struct stat stat;
status_t status;
FUNCTION(("set_cwd: path = \'%s\'\n", path));
// Get vnode for passed path, and bail if it failed
status = fd_and_path_to_vnode(fd, path, true, &vnode, NULL, kernel);
if (status < 0)
return status;
status = FS_CALL(vnode, read_stat)(vnode->mount->cookie, vnode->private_node, &stat);
if (status < 0)
goto err;
if (!S_ISDIR(stat.st_mode)) {
// nope, can't cwd to here
status = B_NOT_A_DIRECTORY;
goto err;
}
// Get current io context and lock
context = get_current_io_context(kernel);
mutex_lock(&context->io_mutex);
// save the old current working directory first
oldDirectory = context->cwd;
context->cwd = vnode;
mutex_unlock(&context->io_mutex);
if (oldDirectory)
put_vnode(oldDirectory);
return B_NO_ERROR;
err:
put_vnode(vnode);
return status;
}
// #pragma mark -
// Calls from within the kernel
dev_t
_kern_mount(const char *path, const char *device, const char *fsName,
uint32 flags, const char *args, size_t argsLength)
{
KPath pathBuffer(path, false, B_PATH_NAME_LENGTH + 1);
if (pathBuffer.InitCheck() != B_OK)
return B_NO_MEMORY;
return fs_mount(pathBuffer.LockBuffer(), device, fsName, flags, args, true);
}
status_t
_kern_unmount(const char *path, uint32 flags)
{
KPath pathBuffer(path, false, B_PATH_NAME_LENGTH + 1);
if (pathBuffer.InitCheck() != B_OK)
return B_NO_MEMORY;
return fs_unmount(pathBuffer.LockBuffer(), flags, true);
}
status_t
_kern_read_fs_info(dev_t device, struct fs_info *info)
{
if (info == NULL)
return B_BAD_VALUE;
return fs_read_info(device, info);
}
status_t
_kern_write_fs_info(dev_t device, const struct fs_info *info, int mask)
{
if (info == NULL)
return B_BAD_VALUE;
return fs_write_info(device, info, mask);
}
status_t
_kern_sync(void)
{
// Note: _kern_sync() is also called from _user_sync()
int32 cookie = 0;
dev_t device;
while ((device = next_dev(&cookie)) >= 0) {
status_t status = fs_sync(device);
if (status != B_OK && status != B_BAD_VALUE)
dprintf("sync: device %ld couldn't sync: %s\n", device, strerror(status));
}
return B_OK;
}
dev_t
_kern_next_device(int32 *_cookie)
{
return fs_next_device(_cookie);
}
status_t
_kern_get_next_fd_info(team_id teamID, uint32 *_cookie, fd_info *info,
size_t infoSize)
{
if (infoSize != sizeof(fd_info))
return B_BAD_VALUE;
struct io_context *context = NULL;
sem_id contextMutex = -1;
struct team *team = NULL;
cpu_status state = disable_interrupts();
GRAB_TEAM_LOCK();
team = team_get_team_struct_locked(teamID);
if (team) {
context = (io_context *)team->io_context;
contextMutex = context->io_mutex.sem;
}
RELEASE_TEAM_LOCK();
restore_interrupts(state);
// we now have a context - since we couldn't lock it while having
// safe access to the team structure, we now need to lock the mutex
// manually
if (context == NULL || acquire_sem(contextMutex) != B_OK) {
// team doesn't exit or seems to be gone
return B_BAD_TEAM_ID;
}
// the team cannot be deleted completely while we're owning its
// io_context mutex, so we can safely play with it now
context->io_mutex.holder = thread_get_current_thread_id();
uint32 slot = *_cookie;
struct file_descriptor *descriptor;
while (slot < context->table_size && (descriptor = context->fds[slot]) == NULL)
slot++;
if (slot >= context->table_size) {
mutex_unlock(&context->io_mutex);
return B_ENTRY_NOT_FOUND;
}
info->number = slot;
info->open_mode = descriptor->open_mode;
struct vnode *vnode = fd_vnode(descriptor);
if (vnode != NULL) {
info->device = vnode->device;
info->node = vnode->id;
} else if (descriptor->u.mount != NULL) {
info->device = descriptor->u.mount->id;
info->node = -1;
}
mutex_unlock(&context->io_mutex);
*_cookie = slot + 1;
return B_OK;
}
int
_kern_open_entry_ref(dev_t device, ino_t inode, const char *name, int openMode, int perms)
{
if (openMode & O_CREAT)
return file_create_entry_ref(device, inode, name, openMode, perms, true);
return file_open_entry_ref(device, inode, name, openMode, true);
}
/** \brief Opens a node specified by a FD + path pair.
*
* At least one of \a fd and \a path must be specified.
* If only \a fd is given, the function opens the node identified by this
* FD. If only a path is given, this path is opened. If both are given and
* the path is absolute, \a fd is ignored; a relative path is reckoned off
* of the directory (!) identified by \a fd.
*
* \param fd The FD. May be < 0.
* \param path The absolute or relative path. May be \c NULL.
* \param openMode The open mode.
* \return A FD referring to the newly opened node, or an error code,
* if an error occurs.
*/
int
_kern_open(int fd, const char *path, int openMode, int perms)
{
KPath pathBuffer(path, false, B_PATH_NAME_LENGTH + 1);
if (pathBuffer.InitCheck() != B_OK)
return B_NO_MEMORY;
if (openMode & O_CREAT)
return file_create(fd, pathBuffer.LockBuffer(), openMode, perms, true);
return file_open(fd, pathBuffer.LockBuffer(), openMode, true);
}
/** \brief Opens a directory specified by entry_ref or node_ref.
*
* The supplied name may be \c NULL, in which case directory identified
* by \a device and \a inode will be opened. Otherwise \a device and
* \a inode identify the parent directory of the directory to be opened
* and \a name its entry name.
*
* \param device If \a name is specified the ID of the device the parent
* directory of the directory to be opened resides on, otherwise
* the device of the directory itself.
* \param inode If \a name is specified the node ID of the parent
* directory of the directory to be opened, otherwise node ID of the
* directory itself.
* \param name The entry name of the directory to be opened. If \c NULL,
* the \a device + \a inode pair identify the node to be opened.
* \return The FD of the newly opened directory or an error code, if
* something went wrong.
*/
int
_kern_open_dir_entry_ref(dev_t device, ino_t inode, const char *name)
{
return dir_open_entry_ref(device, inode, name, true);
}
/** \brief Opens a directory specified by a FD + path pair.
*
* At least one of \a fd and \a path must be specified.
* If only \a fd is given, the function opens the directory identified by this
* FD. If only a path is given, this path is opened. If both are given and
* the path is absolute, \a fd is ignored; a relative path is reckoned off
* of the directory (!) identified by \a fd.
*
* \param fd The FD. May be < 0.
* \param path The absolute or relative path. May be \c NULL.
* \return A FD referring to the newly opened directory, or an error code,
* if an error occurs.
*/
int
_kern_open_dir(int fd, const char *path)
{
KPath pathBuffer(path, false, B_PATH_NAME_LENGTH + 1);
if (pathBuffer.InitCheck() != B_OK)
return B_NO_MEMORY;
return dir_open(fd, pathBuffer.LockBuffer(), true);
}
status_t
_kern_fcntl(int fd, int op, uint32 argument)
{
return common_fcntl(fd, op, argument, true);
}
status_t
_kern_fsync(int fd)
{
return common_sync(fd, true);
}
status_t
_kern_lock_node(int fd)
{
return common_lock_node(fd, true);
}
status_t
_kern_unlock_node(int fd)
{
return common_unlock_node(fd, true);
}
status_t
_kern_create_dir_entry_ref(dev_t device, ino_t inode, const char *name, int perms)
{
return dir_create_entry_ref(device, inode, name, perms, true);
}
/** \brief Creates a directory specified by a FD + path pair.
*
* \a path must always be specified (it contains the name of the new directory
* at least). If only a path is given, this path identifies the location at
* which the directory shall be created. If both \a fd and \a path are given and
* the path is absolute, \a fd is ignored; a relative path is reckoned off
* of the directory (!) identified by \a fd.
*
* \param fd The FD. May be < 0.
* \param path The absolute or relative path. Must not be \c NULL.
* \param perms The access permissions the new directory shall have.
* \return \c B_OK, if the directory has been created successfully, another
* error code otherwise.
*/
status_t
_kern_create_dir(int fd, const char *path, int perms)
{
KPath pathBuffer(path, false, B_PATH_NAME_LENGTH + 1);
if (pathBuffer.InitCheck() != B_OK)
return B_NO_MEMORY;
return dir_create(fd, pathBuffer.LockBuffer(), perms, true);
}
status_t
_kern_remove_dir(int fd, const char *path)
{
if (path) {
KPath pathBuffer(path, false, B_PATH_NAME_LENGTH + 1);
if (pathBuffer.InitCheck() != B_OK)
return B_NO_MEMORY;
return dir_remove(fd, pathBuffer.LockBuffer(), true);
}
return dir_remove(fd, NULL, true);
}
/** \brief Reads the contents of a symlink referred to by a FD + path pair.
*
* At least one of \a fd and \a path must be specified.
* If only \a fd is given, the function the symlink to be read is the node
* identified by this FD. If only a path is given, this path identifies the
* symlink to be read. If both are given and the path is absolute, \a fd is
* ignored; a relative path is reckoned off of the directory (!) identified
* by \a fd.
* If this function fails with B_BUFFER_OVERFLOW, the \a _bufferSize pointer
* will still be updated to reflect the required buffer size.
*
* \param fd The FD. May be < 0.
* \param path The absolute or relative path. May be \c NULL.
* \param buffer The buffer into which the contents of the symlink shall be
* written.
* \param _bufferSize A pointer to the size of the supplied buffer.
* \return The length of the link on success or an appropriate error code
*/
status_t
_kern_read_link(int fd, const char *path, char *buffer, size_t *_bufferSize)
{
status_t status;
if (path) {
KPath pathBuffer(path, false, B_PATH_NAME_LENGTH + 1);
if (pathBuffer.InitCheck() != B_OK)
return B_NO_MEMORY;
return common_read_link(fd, pathBuffer.LockBuffer(),
buffer, _bufferSize, true);
}
return common_read_link(fd, NULL, buffer, _bufferSize, true);
}
status_t
_kern_write_link(const char *path, const char *toPath)
{
KPath pathBuffer(path, false, B_PATH_NAME_LENGTH + 1);
KPath toPathBuffer(toPath, false, B_PATH_NAME_LENGTH + 1);
if (pathBuffer.InitCheck() != B_OK || toPathBuffer.InitCheck() != B_OK)
return B_NO_MEMORY;
char *toBuffer = toPathBuffer.LockBuffer();
status_t status = check_path(toBuffer);
if (status < B_OK)
return status;
return common_write_link(pathBuffer.LockBuffer(), toBuffer, true);
}
/** \brief Creates a symlink specified by a FD + path pair.
*
* \a path must always be specified (it contains the name of the new symlink
* at least). If only a path is given, this path identifies the location at
* which the symlink shall be created. If both \a fd and \a path are given and
* the path is absolute, \a fd is ignored; a relative path is reckoned off
* of the directory (!) identified by \a fd.
*
* \param fd The FD. May be < 0.
* \param toPath The absolute or relative path. Must not be \c NULL.
* \param mode The access permissions the new symlink shall have.
* \return \c B_OK, if the symlink has been created successfully, another
* error code otherwise.
*/
status_t
_kern_create_symlink(int fd, const char *path, const char *toPath, int mode)
{
KPath pathBuffer(path, false, B_PATH_NAME_LENGTH + 1);
KPath toPathBuffer(toPath, false, B_PATH_NAME_LENGTH + 1);
if (pathBuffer.InitCheck() != B_OK || toPathBuffer.InitCheck() != B_OK)
return B_NO_MEMORY;
char *toBuffer = toPathBuffer.LockBuffer();
status_t status = check_path(toBuffer);
if (status < B_OK)
return status;
return common_create_symlink(fd, pathBuffer.LockBuffer(),
toBuffer, mode, true);
}
status_t
_kern_create_link(const char *path, const char *toPath)
{
KPath pathBuffer(path, false, B_PATH_NAME_LENGTH + 1);
KPath toPathBuffer(toPath, false, B_PATH_NAME_LENGTH + 1);
if (pathBuffer.InitCheck() != B_OK || toPathBuffer.InitCheck() != B_OK)
return B_NO_MEMORY;
return common_create_link(pathBuffer.LockBuffer(),
toPathBuffer.LockBuffer(), true);
}
/** \brief Removes an entry specified by a FD + path pair from its directory.
*
* \a path must always be specified (it contains at least the name of the entry
* to be deleted). If only a path is given, this path identifies the entry
* directly. If both \a fd and \a path are given and the path is absolute,
* \a fd is ignored; a relative path is reckoned off of the directory (!)
* identified by \a fd.
*
* \param fd The FD. May be < 0.
* \param path The absolute or relative path. Must not be \c NULL.
* \return \c B_OK, if the entry has been removed successfully, another
* error code otherwise.
*/
status_t
_kern_unlink(int fd, const char *path)
{
KPath pathBuffer(path, false, B_PATH_NAME_LENGTH + 1);
if (pathBuffer.InitCheck() != B_OK)
return B_NO_MEMORY;
return common_unlink(fd, pathBuffer.LockBuffer(), true);
}
/** \brief Moves an entry specified by a FD + path pair to a an entry specified
* by another FD + path pair.
*
* \a oldPath and \a newPath must always be specified (they contain at least
* the name of the entry). If only a path is given, this path identifies the
* entry directly. If both a FD and a path are given and the path is absolute,
* the FD is ignored; a relative path is reckoned off of the directory (!)
* identified by the respective FD.
*
* \param oldFD The FD of the old location. May be < 0.
* \param oldPath The absolute or relative path of the old location. Must not
* be \c NULL.
* \param newFD The FD of the new location. May be < 0.
* \param newPath The absolute or relative path of the new location. Must not
* be \c NULL.
* \return \c B_OK, if the entry has been moved successfully, another
* error code otherwise.
*/
status_t
_kern_rename(int oldFD, const char *oldPath, int newFD, const char *newPath)
{
KPath oldPathBuffer(oldPath, false, B_PATH_NAME_LENGTH + 1);
KPath newPathBuffer(newPath, false, B_PATH_NAME_LENGTH + 1);
if (oldPathBuffer.InitCheck() != B_OK || newPathBuffer.InitCheck() != B_OK)
return B_NO_MEMORY;
return common_rename(oldFD, oldPathBuffer.LockBuffer(),
newFD, newPathBuffer.LockBuffer(), true);
}
status_t
_kern_access(const char *path, int mode)
{
KPath pathBuffer(path, false, B_PATH_NAME_LENGTH + 1);
if (pathBuffer.InitCheck() != B_OK)
return B_NO_MEMORY;
return common_access(pathBuffer.LockBuffer(), mode, true);
}
/** \brief Reads stat data of an entity specified by a FD + path pair.
*
* If only \a fd is given, the stat operation associated with the type
* of the FD (node, attr, attr dir etc.) is performed. If only \a path is
* given, this path identifies the entry for whose node to retrieve the
* stat data. If both \a fd and \a path are given and the path is absolute,
* \a fd is ignored; a relative path is reckoned off of the directory (!)
* identified by \a fd and specifies the entry whose stat data shall be
* retrieved.
*
* \param fd The FD. May be < 0.
* \param path The absolute or relative path. Must not be \c NULL.
* \param traverseLeafLink If \a path is given, \c true specifies that the
* function shall not stick to symlinks, but traverse them.
* \param stat The buffer the stat data shall be written into.
* \param statSize The size of the supplied stat buffer.
* \return \c B_OK, if the the stat data have been read successfully, another
* error code otherwise.
*/
status_t
_kern_read_stat(int fd, const char *path, bool traverseLeafLink,
struct stat *stat, size_t statSize)
{
struct stat completeStat;
struct stat *originalStat = NULL;
status_t status;
if (statSize > sizeof(struct stat))
return B_BAD_VALUE;
// this supports different stat extensions
if (statSize < sizeof(struct stat)) {
originalStat = stat;
stat = &completeStat;
}
if (path) {
// path given: get the stat of the node referred to by (fd, path)
KPath pathBuffer(path, false, B_PATH_NAME_LENGTH + 1);
if (pathBuffer.InitCheck() != B_OK)
return B_NO_MEMORY;
status = common_path_read_stat(fd, pathBuffer.LockBuffer(),
traverseLeafLink, stat, true);
} else {
// no path given: get the FD and use the FD operation
struct file_descriptor *descriptor
= get_fd(get_current_io_context(true), fd);
if (descriptor == NULL)
return B_FILE_ERROR;
if (descriptor->ops->fd_read_stat)
status = descriptor->ops->fd_read_stat(descriptor, stat);
else
status = EOPNOTSUPP;
put_fd(descriptor);
}
if (status == B_OK && originalStat != NULL)
memcpy(originalStat, stat, statSize);
return status;
}
/** \brief Writes stat data of an entity specified by a FD + path pair.
*
* If only \a fd is given, the stat operation associated with the type
* of the FD (node, attr, attr dir etc.) is performed. If only \a path is
* given, this path identifies the entry for whose node to write the
* stat data. If both \a fd and \a path are given and the path is absolute,
* \a fd is ignored; a relative path is reckoned off of the directory (!)
* identified by \a fd and specifies the entry whose stat data shall be
* written.
*
* \param fd The FD. May be < 0.
* \param path The absolute or relative path. Must not be \c NULL.
* \param traverseLeafLink If \a path is given, \c true specifies that the
* function shall not stick to symlinks, but traverse them.
* \param stat The buffer containing the stat data to be written.
* \param statSize The size of the supplied stat buffer.
* \param statMask A mask specifying which parts of the stat data shall be
* written.
* \return \c B_OK, if the the stat data have been written successfully,
* another error code otherwise.
*/
status_t
_kern_write_stat(int fd, const char *path, bool traverseLeafLink,
const struct stat *stat, size_t statSize, int statMask)
{
struct stat completeStat;
if (statSize > sizeof(struct stat))
return B_BAD_VALUE;
// this supports different stat extensions
if (statSize < sizeof(struct stat)) {
memset((uint8 *)&completeStat + statSize, 0, sizeof(struct stat) - statSize);
memcpy(&completeStat, stat, statSize);
stat = &completeStat;
}
status_t status;
if (path) {
// path given: write the stat of the node referred to by (fd, path)
KPath pathBuffer(path, false, B_PATH_NAME_LENGTH + 1);
if (pathBuffer.InitCheck() != B_OK)
return B_NO_MEMORY;
status = common_path_write_stat(fd, pathBuffer.LockBuffer(),
traverseLeafLink, stat, statMask, true);
} else {
// no path given: get the FD and use the FD operation
struct file_descriptor *descriptor
= get_fd(get_current_io_context(true), fd);
if (descriptor == NULL)
return B_FILE_ERROR;
if (descriptor->ops->fd_write_stat)
status = descriptor->ops->fd_write_stat(descriptor, stat, statMask);
else
status = EOPNOTSUPP;
put_fd(descriptor);
}
return status;
}
int
_kern_open_attr_dir(int fd, const char *path)
{
KPath pathBuffer(B_PATH_NAME_LENGTH + 1);
if (pathBuffer.InitCheck() != B_OK)
return B_NO_MEMORY;
if (path != NULL)
pathBuffer.SetTo(path);
return attr_dir_open(fd, path ? pathBuffer.LockBuffer() : NULL, true);
}
int
_kern_create_attr(int fd, const char *name, uint32 type, int openMode)
{
return attr_create(fd, name, type, openMode, true);
}
int
_kern_open_attr(int fd, const char *name, int openMode)
{
return attr_open(fd, name, openMode, true);
}
status_t
_kern_remove_attr(int fd, const char *name)
{
return attr_remove(fd, name, true);
}
status_t
_kern_rename_attr(int fromFile, const char *fromName, int toFile, const char *toName)
{
return attr_rename(fromFile, fromName, toFile, toName, true);
}
int
_kern_open_index_dir(dev_t device)
{
return index_dir_open(device, true);
}
status_t
_kern_create_index(dev_t device, const char *name, uint32 type, uint32 flags)
{
return index_create(device, name, type, flags, true);
}
status_t
_kern_read_index_stat(dev_t device, const char *name, struct stat *stat)
{
return index_name_read_stat(device, name, stat, true);
}
status_t
_kern_remove_index(dev_t device, const char *name)
{
return index_remove(device, name, true);
}
status_t
_kern_getcwd(char *buffer, size_t size)
{
TRACE(("_kern_getcwd: buf %p, %ld\n", buffer, size));
// Call vfs to get current working directory
return get_cwd(buffer, size, true);
}
status_t
_kern_setcwd(int fd, const char *path)
{
KPath pathBuffer(B_PATH_NAME_LENGTH + 1);
if (pathBuffer.InitCheck() != B_OK)
return B_NO_MEMORY;
if (path != NULL)
pathBuffer.SetTo(path);
return set_cwd(fd, path != NULL ? pathBuffer.LockBuffer() : NULL, true);
}
// #pragma mark -
// Calls from userland (with extra address checks)
dev_t
_user_mount(const char *userPath, const char *userDevice, const char *userFileSystem,
uint32 flags, const char *userArgs, size_t argsLength)
{
char fileSystem[B_OS_NAME_LENGTH];
KPath path, device;
char *args = NULL;
status_t status;
if (!IS_USER_ADDRESS(userPath)
|| !IS_USER_ADDRESS(userFileSystem)
|| !IS_USER_ADDRESS(userDevice))
return B_BAD_ADDRESS;
if (path.InitCheck() != B_OK || device.InitCheck() != B_OK)
return B_NO_MEMORY;
if (user_strlcpy(path.LockBuffer(), userPath, B_PATH_NAME_LENGTH) < B_OK)
return B_BAD_ADDRESS;
if (userFileSystem != NULL
&& user_strlcpy(fileSystem, userFileSystem, sizeof(fileSystem)) < B_OK)
return B_BAD_ADDRESS;
if (userDevice != NULL
&& user_strlcpy(device.LockBuffer(), userDevice, B_PATH_NAME_LENGTH) < B_OK)
return B_BAD_ADDRESS;
if (userArgs != NULL && argsLength > 0) {
// this is a safety restriction
if (argsLength >= 65536)
return B_NAME_TOO_LONG;
args = (char *)malloc(argsLength + 1);
if (args == NULL)
return B_NO_MEMORY;
if (user_strlcpy(args, userArgs, argsLength + 1) < B_OK) {
free(args);
return B_BAD_ADDRESS;
}
}
path.UnlockBuffer();
device.UnlockBuffer();
status = fs_mount(path.LockBuffer(), userDevice != NULL ? device.Path() : NULL,
userFileSystem ? fileSystem : NULL, flags, args, false);
free(args);
return status;
}
status_t
_user_unmount(const char *userPath, uint32 flags)
{
KPath pathBuffer(B_PATH_NAME_LENGTH + 1);
if (pathBuffer.InitCheck() != B_OK)
return B_NO_MEMORY;
char *path = pathBuffer.LockBuffer();
if (user_strlcpy(path, userPath, B_PATH_NAME_LENGTH) < B_OK)
return B_BAD_ADDRESS;
return fs_unmount(path, flags, false);
}
status_t
_user_read_fs_info(dev_t device, struct fs_info *userInfo)
{
struct fs_info info;
status_t status;
if (userInfo == NULL)
return B_BAD_VALUE;
if (!IS_USER_ADDRESS(userInfo))
return B_BAD_ADDRESS;
status = fs_read_info(device, &info);
if (status != B_OK)
return status;
if (user_memcpy(userInfo, &info, sizeof(struct fs_info)) < B_OK)
return B_BAD_ADDRESS;
return B_OK;
}
status_t
_user_write_fs_info(dev_t device, const struct fs_info *userInfo, int mask)
{
struct fs_info info;
if (userInfo == NULL)
return B_BAD_VALUE;
if (!IS_USER_ADDRESS(userInfo)
|| user_memcpy(&info, userInfo, sizeof(struct fs_info)) < B_OK)
return B_BAD_ADDRESS;
return fs_write_info(device, &info, mask);
}
dev_t
_user_next_device(int32 *_userCookie)
{
int32 cookie;
dev_t device;
if (!IS_USER_ADDRESS(_userCookie)
|| user_memcpy(&cookie, _userCookie, sizeof(int32)) < B_OK)
return B_BAD_ADDRESS;
device = fs_next_device(&cookie);
if (device >= B_OK) {
// update user cookie
if (user_memcpy(_userCookie, &cookie, sizeof(int32)) < B_OK)
return B_BAD_ADDRESS;
}
return device;
}
status_t
_user_sync(void)
{
return _kern_sync();
}
status_t
_user_get_next_fd_info(team_id team, uint32 *userCookie, fd_info *userInfo,
size_t infoSize)
{
struct fd_info info;
uint32 cookie;
// only root can do this (or should root's group be enough?)
if (geteuid() != 0)
return B_NOT_ALLOWED;
if (infoSize != sizeof(fd_info))
return B_BAD_VALUE;
if (!IS_USER_ADDRESS(userCookie) || !IS_USER_ADDRESS(userInfo)
|| user_memcpy(&cookie, userCookie, sizeof(uint32)) < B_OK)
return B_BAD_ADDRESS;
status_t status = _kern_get_next_fd_info(team, &cookie, &info, infoSize);
if (status < B_OK)
return status;
if (user_memcpy(userCookie, &cookie, sizeof(uint32)) < B_OK
|| user_memcpy(userInfo, &info, infoSize) < B_OK)
return B_BAD_ADDRESS;
return status;
}
status_t
_user_entry_ref_to_path(dev_t device, ino_t inode, const char *leaf,
char *userPath, size_t pathLength)
{
KPath pathBuffer(B_PATH_NAME_LENGTH + 1);
if (pathBuffer.InitCheck() != B_OK)
return B_NO_MEMORY;
struct vnode *vnode;
status_t status;
if (!IS_USER_ADDRESS(userPath))
return B_BAD_ADDRESS;
// copy the leaf name onto the stack
char stackLeaf[B_FILE_NAME_LENGTH];
if (leaf) {
if (!IS_USER_ADDRESS(leaf))
return B_BAD_ADDRESS;
int len = user_strlcpy(stackLeaf, leaf, B_FILE_NAME_LENGTH);
if (len < 0)
return len;
if (len >= B_FILE_NAME_LENGTH)
return B_NAME_TOO_LONG;
leaf = stackLeaf;
// filter invalid leaf names
if (leaf[0] == '\0' || strchr(leaf, '/'))
return B_BAD_VALUE;
}
// get the vnode matching the dir's node_ref
if (leaf && (strcmp(leaf, ".") == 0 || strcmp(leaf, "..") == 0)) {
// special cases "." and "..": we can directly get the vnode of the
// referenced directory
status = entry_ref_to_vnode(device, inode, leaf, &vnode);
leaf = NULL;
} else
status = get_vnode(device, inode, &vnode, false);
if (status < B_OK)
return status;
char *path = pathBuffer.LockBuffer();
// get the directory path
status = dir_vnode_to_path(vnode, path, pathBuffer.BufferSize());
put_vnode(vnode);
// we don't need the vnode anymore
if (status < B_OK)
return status;
// append the leaf name
if (leaf) {
// insert a directory separator if this is not the file system root
if ((strcmp(path, "/") && strlcat(path, "/", pathBuffer.BufferSize())
>= pathBuffer.BufferSize())
|| strlcat(path, leaf, pathBuffer.BufferSize()) >= pathBuffer.BufferSize()) {
return B_NAME_TOO_LONG;
}
}
int len = user_strlcpy(userPath, path, pathLength);
if (len < 0)
return len;
if (len >= (int)pathLength)
return B_BUFFER_OVERFLOW;
return B_OK;
}
int
_user_open_entry_ref(dev_t device, ino_t inode, const char *userName,
int openMode, int perms)
{
char name[B_FILE_NAME_LENGTH];
int status;
if (!IS_USER_ADDRESS(userName))
return B_BAD_ADDRESS;
status = user_strlcpy(name, userName, sizeof(name));
if (status < B_OK)
return status;
if (openMode & O_CREAT)
return file_create_entry_ref(device, inode, name, openMode, perms, false);
return file_open_entry_ref(device, inode, name, openMode, false);
}
int
_user_open(int fd, const char *userPath, int openMode, int perms)
{
KPath path(B_PATH_NAME_LENGTH + 1);
if (path.InitCheck() != B_OK)
return B_NO_MEMORY;
char *buffer = path.LockBuffer();
if (!IS_USER_ADDRESS(userPath)
|| user_strlcpy(buffer, userPath, B_PATH_NAME_LENGTH) < B_OK)
return B_BAD_ADDRESS;
if (openMode & O_CREAT)
return file_create(fd, buffer, openMode, perms, false);
return file_open(fd, buffer, openMode, false);
}
int
_user_open_dir_entry_ref(dev_t device, ino_t inode, const char *userName)
{
if (userName != NULL) {
char name[B_FILE_NAME_LENGTH];
if (!IS_USER_ADDRESS(userName)
|| user_strlcpy(name, userName, sizeof(name)) < B_OK)
return B_BAD_ADDRESS;
return dir_open_entry_ref(device, inode, name, false);
}
return dir_open_entry_ref(device, inode, NULL, false);
}
int
_user_open_dir(int fd, const char *userPath)
{
KPath path(B_PATH_NAME_LENGTH + 1);
if (path.InitCheck() != B_OK)
return B_NO_MEMORY;
char *buffer = path.LockBuffer();
if (!IS_USER_ADDRESS(userPath)
|| user_strlcpy(buffer, userPath, B_PATH_NAME_LENGTH) < B_OK)
return B_BAD_ADDRESS;
return dir_open(fd, buffer, false);
}
/** \brief Opens a directory's parent directory and returns the entry name
* of the former.
*
* Aside from that is returns the directory's entry name, this method is
* equivalent to \code _user_open_dir(fd, "..") \endcode. It really is
* equivalent, if \a userName is \c NULL.
*
* If a name buffer is supplied and the name does not fit the buffer, the
* function fails. A buffer of size \c B_FILE_NAME_LENGTH should be safe.
*
* \param fd A FD referring to a directory.
* \param userName Buffer the directory's entry name shall be written into.
* May be \c NULL.
* \param nameLength Size of the name buffer.
* \return The file descriptor of the opened parent directory, if everything
* went fine, an error code otherwise.
*/
int
_user_open_parent_dir(int fd, char *userName, size_t nameLength)
{
bool kernel = false;
if (userName && !IS_USER_ADDRESS(userName))
return B_BAD_ADDRESS;
// open the parent dir
int parentFD = dir_open(fd, "..", kernel);
if (parentFD < 0)
return parentFD;
FDCloser fdCloser(parentFD, kernel);
if (userName) {
// get the vnodes
struct vnode *parentVNode = get_vnode_from_fd(parentFD, kernel);
struct vnode *dirVNode = get_vnode_from_fd(fd, kernel);
VNodePutter parentVNodePutter(parentVNode);
VNodePutter dirVNodePutter(dirVNode);
if (!parentVNode || !dirVNode)
return B_FILE_ERROR;
// get the vnode name
char name[B_FILE_NAME_LENGTH];
status_t status = get_vnode_name(dirVNode, parentVNode,
name, sizeof(name));
if (status != B_OK)
return status;
// copy the name to the userland buffer
int len = user_strlcpy(userName, name, nameLength);
if (len < 0)
return len;
if (len >= (int)nameLength)
return B_BUFFER_OVERFLOW;
}
return fdCloser.Detach();
}
status_t
_user_fcntl(int fd, int op, uint32 argument)
{
return common_fcntl(fd, op, argument, false);
}
status_t
_user_fsync(int fd)
{
return common_sync(fd, false);
}
status_t
_user_lock_node(int fd)
{
return common_lock_node(fd, false);
}
status_t
_user_unlock_node(int fd)
{
return common_unlock_node(fd, false);
}
status_t
_user_create_dir_entry_ref(dev_t device, ino_t inode, const char *userName, int perms)
{
char name[B_FILE_NAME_LENGTH];
status_t status;
if (!IS_USER_ADDRESS(userName))
return B_BAD_ADDRESS;
status = user_strlcpy(name, userName, sizeof(name));
if (status < 0)
return status;
return dir_create_entry_ref(device, inode, name, perms, false);
}
status_t
_user_create_dir(int fd, const char *userPath, int perms)
{
KPath pathBuffer(B_PATH_NAME_LENGTH + 1);
if (pathBuffer.InitCheck() != B_OK)
return B_NO_MEMORY;
char *path = pathBuffer.LockBuffer();
if (!IS_USER_ADDRESS(userPath)
|| user_strlcpy(path, userPath, B_PATH_NAME_LENGTH) < B_OK)
return B_BAD_ADDRESS;
return dir_create(fd, path, perms, false);
}
status_t
_user_remove_dir(int fd, const char *userPath)
{
KPath pathBuffer(B_PATH_NAME_LENGTH + 1);
if (pathBuffer.InitCheck() != B_OK)
return B_NO_MEMORY;
char *path = pathBuffer.LockBuffer();
if (userPath != NULL) {
if (!IS_USER_ADDRESS(userPath)
|| user_strlcpy(path, userPath, B_PATH_NAME_LENGTH) < B_OK)
return B_BAD_ADDRESS;
}
return dir_remove(fd, userPath ? path : NULL, false);
}
status_t
_user_read_link(int fd, const char *userPath, char *userBuffer, size_t *userBufferSize)
{
KPath pathBuffer(B_PATH_NAME_LENGTH + 1), linkBuffer;
if (pathBuffer.InitCheck() != B_OK || linkBuffer.InitCheck() != B_OK)
return B_NO_MEMORY;
size_t bufferSize;
if (!IS_USER_ADDRESS(userBuffer) || !IS_USER_ADDRESS(userBufferSize)
|| user_memcpy(&bufferSize, userBufferSize, sizeof(size_t)) < B_OK)
return B_BAD_ADDRESS;
char *path = pathBuffer.LockBuffer();
char *buffer = linkBuffer.LockBuffer();
if (userPath) {
if (!IS_USER_ADDRESS(userPath)
|| user_strlcpy(path, userPath, B_PATH_NAME_LENGTH) < B_OK)
return B_BAD_ADDRESS;
if (bufferSize > B_PATH_NAME_LENGTH)
bufferSize = B_PATH_NAME_LENGTH;
}
status_t status = common_read_link(fd, userPath ? path : NULL, buffer,
&bufferSize, false);
// we also update the bufferSize in case of errors
// (the real length will be returned in case of B_BUFFER_OVERFLOW)
if (user_memcpy(userBufferSize, &bufferSize, sizeof(size_t)) < B_OK)
return B_BAD_ADDRESS;
if (status < B_OK)
return status;
if (user_strlcpy(userBuffer, buffer, bufferSize) < 0)
return B_BAD_ADDRESS;
return B_OK;
}
status_t
_user_write_link(const char *userPath, const char *userToPath)
{
KPath pathBuffer(B_PATH_NAME_LENGTH + 1);
KPath toPathBuffer(B_PATH_NAME_LENGTH + 1);
if (pathBuffer.InitCheck() != B_OK || toPathBuffer.InitCheck() != B_OK)
return B_NO_MEMORY;
char *path = pathBuffer.LockBuffer();
char *toPath = toPathBuffer.LockBuffer();
if (!IS_USER_ADDRESS(userPath)
|| !IS_USER_ADDRESS(userToPath)
|| user_strlcpy(path, userPath, B_PATH_NAME_LENGTH) < B_OK
|| user_strlcpy(toPath, userToPath, B_PATH_NAME_LENGTH) < B_OK)
return B_BAD_ADDRESS;
status_t status = check_path(toPath);
if (status < B_OK)
return status;
return common_write_link(path, toPath, false);
}
status_t
_user_create_symlink(int fd, const char *userPath, const char *userToPath,
int mode)
{
KPath pathBuffer(B_PATH_NAME_LENGTH + 1);
KPath toPathBuffer(B_PATH_NAME_LENGTH + 1);
if (pathBuffer.InitCheck() != B_OK || toPathBuffer.InitCheck() != B_OK)
return B_NO_MEMORY;
char *path = pathBuffer.LockBuffer();
char *toPath = toPathBuffer.LockBuffer();
if (!IS_USER_ADDRESS(userPath)
|| !IS_USER_ADDRESS(userToPath)
|| user_strlcpy(path, userPath, B_PATH_NAME_LENGTH) < B_OK
|| user_strlcpy(toPath, userToPath, B_PATH_NAME_LENGTH) < B_OK)
return B_BAD_ADDRESS;
status_t status = check_path(toPath);
if (status < B_OK)
return status;
return common_create_symlink(fd, path, toPath, mode, false);
}
status_t
_user_create_link(const char *userPath, const char *userToPath)
{
KPath pathBuffer(B_PATH_NAME_LENGTH + 1);
KPath toPathBuffer(B_PATH_NAME_LENGTH + 1);
if (pathBuffer.InitCheck() != B_OK || toPathBuffer.InitCheck() != B_OK)
return B_NO_MEMORY;
char *path = pathBuffer.LockBuffer();
char *toPath = toPathBuffer.LockBuffer();
if (!IS_USER_ADDRESS(userPath)
|| !IS_USER_ADDRESS(userToPath)
|| user_strlcpy(path, userPath, B_PATH_NAME_LENGTH) < B_OK
|| user_strlcpy(toPath, userToPath, B_PATH_NAME_LENGTH) < B_OK)
return B_BAD_ADDRESS;
status_t status = check_path(toPath);
if (status < B_OK)
return status;
return common_create_link(path, toPath, false);
}
status_t
_user_unlink(int fd, const char *userPath)
{
KPath pathBuffer(B_PATH_NAME_LENGTH + 1);
if (pathBuffer.InitCheck() != B_OK)
return B_NO_MEMORY;
char *path = pathBuffer.LockBuffer();
if (!IS_USER_ADDRESS(userPath)
|| user_strlcpy(path, userPath, B_PATH_NAME_LENGTH) < B_OK)
return B_BAD_ADDRESS;
return common_unlink(fd, path, false);
}
status_t
_user_rename(int oldFD, const char *userOldPath, int newFD,
const char *userNewPath)
{
KPath oldPathBuffer(B_PATH_NAME_LENGTH + 1);
KPath newPathBuffer(B_PATH_NAME_LENGTH + 1);
if (oldPathBuffer.InitCheck() != B_OK || newPathBuffer.InitCheck() != B_OK)
return B_NO_MEMORY;
char *oldPath = oldPathBuffer.LockBuffer();
char *newPath = newPathBuffer.LockBuffer();
if (!IS_USER_ADDRESS(userOldPath) || !IS_USER_ADDRESS(userNewPath)
|| user_strlcpy(oldPath, userOldPath, B_PATH_NAME_LENGTH) < B_OK
|| user_strlcpy(newPath, userNewPath, B_PATH_NAME_LENGTH) < B_OK)
return B_BAD_ADDRESS;
return common_rename(oldFD, oldPath, newFD, newPath, false);
}
status_t
_user_access(const char *userPath, int mode)
{
KPath pathBuffer(B_PATH_NAME_LENGTH + 1);
if (pathBuffer.InitCheck() != B_OK)
return B_NO_MEMORY;
char *path = pathBuffer.LockBuffer();
if (!IS_USER_ADDRESS(userPath)
|| user_strlcpy(path, userPath, B_PATH_NAME_LENGTH) < B_OK)
return B_BAD_ADDRESS;
return common_access(path, mode, false);
}
status_t
_user_read_stat(int fd, const char *userPath, bool traverseLink,
struct stat *userStat, size_t statSize)
{
struct stat stat;
status_t status;
if (statSize > sizeof(struct stat))
return B_BAD_VALUE;
if (!IS_USER_ADDRESS(userStat))
return B_BAD_ADDRESS;
if (userPath) {
// path given: get the stat of the node referred to by (fd, path)
if (!IS_USER_ADDRESS(userPath))
return B_BAD_ADDRESS;
KPath pathBuffer(B_PATH_NAME_LENGTH + 1);
if (pathBuffer.InitCheck() != B_OK)
return B_NO_MEMORY;
char *path = pathBuffer.LockBuffer();
ssize_t length = user_strlcpy(path, userPath, B_PATH_NAME_LENGTH);
if (length < B_OK)
return length;
if (length >= B_PATH_NAME_LENGTH)
return B_NAME_TOO_LONG;
status = common_path_read_stat(fd, path, traverseLink, &stat, false);
} else {
// no path given: get the FD and use the FD operation
struct file_descriptor *descriptor
= get_fd(get_current_io_context(false), fd);
if (descriptor == NULL)
return B_FILE_ERROR;
if (descriptor->ops->fd_read_stat)
status = descriptor->ops->fd_read_stat(descriptor, &stat);
else
status = EOPNOTSUPP;
put_fd(descriptor);
}
if (status < B_OK)
return status;
return user_memcpy(userStat, &stat, statSize);
}
status_t
_user_write_stat(int fd, const char *userPath, bool traverseLeafLink,
const struct stat *userStat, size_t statSize, int statMask)
{
if (statSize > sizeof(struct stat))
return B_BAD_VALUE;
struct stat stat;
if (!IS_USER_ADDRESS(userStat)
|| user_memcpy(&stat, userStat, statSize) < B_OK)
return B_BAD_ADDRESS;
// clear additional stat fields
if (statSize < sizeof(struct stat))
memset((uint8 *)&stat + statSize, 0, sizeof(struct stat) - statSize);
status_t status;
if (userPath) {
// path given: write the stat of the node referred to by (fd, path)
if (!IS_USER_ADDRESS(userPath))
return B_BAD_ADDRESS;
KPath pathBuffer(B_PATH_NAME_LENGTH + 1);
if (pathBuffer.InitCheck() != B_OK)
return B_NO_MEMORY;
char *path = pathBuffer.LockBuffer();
ssize_t length = user_strlcpy(path, userPath, B_PATH_NAME_LENGTH);
if (length < B_OK)
return length;
if (length >= B_PATH_NAME_LENGTH)
return B_NAME_TOO_LONG;
status = common_path_write_stat(fd, path, traverseLeafLink, &stat,
statMask, false);
} else {
// no path given: get the FD and use the FD operation
struct file_descriptor *descriptor
= get_fd(get_current_io_context(false), fd);
if (descriptor == NULL)
return B_FILE_ERROR;
if (descriptor->ops->fd_write_stat)
status = descriptor->ops->fd_write_stat(descriptor, &stat, statMask);
else
status = EOPNOTSUPP;
put_fd(descriptor);
}
return status;
}
int
_user_open_attr_dir(int fd, const char *userPath)
{
KPath pathBuffer(B_PATH_NAME_LENGTH + 1);
if (pathBuffer.InitCheck() != B_OK)
return B_NO_MEMORY;
char *path = pathBuffer.LockBuffer();
if (userPath != NULL) {
if (!IS_USER_ADDRESS(userPath)
|| user_strlcpy(path, userPath, B_PATH_NAME_LENGTH) < B_OK)
return B_BAD_ADDRESS;
}
return attr_dir_open(fd, userPath ? path : NULL, false);
}
int
_user_create_attr(int fd, const char *userName, uint32 type, int openMode)
{
char name[B_FILE_NAME_LENGTH];
if (!IS_USER_ADDRESS(userName)
|| user_strlcpy(name, userName, B_FILE_NAME_LENGTH) < B_OK)
return B_BAD_ADDRESS;
return attr_create(fd, name, type, openMode, false);
}
int
_user_open_attr(int fd, const char *userName, int openMode)
{
char name[B_FILE_NAME_LENGTH];
if (!IS_USER_ADDRESS(userName)
|| user_strlcpy(name, userName, B_FILE_NAME_LENGTH) < B_OK)
return B_BAD_ADDRESS;
return attr_open(fd, name, openMode, false);
}
status_t
_user_remove_attr(int fd, const char *userName)
{
char name[B_FILE_NAME_LENGTH];
if (!IS_USER_ADDRESS(userName)
|| user_strlcpy(name, userName, B_FILE_NAME_LENGTH) < B_OK)
return B_BAD_ADDRESS;
return attr_remove(fd, name, false);
}
status_t
_user_rename_attr(int fromFile, const char *userFromName, int toFile, const char *userToName)
{
if (!IS_USER_ADDRESS(userFromName)
|| !IS_USER_ADDRESS(userToName))
return B_BAD_ADDRESS;
KPath fromNameBuffer(B_FILE_NAME_LENGTH);
KPath toNameBuffer(B_FILE_NAME_LENGTH);
if (fromNameBuffer.InitCheck() != B_OK || toNameBuffer.InitCheck() != B_OK)
return B_NO_MEMORY;
char *fromName = fromNameBuffer.LockBuffer();
char *toName = toNameBuffer.LockBuffer();
if (user_strlcpy(fromName, userFromName, B_FILE_NAME_LENGTH) < B_OK
|| user_strlcpy(toName, userToName, B_FILE_NAME_LENGTH) < B_OK)
return B_BAD_ADDRESS;
return attr_rename(fromFile, fromName, toFile, toName, false);
}
int
_user_open_index_dir(dev_t device)
{
return index_dir_open(device, false);
}
status_t
_user_create_index(dev_t device, const char *userName, uint32 type, uint32 flags)
{
char name[B_FILE_NAME_LENGTH];
if (!IS_USER_ADDRESS(userName)
|| user_strlcpy(name, userName, B_FILE_NAME_LENGTH) < B_OK)
return B_BAD_ADDRESS;
return index_create(device, name, type, flags, false);
}
status_t
_user_read_index_stat(dev_t device, const char *userName, struct stat *userStat)
{
char name[B_FILE_NAME_LENGTH];
struct stat stat;
status_t status;
if (!IS_USER_ADDRESS(userName)
|| !IS_USER_ADDRESS(userStat)
|| user_strlcpy(name, userName, B_FILE_NAME_LENGTH) < B_OK)
return B_BAD_ADDRESS;
status = index_name_read_stat(device, name, &stat, false);
if (status == B_OK) {
if (user_memcpy(userStat, &stat, sizeof(stat)) < B_OK)
return B_BAD_ADDRESS;
}
return status;
}
status_t
_user_remove_index(dev_t device, const char *userName)
{
char name[B_FILE_NAME_LENGTH];
if (!IS_USER_ADDRESS(userName)
|| user_strlcpy(name, userName, B_FILE_NAME_LENGTH) < B_OK)
return B_BAD_ADDRESS;
return index_remove(device, name, false);
}
status_t
_user_getcwd(char *userBuffer, size_t size)
{
if (!IS_USER_ADDRESS(userBuffer))
return B_BAD_ADDRESS;
KPath pathBuffer(B_PATH_NAME_LENGTH + 1);
if (pathBuffer.InitCheck() != B_OK)
return B_NO_MEMORY;
TRACE(("user_getcwd: buf %p, %ld\n", userBuffer, size));
if (size > B_PATH_NAME_LENGTH)
size = B_PATH_NAME_LENGTH;
char *path = pathBuffer.LockBuffer();
status_t status = get_cwd(path, size, false);
if (status < B_OK)
return status;
// Copy back the result
if (user_strlcpy(userBuffer, path, size) < B_OK)
return B_BAD_ADDRESS;
return status;
}
status_t
_user_setcwd(int fd, const char *userPath)
{
TRACE(("user_setcwd: path = %p\n", userPath));
KPath pathBuffer(B_PATH_NAME_LENGTH);
if (pathBuffer.InitCheck() != B_OK)
return B_NO_MEMORY;
char *path = pathBuffer.LockBuffer();
if (userPath != NULL) {
if (!IS_USER_ADDRESS(userPath)
|| user_strlcpy(path, userPath, B_PATH_NAME_LENGTH) < B_OK)
return B_BAD_ADDRESS;
}
return set_cwd(fd, userPath != NULL ? path : NULL, false);
}
int
_user_open_query(dev_t device, const char *userQuery, size_t queryLength,
uint32 flags, port_id port, int32 token)
{
char *query;
if (device < 0 || userQuery == NULL || queryLength == 0)
return B_BAD_VALUE;
// this is a safety restriction
if (queryLength >= 65536)
return B_NAME_TOO_LONG;
query = (char *)malloc(queryLength + 1);
if (query == NULL)
return B_NO_MEMORY;
if (user_strlcpy(query, userQuery, queryLength + 1) < B_OK) {
free(query);
return B_BAD_ADDRESS;
}
int fd = query_open(device, query, flags, port, token, false);
free(query);
return fd;
}