/* Virtual File System */ /* ** Copyright 2001-2002, Travis Geiselbrecht. All rights reserved. ** Distributed under the terms of the NewOS License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef TRACE_VFS # define TRACE_VFS 0 #endif #if TRACE_VFS # define PRINT(x) dprintf x # define FUNCTION(x) dprintf x #else # define PRINT(x) ; # define FUNCTION(x) ; #endif // ToDo: remove this and include StorageDefs.h once it's there... #ifndef B_FILE_NAME_LENGTH # define B_FILE_NAME_LENGTH 256 #endif #include #define MAX_SYM_LINKS 16 // Passed in buffers from user-space shouldn't be in the kernel #define CHECK_USER_ADDRESS(x) \ ((addr)(x) < KERNEL_BASE || (addr)(x) > KERNEL_TOP) struct vnode { struct vnode *next; struct vnode *mount_prev; struct vnode *mount_next; struct vm_cache *cache; fs_id fs_id; vnode_id id; fs_vnode private_node; struct fs_mount *mount; struct vnode *covered_by; int ref_count; bool delete_me; bool busy; }; struct vnode_hash_key { fs_id fs_id; vnode_id vnode_id; }; struct fs_container { struct fs_container *next; struct fs_calls *calls; const char *name; }; #define FS_CALL(vnode,call) (vnode->mount->fs->calls->call) static struct fs_container *fs_list; struct fs_mount { struct fs_mount *next; struct fs_container *fs; fs_id id; void *cookie; char *mount_point; recursive_lock rlock; struct vnode *root_vnode; struct vnode *covers_vnode; struct vnode *vnodes_head; struct vnode *vnodes_tail; bool unmounting; }; static mutex vfs_mutex; static mutex vfs_mount_mutex; static mutex vfs_mount_op_mutex; static mutex vfs_vnode_mutex; /* function declarations */ static int vfs_mount(char *path, const char *device, const char *fs_name, void *args, bool kernel); static int vfs_unmount(char *path, bool kernel); static ssize_t vfs_read(struct file_descriptor *, void *, off_t, size_t *); static ssize_t vfs_write(struct file_descriptor *, const void *, off_t, size_t *); static int vfs_ioctl(struct file_descriptor *, ulong, void *buf, size_t len); static status_t vfs_read_dir(struct file_descriptor *,struct dirent *buffer,size_t bufferSize,uint32 *_count); static status_t vfs_rewind_dir(struct file_descriptor *); static int vfs_read_stat(struct file_descriptor *, struct stat *); static int vfs_close(struct file_descriptor *, int, struct io_context *); static int common_ioctl(struct file_descriptor *, ulong, void *buf, size_t len); static int common_read_stat(struct file_descriptor *, struct stat *); static ssize_t file_read(struct file_descriptor *, void *, off_t, size_t *); static ssize_t file_write(struct file_descriptor *, const void *, off_t, size_t *); static off_t file_seek(struct file_descriptor *, off_t pos, int seek_type); static status_t dir_read(struct file_descriptor *,struct dirent *buffer,size_t bufferSize,uint32 *_count); static status_t dir_rewind(struct file_descriptor *); static void file_free_fd(struct file_descriptor *); static int file_close(struct file_descriptor *); static void dir_free_fd(struct file_descriptor *); static int dir_close(struct file_descriptor *); static int vfs_open(char *path, int omode, bool kernel); static int vfs_open_dir(char *path, bool kernel); static int vfs_create(char *path, int omode, int perms, bool kernel); static int vfs_create_dir(char *path, int perms, bool kernel); static status_t dir_vnode_to_path(struct vnode *vnode, char *buffer, size_t bufferSize); struct fd_ops file_ops = { "file", file_read, file_write, file_seek, common_ioctl, NULL, NULL, common_read_stat, file_close, file_free_fd }; struct fd_ops dir_ops = { "directory", NULL, NULL, NULL, common_ioctl, dir_read, dir_rewind, common_read_stat, dir_close, dir_free_fd }; #define VNODE_HASH_TABLE_SIZE 1024 static void *vnode_table; static struct vnode *root_vnode; static vnode_id next_vnode_id = 0; #define MOUNTS_HASH_TABLE_SIZE 16 static void *mounts_table; static fs_id next_fsid = 0; static int mount_compare(void *_m, const void *_key) { struct fs_mount *mount = _m; const fs_id *id = _key; if (mount->id == *id) return 0; return -1; } static unsigned int mount_hash(void *_m, const void *_key, unsigned int range) { struct fs_mount *mount = _m; const fs_id *id = _key; if (mount) return mount->id % range; return *id % range; } static struct fs_mount * find_mount(fs_id id) { struct fs_mount *mount; mutex_lock(&vfs_mount_mutex); mount = hash_lookup(mounts_table, &id); mutex_unlock(&vfs_mount_mutex); return mount; } static int vnode_compare(void *_v, const void *_key) { struct vnode *v = _v; const struct vnode_hash_key *key = _key; if (v->fs_id == key->fs_id && v->id == key->vnode_id) return 0; return -1; } static unsigned int vnode_hash(void *_v, const void *_key, unsigned int range) { struct vnode *vnode = _v; const struct vnode_hash_key *key = _key; #define VHASH(fsid, vnid) (((uint32)((vnid)>>32) + (uint32)(vnid)) ^ (uint32)(fsid)) if (vnode != NULL) return (VHASH(vnode->fs_id, vnode->id) % range); else return (VHASH(key->fs_id, key->vnode_id) % range); #undef VHASH } static void add_vnode_to_mount_list(struct vnode *v, struct fs_mount *mount) { recursive_lock_lock(&mount->rlock); v->mount_next = mount->vnodes_head; v->mount_prev = NULL; mount->vnodes_head = v; if (!mount->vnodes_tail) mount->vnodes_tail = v; recursive_lock_unlock(&mount->rlock); } static void remove_vnode_from_mount_list(struct vnode *v, struct fs_mount *mount) { recursive_lock_lock(&mount->rlock); if (v->mount_next) v->mount_next->mount_prev = v->mount_prev; else mount->vnodes_tail = v->mount_prev; if (v->mount_prev) v->mount_prev->mount_next = v->mount_next; else mount->vnodes_head = v->mount_next; v->mount_prev = v->mount_next = NULL; recursive_lock_unlock(&mount->rlock); } static struct vnode * create_new_vnode(void) { struct vnode *v; v = (struct vnode *)kmalloc(sizeof(struct vnode)); if (v == NULL) return NULL; memset(v, 0, sizeof(struct vnode));//max_commit - old_store_commitment + commitment(v); return v; } static int dec_vnode_ref_count(struct vnode *vnode, bool reenter) { int err; int old_ref; mutex_lock(&vfs_vnode_mutex); if (vnode->busy == true) panic("dec_vnode_ref_count called on vnode that was busy! vnode %p\n", vnode); old_ref = atomic_add(&vnode->ref_count, -1); PRINT(("dec_vnode_ref_count: vnode 0x%p, ref now %d\n", vnode, vnode->ref_count)); if (old_ref == 1) { vnode->busy = true; mutex_unlock(&vfs_vnode_mutex); /* if we have a vm_cache attached, remove it */ if (vnode->cache) vm_cache_release_ref((vm_cache_ref *)vnode->cache); vnode->cache = NULL; if (vnode->delete_me) FS_CALL(vnode,fs_remove_vnode)(vnode->mount->cookie, vnode->private_node, reenter); else FS_CALL(vnode,fs_put_vnode)(vnode->mount->cookie, vnode->private_node, reenter); remove_vnode_from_mount_list(vnode, vnode->mount); mutex_lock(&vfs_vnode_mutex); hash_remove(vnode_table, vnode); mutex_unlock(&vfs_vnode_mutex); kfree(vnode); err = 1; } else { mutex_unlock(&vfs_vnode_mutex); err = 0; } return err; } static int inc_vnode_ref_count(struct vnode *vnode) { atomic_add(&vnode->ref_count, 1); PRINT(("inc_vnode_ref_count: vnode 0x%p, ref now %d\n", vnode, vnode->ref_count)); return 0; } static struct vnode * lookup_vnode(fs_id fsID, vnode_id vnodeID) { struct vnode_hash_key key; key.fs_id = fsID; key.vnode_id = vnodeID; return hash_lookup(vnode_table, &key); } static int get_vnode(fs_id fsID, vnode_id vnodeID, struct vnode **_vnode, int reenter) { struct vnode *vnode; int err; FUNCTION(("get_vnode: fsid %d vnid 0x%Lx 0x%p\n", fsID, vnodeID,_vnode)); mutex_lock(&vfs_vnode_mutex); do { vnode = lookup_vnode(fsID, vnodeID); if (vnode) { if (vnode->busy) { mutex_unlock(&vfs_vnode_mutex); thread_snooze(10000); // 10 ms mutex_lock(&vfs_vnode_mutex); continue; } } } while (0); PRINT(("get_vnode: tried to lookup vnode, got 0x%p\n", vnode)); if (vnode) { inc_vnode_ref_count(vnode); } else { // we need to create a new vnode and read it in vnode = create_new_vnode(); if (!vnode) { err = ENOMEM; goto err; } vnode->fs_id = fsID; vnode->id = vnodeID; vnode->mount = find_mount(fsID); if (!vnode->mount) { err = ERR_INVALID_HANDLE; goto err; } vnode->busy = true; hash_insert(vnode_table, vnode); mutex_unlock(&vfs_vnode_mutex); add_vnode_to_mount_list(vnode, vnode->mount); err = FS_CALL(vnode,fs_get_vnode)(vnode->mount->cookie, vnodeID, &vnode->private_node, reenter); if (err < 0 && vnode->private_node == NULL) { remove_vnode_from_mount_list(vnode, vnode->mount); if (vnode->private_node == NULL) err = EINVAL; } mutex_lock(&vfs_vnode_mutex); if (err < 0) goto err1; vnode->busy = false; vnode->ref_count = 1; } mutex_unlock(&vfs_vnode_mutex); PRINT(("get_vnode: returning 0x%p\n", vnode)); *_vnode = vnode; return B_OK; err1: hash_remove(vnode_table, vnode); err: mutex_unlock(&vfs_vnode_mutex); if (vnode) kfree(vnode); return err; } static __inline void put_vnode(struct vnode *vnode) { dec_vnode_ref_count(vnode, false); } static struct file_descriptor * get_fd_and_vnode(int fd, bool kernel, struct vnode **_vnode) { struct file_descriptor *descriptor = get_fd(get_current_io_context(kernel), fd); if (descriptor == NULL) return NULL; if (descriptor->vnode == NULL) { put_fd(descriptor); return NULL; } *_vnode = descriptor->vnode; return descriptor; } static void file_free_fd(struct file_descriptor *descriptor) { struct vnode *vnode = descriptor->vnode; if (vnode != NULL) { FS_CALL(vnode,fs_free_cookie)(vnode->mount->cookie, vnode->private_node, descriptor->cookie); dec_vnode_ref_count(vnode, false); } } static void dir_free_fd(struct file_descriptor *descriptor) { struct vnode *vnode = descriptor->vnode; if (vnode != NULL) { //FS_CALL(vnode,fs_close_dir)(vnode->mount->cookie, vnode->private_node, descriptor->cookie); FS_CALL(vnode,fs_free_dir_cookie)(vnode->mount->cookie, vnode->private_node, descriptor->cookie); dec_vnode_ref_count(vnode, false); } } static struct vnode * get_vnode_from_fd(struct io_context *ioContext, int fd) { struct file_descriptor *descriptor; struct vnode *vnode; descriptor = get_fd(ioContext, fd); if (descriptor == NULL) return NULL; vnode = descriptor->vnode; if (vnode != NULL) inc_vnode_ref_count(vnode); put_fd(descriptor); return vnode; } static struct fs_container * find_fs(const char *fs_name) { struct fs_container *fs = fs_list; while (fs != NULL) { if (strcmp(fs_name, fs->name) == 0) return fs; fs = fs->next; } return NULL; } static status_t entry_ref_to_vnode(fs_id fsID,vnode_id directoryID,const char *name,struct vnode **_vnode) { struct vnode *directory, *vnode; vnode_id id; int status; int type; status = get_vnode(fsID,directoryID,&directory,false); if (status < 0) return status; status = FS_CALL(directory,fs_lookup)(directory->mount->cookie, directory->private_node, name, &id, &type); put_vnode(directory); if (status < 0) return status; mutex_lock(&vfs_vnode_mutex); vnode = lookup_vnode(fsID, id); mutex_unlock(&vfs_vnode_mutex); if (vnode == NULL) { // fs_lookup() should have left the vnode referenced, so chances // are good that this will never happen panic("entry_ref_to_vnode: could not lookup vnode (fsid 0x%x vnid 0x%Lx)\n", fsID, id); return B_ENTRY_NOT_FOUND; } *_vnode = vnode; return B_OK; } static int vnode_path_to_vnode(struct vnode *vnode, char *path, bool traverseLeafLink, struct vnode **_vnode, int count) { int status = 0; if (!path) return EINVAL; while (true) { struct vnode *nextVnode; vnode_id vnodeID; char *nextPath; int type; PRINT(("path_to_vnode: top of loop. p = %p, *p = %c, p = '%s'\n", path, *path, path)); // done? if (*path == '\0') break; // walk to find the next path component ("path" will point to a single // path component), and filter out multiple slashes for (nextPath = path + 1;*nextPath != '\0' && *nextPath != '/';nextPath++); if (*nextPath == '/') { *nextPath = '\0'; do nextPath++; while (*nextPath == '/'); } // see if the .. is at the root of a mount if (strcmp("..", path) == 0 && vnode->mount->root_vnode == vnode) { // move to the covered vnode so we pass the '..' parse to the underlying filesystem if (vnode->mount->covers_vnode) { nextVnode = vnode->mount->covers_vnode; inc_vnode_ref_count(nextVnode); dec_vnode_ref_count(vnode, false); vnode = nextVnode; } } // tell the filesystem to get the vnode of this path component status = FS_CALL(vnode,fs_lookup)(vnode->mount->cookie, vnode->private_node, path, &vnodeID, &type); if (status < 0) { put_vnode(vnode); return status; } // lookup the vnode, the call to fs_lookup should have caused a get_vnode to be called // from inside the filesystem, thus the vnode would have to be in the list and it's // ref count incremented at this point mutex_lock(&vfs_vnode_mutex); nextVnode = lookup_vnode(vnode->fs_id, vnodeID); mutex_unlock(&vfs_vnode_mutex); if (!nextVnode) { // pretty screwed up here panic("path_to_vnode: could not lookup vnode (fsid 0x%x vnid 0x%Lx)\n", vnode->fs_id, vnodeID); put_vnode(vnode); return ERR_VFS_PATH_NOT_FOUND; } // If the new node is a symbolic link, resolve it (if we've been told to do it) if (S_ISLNK(type) && !(!traverseLeafLink && nextPath[0] == '\0')) { char *buffer; // it's not exactly nice style using goto in this way, but hey, it works :-/ if (count + 1 > MAX_SYM_LINKS) { status = B_LINK_LIMIT; goto resolve_link_error; } buffer = kmalloc(SYS_MAX_PATH_LEN); if (buffer == NULL) { status = B_NO_MEMORY; goto resolve_link_error; } status = FS_CALL(nextVnode,fs_read_link)(nextVnode->mount->cookie, nextVnode->private_node, buffer, SYS_MAX_PATH_LEN); if (status < B_OK) { kfree(buffer); resolve_link_error: put_vnode(vnode); put_vnode(nextVnode); return status; } put_vnode(nextVnode); // Check if we start from the root directory or the current // directory ("vnode" still points to that one). // Cut off all leading slashes if it's the root directory path = buffer; if (path[0] == '/') { // we don't need the old directory anymore put_vnode(vnode); while (*++path == '/') ; vnode = root_vnode; inc_vnode_ref_count(vnode); } status = vnode_path_to_vnode(vnode, path, traverseLeafLink, &nextVnode, count + 1); kfree(buffer); if (status < B_OK) { put_vnode(vnode); return status; } } // decrease the ref count on the old dir we just looked up into put_vnode(vnode); path = nextPath; vnode = nextVnode; // see if we hit a mount point if (vnode->covered_by) { nextVnode = vnode->covered_by; inc_vnode_ref_count(nextVnode); put_vnode(vnode); vnode = nextVnode; } } *_vnode = vnode; return B_OK; } static int path_to_vnode(char *path, bool traverseLink, struct vnode **_vnode, bool kernel) { struct vnode *start; int linkCount = 0; int status = 0; if (!path) return EINVAL; // figure out if we need to start at root or at cwd if (*path == '/') { while (*++path == '/') ; start = root_vnode; inc_vnode_ref_count(start); } else { struct io_context *context = get_current_io_context(kernel); mutex_lock(&context->io_mutex); start = context->cwd; inc_vnode_ref_count(start); mutex_unlock(&context->io_mutex); } return vnode_path_to_vnode(start, path, traverseLink, _vnode, 0); } /** Returns the vnode in the next to last segment of the path, and returns * the last portion in filename. */ static int path_to_dir_vnode(char *path, struct vnode **_vnode, char *filename, bool kernel) { char *p = strrchr(path, '/'); if (!p) { // this path is single segment with no '/' in it // ex. "foo" strcpy(filename, path); strcpy(path, "."); } else { // replace the filename portion of the path with a '.' strcpy(filename, ++p); // ToDo: this could write behind the array limit if (p[0] != '\0'){ p[0] = '.'; p[1] = '\0'; } } return path_to_vnode(path, true, _vnode, kernel); } /** Gets the full path to a given directory vnode. * It uses the fs_get_vnode_name() call to get the name of a vnode; if a * file system doesn't support this call, it will fall back to iterating * through the parent directory to get the name of the child. * * To protect against circular loops, it supports a maximum tree depth * of 256 levels. * * Note that the path may not be correct the time this function returns! * It doesn't use any locking to prevent returning the correct path, as * paths aren't safe anyway: the path to a file can change at any time. * * It might be a good idea, though, to check if the returned path exists * in the calling function (it's not done here because of efficiency) */ static status_t dir_vnode_to_path(struct vnode *vnode, char *buffer, size_t bufferSize) { /* this implementation is currently bound to SYS_MAX_PATH_LEN */ char path[SYS_MAX_PATH_LEN]; int32 insert = sizeof(path); int32 maxLevel = 256; int32 length; status_t status; if (vnode == NULL || buffer == NULL) return EINVAL; // we don't use get_vnode() here because this call is more // efficient and does all we need from get_vnode() inc_vnode_ref_count(vnode); path[--insert] = '\0'; while (true) { // the name buffer is also used for fs_read_dir() char nameBuffer[sizeof(struct dirent) + B_FILE_NAME_LENGTH]; char *name = &((struct dirent *)nameBuffer)->d_name[0]; struct vnode *parentVnode; vnode_id parentID, id; int type; // lookup the parent vnode status = FS_CALL(vnode,fs_lookup)(vnode->mount->cookie,vnode->private_node,"..",&parentID,&type); if (status < B_OK) goto out; mutex_lock(&vfs_vnode_mutex); parentVnode = lookup_vnode(vnode->fs_id, parentID); mutex_unlock(&vfs_vnode_mutex); if (parentVnode == NULL) { panic("dir_vnode_to_path: could not lookup vnode (fsid 0x%x vnid 0x%Lx)\n", vnode->fs_id, parentID); status = B_ENTRY_NOT_FOUND; goto out; } // Does the file system support getting the name of a vnode? // If so, get it here... if (status == B_OK && FS_CALL(vnode,fs_get_vnode_name)) status = FS_CALL(vnode,fs_get_vnode_name)(vnode->mount->cookie,vnode->private_node,name,B_FILE_NAME_LENGTH); // ... if not, find it out later (by iterating through // the parent directory, searching for the id) id = vnode->id; // release the current vnode, we only need its parent from now on put_vnode(vnode); vnode = parentVnode; if (status < B_OK) goto out; // ToDo: add an explicit check for loops in about 10 levels to do // real loop detection // don't go deeper as 'maxLevel' to prevent circular loops if (maxLevel-- < 0) { status = ELOOP; goto out; } if (parentID == id) { // we have reached the root level directory of this file system // which means we have constructed the full path break; } if (!FS_CALL(vnode,fs_get_vnode_name)) { // If we don't got the vnode's name yet, we have to search for it // in the parent directory now file_cookie cookie; status = FS_CALL(vnode,fs_open_dir)(vnode->mount->cookie,vnode->private_node,&cookie); if (status >= B_OK) { struct dirent *dirent = (struct dirent *)nameBuffer; while (true) { uint32 num = 1; status = FS_CALL(vnode,fs_read_dir)(vnode->mount->cookie,vnode->private_node,cookie,dirent,sizeof(nameBuffer),&num); if (status < B_OK) break; if (id == dirent->d_ino) // found correct entry! break; } FS_CALL(vnode,fs_close_dir)(vnode->mount->cookie,vnode->private_node,cookie); } if (status < B_OK) goto out; } // add the name infront of the current path name[B_FILE_NAME_LENGTH - 1] = '\0'; length = strlen(name); insert -= length; if (insert <= 0) { status = ENOBUFS; goto out; } memcpy(path + insert, name, length); path[--insert] = '/'; } // add the mountpoint length = strlen(vnode->mount->mount_point); if (bufferSize - (sizeof(path) - insert) < length + 1) { status = ENOBUFS; goto out; } memcpy(buffer, vnode->mount->mount_point, length); if (insert != sizeof(path)) memcpy(buffer + length, path + insert, sizeof(path) - insert); out: put_vnode(vnode); return status; } static status_t check_path(char *to) { int32 length = 0; // check length of every path component while (*to) { char *begin; if (*to == '/') to++, length++; begin = to; while (*to != '/' && *to) to++, length++; if (to - begin > B_FILE_NAME_LENGTH) return B_NAME_TOO_LONG; } if (length == 0) return B_ENTRY_NOT_FOUND; // complete path if there is a slash at the end if (*(to - 1) == '/') { if (length > SYS_MAX_PATH_LEN - 2) return B_NAME_TOO_LONG; to[0] = '.'; to[1] = '\0'; } return B_OK; } // #pragma mark - // Functions the VFS exports for other parts of the kernel int vfs_get_vnode(fs_id fsID, vnode_id vnodeID, fs_vnode *_fsNode) { struct vnode *vnode; int status = get_vnode(fsID, vnodeID, &vnode, true); if (status < 0) return status; *_fsNode = vnode->private_node; return B_OK; } int vfs_put_vnode(fs_id fsID, vnode_id vnodeID) { struct vnode *vnode; mutex_lock(&vfs_vnode_mutex); vnode = lookup_vnode(fsID, vnodeID); mutex_unlock(&vfs_vnode_mutex); if (vnode) dec_vnode_ref_count(vnode, true); return B_OK; } void vfs_vnode_acquire_ref(void *vnode) { FUNCTION(("vfs_vnode_acquire_ref: vnode 0x%p\n", vnode)); inc_vnode_ref_count((struct vnode *)vnode); } void vfs_vnode_release_ref(void *vnode) { FUNCTION(("vfs_vnode_release_ref: vnode 0x%p\n", vnode)); dec_vnode_ref_count((struct vnode *)vnode, false); } int vfs_remove_vnode(fs_id fsid, vnode_id vnid) { struct vnode *vnode; mutex_lock(&vfs_vnode_mutex); vnode = lookup_vnode(fsid, vnid); if (vnode) vnode->delete_me = true; mutex_unlock(&vfs_vnode_mutex); return 0; } void * vfs_get_cache_ptr(void *vnode) { return ((struct vnode *)vnode)->cache; } int vfs_set_cache_ptr(void *vnode, void *cache) { if (test_and_set((int *)&(((struct vnode *)vnode)->cache), (int)cache, 0) == 0) return 0; return -1; } int vfs_get_vnode_from_fd(int fd, bool kernel, void **vnode) { struct io_context *ioctx; ioctx = get_current_io_context(kernel); *vnode = get_vnode_from_fd(ioctx, fd); if (*vnode == NULL) return ERR_INVALID_HANDLE; return B_NO_ERROR; } int vfs_get_vnode_from_path(const char *path, bool kernel, void **_vnode) { struct vnode *vnode; int err; char buf[SYS_MAX_PATH_LEN+1]; PRINT(("vfs_get_vnode_from_path: entry. path = '%s', kernel %d\n", path, kernel)); strncpy(buf, path, SYS_MAX_PATH_LEN); buf[SYS_MAX_PATH_LEN] = 0; err = path_to_vnode(buf, true, &vnode, kernel); if (err >= 0) *_vnode = vnode; return err; } int vfs_put_vnode_ptr(void *vnode) { struct vnode *v = vnode; put_vnode(v); return 0; } ssize_t vfs_can_page(void *_v) { struct vnode *vnode = _v; FUNCTION(("vfs_canpage: vnode 0x%p\n", vnode)); if (FS_CALL(vnode,fs_can_page)) return FS_CALL(vnode,fs_can_page)(vnode->mount->cookie, vnode->private_node); return 0; } ssize_t vfs_read_page(void *_v, iovecs *vecs, off_t pos) { struct vnode *vnode = _v; FUNCTION(("vfs_readpage: vnode %p, vecs %p, pos %Ld\n", vnode, vecs, pos)); return FS_CALL(vnode,fs_read_page)(vnode->mount->cookie, vnode->private_node, vecs, pos); } ssize_t vfs_write_page(void *_v, iovecs *vecs, off_t pos) { struct vnode *vnode = _v; FUNCTION(("vfs_writepage: vnode %p, vecs %p, pos %Ld\n", vnode, vecs, pos)); return FS_CALL(vnode,fs_write_page)(vnode->mount->cookie, vnode->private_node, vecs, pos); } /** Sets up a new io_control structure, and inherits the properties * of the parent io_control if it is given. */ void * vfs_new_io_context(void *_parentContext) { size_t table_size; struct io_context *context; struct io_context *parentContext; context = kmalloc(sizeof(struct io_context)); if (context == NULL) return NULL; memset(context, 0, sizeof(struct io_context)); parentContext = (struct io_context *)_parentContext; if (parentContext) table_size = parentContext->table_size; else table_size = DEFAULT_FD_TABLE_SIZE; context->fds = kmalloc(sizeof(struct file_descriptor *) * table_size); if (context->fds == NULL) { kfree(context); return NULL; } memset(context->fds, 0, sizeof(struct file_descriptor *) * table_size); if (mutex_init(&context->io_mutex, "I/O context") < 0) { kfree(context->fds); kfree(context); return NULL; } /* * copy parent files */ if (parentContext) { size_t i; mutex_lock(&parentContext->io_mutex); context->cwd = parentContext->cwd; if (context->cwd) inc_vnode_ref_count(context->cwd); for (i = 0; i < table_size; i++) { if (parentContext->fds[i]) { context->fds[i] = parentContext->fds[i]; atomic_add(&context->fds[i]->ref_count, 1); } } mutex_unlock(&parentContext->io_mutex); } else { context->cwd = root_vnode; if (context->cwd) inc_vnode_ref_count(context->cwd); } context->table_size = table_size; return context; } int vfs_free_io_context(void *_ioContext) { struct io_context *context = (struct io_context *)_ioContext; int i; if (context->cwd) dec_vnode_ref_count(context->cwd, false); mutex_lock(&context->io_mutex); for (i = 0; i < context->table_size; i++) { if (context->fds[i]) put_fd(context->fds[i]); } mutex_unlock(&context->io_mutex); mutex_destroy(&context->io_mutex); kfree(context->fds); kfree(context); return 0; } static int vfs_resize_fd_table(struct io_context *context, const int newSize) { void *fds; int status = B_OK; if (newSize <= 0 || newSize > MAX_FD_TABLE_SIZE) return EINVAL; mutex_lock(&context->io_mutex); if (newSize < context->table_size) { // shrink the fd table int i; // Make sure none of the fds being dropped are in use for(i = context->table_size; i-- > newSize;) { if (context->fds[i]) { status = EBUSY; goto out; } } fds = kmalloc(sizeof(struct file_descriptor *) * newSize); if (fds == NULL) { status = ENOMEM; goto out; } memcpy(fds, context->fds, sizeof(struct file_descriptor *) * newSize); } else { // enlarge the fd table fds = kmalloc(sizeof(struct file_descriptor *) * newSize); if (fds == NULL) { status = ENOMEM; goto out; } // copy the fd array, and zero the additional slots memcpy(fds, context->fds, sizeof(void *) * context->table_size); memset((char *)fds + (sizeof(void *) * context->table_size), 0, sizeof(void *) * (newSize - context->table_size)); } kfree(context->fds); context->fds = fds; context->table_size = newSize; out: mutex_unlock(&context->io_mutex); return status; } int vfs_getrlimit(int resource, struct rlimit * rlp) { if (!rlp) return -1; switch (resource) { case RLIMIT_NOFILE: { struct io_context *ioctx = get_current_io_context(false); mutex_lock(&ioctx->io_mutex); rlp->rlim_cur = ioctx->table_size; rlp->rlim_max = MAX_FD_TABLE_SIZE; mutex_unlock(&ioctx->io_mutex); return 0; } default: return -1; } } int vfs_setrlimit(int resource, const struct rlimit * rlp) { if (!rlp) return -1; switch (resource) { case RLIMIT_NOFILE: return vfs_resize_fd_table(get_current_io_context(false), rlp->rlim_cur); default: return -1; } } #ifdef DEBUG int vfs_test(void) { int fd; int err; dprintf("vfs_test() entry\n"); fd = sys_open_dir("/"); dprintf("fd = %d\n", fd); sys_close(fd); fd = sys_open_dir("/"); dprintf("fd = %d\n", fd); sys_create_dir("/foo", 0755); sys_create_dir("/foo/bar", 0755); sys_create_dir("/foo/bar/gar", 0755); sys_create_dir("/foo/bar/tar", 0755); #if 1 fd = sys_open_dir("/foo/bar"); if (fd < 0) panic("unable to open /foo/bar\n"); { char buf[64]; ssize_t len; sys_seek(fd, 0, SEEK_SET); for (;;) { len = sys_read(fd, buf, -1, sizeof(buf)); if (len > 0) dprintf("readdir returned name = '%s'\n", buf); else { dprintf("readdir returned %s\n", strerror(len)); break; } } } // do some unlink tests err = sys_unlink("/foo/bar"); if (err == B_NO_ERROR) panic("unlink of full directory should not have passed\n"); sys_unlink("/foo/bar/gar"); sys_unlink("/foo/bar/tar"); err = sys_unlink("/foo/bar"); if (err != B_NO_ERROR) panic("unlink of empty directory should have worked\n"); sys_create_dir("/test", 0755); sys_create_dir("/test", 0755); err = sys_mount("/test", NULL, "rootfs", NULL); if (err < 0) panic("failed mount test\n"); #endif #if 1 fd = sys_open_dir("/boot"); sys_close(fd); fd = sys_open_dir("/boot"); if (fd < 0) panic("unable to open dir /boot\n"); { char buf[256]; struct dirent *dirent = (struct dirent *)buf; ssize_t len; sys_rewind_dir(fd); for (;;) { len = sys_read_dir(fd, dirent, sizeof(buf), 1); // if(len < 0) // panic("readdir returned %Ld\n", (long long)len); if (len > 0) dprintf("sys_read returned name = '%s'\n", dirent->d_name); else { dprintf("sys_read returned %s\n", strerror(len)); break; } } } sys_close(fd); fd = sys_open("/boot/kernel", O_RDONLY); if (fd < 0) panic("unable to open kernel file '/boot/kernel'\n"); { char buf[64]; ssize_t len; len = sys_read(fd, buf, 0, sizeof(buf)); if (len < 0) panic("failed on read\n"); dprintf("read returned %Ld\n", (long long)len); } sys_close(fd); { struct stat stat; err = sys_read_stat("/boot/kernel", &stat); if (err < 0) panic("err stating '/boot/kernel'\n"); dprintf("stat results:\n"); dprintf("\tvnid 0x%Lx\n\ttype %d\n\tsize 0x%Lx\n", stat.st_ino, stat.st_mode, stat.st_size); } #endif dprintf("vfs_test() done\n"); return 0; } #endif image_id vfs_load_fs_module(const char *name) { image_id id; void (*bootstrap)(); char path[SYS_MAX_PATH_LEN]; // sprintf(path, "/boot/addons/fs/%s", name); id = elf_load_kspace(path, ""); if (id < 0) return id; bootstrap = (void *)elf_lookup_symbol(id, "fs_bootstrap"); if (!bootstrap) return ERR_VFS_INVALID_FS; bootstrap(); return id; } int vfs_bootstrap_all_filesystems(void) { int err; int fd; // bootstrap the root filesystem bootstrap_rootfs(); err = sys_mount("/", NULL, "rootfs", NULL); if (err < 0) panic("error mounting rootfs!\n"); sys_setcwd("/"); // bootstrap the bootfs bootstrap_bootfs(); sys_create_dir("/boot",0755); err = sys_mount("/boot", NULL, "bootfs", NULL); if (err < 0) panic("error mounting bootfs\n"); // bootstrap the devfs bootstrap_devfs(); sys_create_dir("/dev",0755); err = sys_mount("/dev", NULL, "devfs", NULL); if (err < 0) panic("error mounting devfs\n"); fd = sys_open_dir("/boot/addons/fs"); if (fd >= 0) { char buffer[sizeof(struct dirent) + 1 + SYS_MAX_NAME_LEN]; struct dirent *dirent = (struct dirent *)buffer; ssize_t length; while ((length = sys_read_dir(fd, dirent, sizeof(buffer), 1)) > 0) vfs_load_fs_module(dirent->d_name); sys_close(fd); } return B_NO_ERROR; } int vfs_register_filesystem(const char *name, struct fs_calls *calls) { struct fs_container *container; container = (struct fs_container *)kmalloc(sizeof(struct fs_container)); if (container == NULL) return ENOMEM; container->name = name; container->calls = calls; mutex_lock(&vfs_mutex); container->next = fs_list; fs_list = container; mutex_unlock(&vfs_mutex); return 0; } int vfs_init(kernel_args *ka) { { struct vnode *v; vnode_table = hash_init(VNODE_HASH_TABLE_SIZE, (addr)&v->next - (addr)v, &vnode_compare, &vnode_hash); if (vnode_table == NULL) panic("vfs_init: error creating vnode hash table\n"); } { struct fs_mount *mount; mounts_table = hash_init(MOUNTS_HASH_TABLE_SIZE, (addr)&mount->next - (addr)mount, &mount_compare, &mount_hash); if (mounts_table == NULL) panic("vfs_init: error creating mounts hash table\n"); } fs_list = NULL; root_vnode = NULL; if (mutex_init(&vfs_mutex, "vfs_lock") < 0) panic("vfs_init: error allocating vfs lock\n"); if (mutex_init(&vfs_mount_op_mutex, "vfs_mount_op_lock") < 0) panic("vfs_init: error allocating vfs_mount_op lock\n"); if (mutex_init(&vfs_mount_mutex, "vfs_mount_lock") < 0) panic("vfs_init: error allocating vfs_mount lock\n"); if (mutex_init(&vfs_vnode_mutex, "vfs_vnode_lock") < 0) panic("vfs_init: error allocating vfs_vnode lock\n"); return 0; } // #pragma mark - // The filetype-dependent implementations (fd_ops + open/create/rename/remove, ...) static int new_file_fd(struct vnode *vnode,file_cookie cookie, bool kernel) { struct file_descriptor *descriptor; int fd; descriptor = alloc_fd(); if (!descriptor) return ENOMEM; descriptor->vnode = vnode; descriptor->cookie = cookie; descriptor->ops = &file_ops; descriptor->type = FDTYPE_FILE; fd = new_fd(get_current_io_context(kernel), descriptor); if (fd < 0) return ERR_VFS_FD_TABLE_FULL; return fd; } /** Calls fs_open() on the given vnode and returns a new * file descriptor for it */ static int create_vnode(struct vnode *directory, const char *name, int omode, int perms, bool kernel) { struct vnode *vnode; file_cookie cookie; vnode_id newID; int status; if (FS_CALL(directory,fs_create) == NULL) return EROFS; status = FS_CALL(directory,fs_create)(directory->mount->cookie, directory->private_node, name, omode, perms, &cookie, &newID); if (status < B_OK) return status; mutex_lock(&vfs_vnode_mutex); vnode = lookup_vnode(directory->fs_id, newID); mutex_unlock(&vfs_vnode_mutex); if (vnode == NULL) { dprintf("vfs: fs_create() returned success but there is no vnode!"); return EINVAL; } if ((status = new_file_fd(vnode,cookie,kernel)) >= 0) return status; FS_CALL(vnode,fs_close)(vnode->mount->cookie, vnode->private_node, cookie); FS_CALL(vnode,fs_free_cookie)(vnode->mount->cookie, vnode->private_node, cookie); put_vnode(vnode); FS_CALL(directory,fs_unlink)(directory->mount->cookie, directory->private_node, name); return status; } /** Calls fs_open() on the given vnode and returns a new * file descriptor for it */ static int open_vnode(struct vnode *vnode, int omode, bool kernel) { file_cookie cookie; int status; status = FS_CALL(vnode,fs_open)(vnode->mount->cookie, vnode->private_node, omode, &cookie); if (status < 0) return status; status = new_file_fd(vnode,cookie,kernel); if (status < 0) { FS_CALL(vnode,fs_close)(vnode->mount->cookie, vnode->private_node, cookie); FS_CALL(vnode,fs_free_cookie)(vnode->mount->cookie, vnode->private_node, cookie); } return status; } /** Calls fs_open_dir() on the given vnode and returns a new * file descriptor for it */ static int open_dir_vnode(struct vnode *vnode, bool kernel) { struct file_descriptor *descriptor; file_cookie cookie; int status, fd; status = FS_CALL(vnode,fs_open_dir)(vnode->mount->cookie, vnode->private_node, &cookie); if (status < 0) return status; // file is opened, create a fd descriptor = alloc_fd(); if (!descriptor) { status = ENOMEM; goto err; } descriptor->vnode = vnode; descriptor->cookie = cookie; descriptor->ops = &dir_ops; descriptor->type = FDTYPE_DIR; fd = new_fd(get_current_io_context(kernel), descriptor); if (fd >= 0) return fd; err1: status = ERR_VFS_FD_TABLE_FULL; kfree(descriptor); err: FS_CALL(vnode,fs_close_dir)(vnode->mount->cookie, vnode->private_node, cookie); FS_CALL(vnode,fs_free_dir_cookie)(vnode->mount->cookie, vnode->private_node, cookie); return status; } static int file_create_entry_ref(fs_id fsID, vnode_id directoryID, const char *name, int omode, int perms, bool kernel) { struct vnode *directory,*vnode; int status; FUNCTION(("file_create_entry_ref: name = '%s', omode %x, perms %d, kernel %d\n", name, omode, perms, kernel)); // get directory to put the new file in status = get_vnode(fsID,directoryID,&directory,false); if (status < B_OK) return status; status = create_vnode(directory, name, omode, perms, kernel); put_vnode(directory); return status; } static int file_create(char *path, int omode, int perms, bool kernel) { char filename[SYS_MAX_NAME_LEN]; struct vnode *directory,*vnode; file_cookie cookie; vnode_id newID; int status; FUNCTION(("file_create: path '%s', omode %x, perms %d, kernel %d\n", path, omode, perms, kernel)); // get directory to put the new file in status = path_to_dir_vnode(path, &directory, filename, kernel); if (status < 0) return status; status = create_vnode(directory,filename,omode,perms,kernel); put_vnode(directory); return status; } static int file_open_entry_ref(fs_id fsID, vnode_id directoryID, const char *name, int omode, bool kernel) { struct vnode *vnode; int status; FUNCTION(("file_open_entry_ref()\n")); // get the vnode matching the entry_ref status = entry_ref_to_vnode(fsID, directoryID, name, &vnode); if (status < B_OK) return status; status = open_vnode(vnode, omode, kernel); if (status < B_OK) put_vnode(vnode); return status; } static int file_open(char *path, int omode, bool kernel) { struct file_descriptor *descriptor; struct vnode *vnode = NULL; int status; int fd; FUNCTION(("file_open: entry. path = '%s', omode %d, kernel %d\n", path, omode, kernel)); // get the vnode matching the path status = path_to_vnode(path, true, &vnode, kernel); if (status < B_OK) return status; status = open_vnode(vnode, omode, kernel); if (status < B_OK) put_vnode(vnode); return status; } static int file_close(struct file_descriptor *descriptor) { struct vnode *vnode = descriptor->vnode; FUNCTION(("file_close(descriptor = %p)\n",descriptor)); if (FS_CALL(vnode,fs_close)) return FS_CALL(vnode,fs_close)(vnode->mount->cookie,vnode->private_node,descriptor->cookie); return B_OK; } static ssize_t file_read(struct file_descriptor *descriptor, void *buffer, off_t pos, size_t *length) { struct vnode *vnode = descriptor->vnode; FUNCTION(("file_read: buf %p, pos %Ld, len 0x%p\n", buffer, pos, length)); return FS_CALL(vnode,fs_read)(vnode->mount->cookie, vnode->private_node, descriptor->cookie, buffer, pos, length); } static ssize_t file_write(struct file_descriptor *descriptor, const void *buffer, off_t pos, size_t *length) { struct vnode *vnode = descriptor->vnode; FUNCTION(("file_write: buf %p, pos %Ld, len 0x%p\n", buffer, pos, length)); return FS_CALL(vnode,fs_write)(vnode->mount->cookie, vnode->private_node, descriptor->cookie, buffer, pos, length); } static off_t file_seek(struct file_descriptor *descriptor, off_t pos, int seekType) { struct vnode *vnode = descriptor->vnode; FUNCTION(("file_seek: pos 0x%Ld, seek_type %d\n", pos, seekType)); return FS_CALL(vnode,fs_seek)(vnode->mount->cookie, vnode->private_node, descriptor->cookie, pos, seekType); } static int dir_create_entry_ref(fs_id fsID, vnode_id parentID, const char *name, int perms, bool kernel) { struct vnode *vnode; vnode_id newID; int status; FUNCTION(("dir_create_entry_ref(dev = %d, ino = %Ld, name = '%s', perms = %d)\n", fsID, parentID, name, perms)); status = get_vnode(fsID, parentID, &vnode, kernel); if (status < B_OK) return status; if (FS_CALL(vnode, fs_create_dir)) status = FS_CALL(vnode, fs_create_dir)(vnode->mount->cookie, vnode->private_node, name, perms, &newID); else status = EROFS; put_vnode(vnode); return status; } static int dir_create(char *path, int perms, bool kernel) { char filename[SYS_MAX_NAME_LEN]; struct vnode *vnode; vnode_id newID; int status; FUNCTION(("dir_create: path '%s', perms %d, kernel %d\n", path, perms, kernel)); status = path_to_dir_vnode(path, &vnode, filename, kernel); if (status < 0) return status; if (FS_CALL(vnode,fs_create_dir)) status = FS_CALL(vnode,fs_create_dir)(vnode->mount->cookie, vnode->private_node, filename, perms, &newID); else status = EROFS; put_vnode(vnode); return status; } static int dir_open_node_ref(fs_id fsID, vnode_id directoryID, bool kernel) { struct vnode *vnode; int status; FUNCTION(("dir_open_entry_ref()\n")); // get the vnode matching the node_ref status = get_vnode(fsID, directoryID, &vnode, false); if (status < B_OK) return status; status = open_dir_vnode(vnode, kernel); if (status < B_OK) put_vnode(vnode); return status; } static int dir_open_entry_ref(fs_id fsID, vnode_id parentID, const char *name, bool kernel) { struct vnode *vnode; int status; FUNCTION(("dir_open_entry_ref()\n")); // get the vnode matching the entry_ref status = entry_ref_to_vnode(fsID, parentID, name, &vnode); if (status < B_OK) return status; status = open_dir_vnode(vnode, kernel); if (status < B_OK) put_vnode(vnode); return status; } static int dir_open(char *path, bool kernel) { struct vnode *vnode; int status; FUNCTION(("dir_open: path = '%s', kernel %d\n", path, kernel)); status = path_to_vnode(path, true, &vnode, kernel); if (status < 0) return status; status = open_dir_vnode(vnode,kernel); if (status < 0) put_vnode(vnode); return status; } static status_t dir_read(struct file_descriptor *descriptor, struct dirent *buffer, size_t bufferSize, uint32 *_count) { struct vnode *vnode = descriptor->vnode; if (FS_CALL(vnode,fs_read_dir)) return FS_CALL(vnode,fs_read_dir)(vnode->mount->cookie,vnode->private_node,descriptor->cookie,buffer,bufferSize,_count); return EOPNOTSUPP; } static status_t dir_rewind(struct file_descriptor *descriptor) { struct vnode *vnode = descriptor->vnode; if (FS_CALL(vnode,fs_rewind_dir)) return FS_CALL(vnode,fs_rewind_dir)(vnode->mount->cookie,vnode->private_node,descriptor->cookie); return EOPNOTSUPP; } static int dir_close(struct file_descriptor *descriptor) { struct vnode *vnode = descriptor->vnode; FUNCTION(("dir_close(descriptor = %p)\n",descriptor)); if (FS_CALL(vnode,fs_close_dir)) return FS_CALL(vnode,fs_close_dir)(vnode->mount->cookie,vnode->private_node,descriptor->cookie); return B_OK; } static int common_read_stat(struct file_descriptor *descriptor, struct stat *stat) { struct vnode *vnode = descriptor->vnode; FUNCTION(("common_read_stat: stat 0x%p\n", stat)); return FS_CALL(vnode,fs_read_stat)(vnode->mount->cookie, vnode->private_node, stat); } static int common_ioctl(struct file_descriptor *descriptor, ulong op, void *buffer, size_t length) { struct vnode *vnode = descriptor->vnode; if (FS_CALL(vnode,fs_ioctl)) return FS_CALL(vnode,fs_ioctl)(vnode->mount->cookie,vnode->private_node,descriptor->cookie,op,buffer,length); return EOPNOTSUPP; } static int common_sync(int fd, bool kernel) { struct file_descriptor *descriptor; struct vnode *vnode; int status; FUNCTION(("vfs_fsync: entry. fd %d kernel %d\n", fd, kernel)); descriptor = get_fd_and_vnode(fd, kernel, &vnode); if (descriptor == NULL) return ERR_INVALID_HANDLE; if (FS_CALL(vnode,fs_fsync) != NULL) status = FS_CALL(vnode,fs_fsync)(vnode->mount->cookie, vnode->private_node); else status = EOPNOTSUPP; put_fd(descriptor); return status; } static int common_read_link(char *path, char *buffer, size_t bufferSize, bool kernel) { struct vnode *vnode; int status; status = path_to_vnode(path, false, &vnode, kernel); if (status < B_OK) return status; if (FS_CALL(vnode,fs_read_link) != NULL) status = FS_CALL(vnode,fs_read_link)(vnode->mount->cookie, vnode->private_node, buffer, bufferSize); else status = B_BAD_VALUE; put_vnode(vnode); return status; } static int common_symlink(char *path, const char *toPath, bool kernel) { // path validity checks have to be in the calling function! char name[B_FILE_NAME_LENGTH]; struct vnode *vnode; int status; FUNCTION(("common_symlink(path = %s, toPath = %s, kernel = %d)\n", path, toPath, kernel)); status = path_to_dir_vnode(path, &vnode, name, kernel); if (status < B_OK) return status; if (FS_CALL(vnode,fs_symlink) != NULL) status = FS_CALL(vnode,fs_symlink)(vnode->mount->cookie, vnode->private_node, name, toPath); else status = EROFS; put_vnode(vnode); return status; } static int common_unlink(char *path, bool kernel) { char filename[SYS_MAX_NAME_LEN]; struct vnode *vnode; int status; FUNCTION(("common_unlink: path '%s', kernel %d\n", path, kernel)); status = path_to_dir_vnode(path, &vnode, filename, kernel); if (status < 0) return status; if (FS_CALL(vnode,fs_unlink) != NULL) status = FS_CALL(vnode,fs_unlink)(vnode->mount->cookie, vnode->private_node, filename); else status = EROFS; put_vnode(vnode); return status; } static int common_rename(char *path, char *newPath, bool kernel) { struct vnode *vnode1, *vnode2; char filename1[SYS_MAX_NAME_LEN]; char filename2[SYS_MAX_NAME_LEN]; int status; FUNCTION(("common_rename(path = %s, newPath = %s, kernel = %d)\n", path, newPath, kernel)); status = path_to_dir_vnode(path, &vnode1, filename1, kernel); if (status < 0) goto err; status = path_to_dir_vnode(newPath, &vnode2, filename2, kernel); if (status < 0) goto err1; if (vnode1->fs_id != vnode2->fs_id) { status = ERR_VFS_CROSS_FS_RENAME; goto err2; } if (FS_CALL(vnode1,fs_rename) != NULL) status = FS_CALL(vnode1,fs_rename)(vnode1->mount->cookie, vnode1->private_node, filename1, vnode2->private_node, filename2); else status = EROFS; err2: put_vnode(vnode2); err1: put_vnode(vnode1); err: return status; } static int common_write_stat(char *path, bool traverseLeafLink, const struct stat *stat, int statMask, bool kernel) { struct vnode *vnode; int status; FUNCTION(("common_write_stat: path '%s', stat 0x%p, stat_mask %d, kernel %d\n", path, stat, statMask, kernel)); status = path_to_vnode(path, traverseLeafLink, &vnode, kernel); if (status < 0) return status; if (FS_CALL(vnode,fs_write_stat)) status = FS_CALL(vnode,fs_write_stat)(vnode->mount->cookie, vnode->private_node, stat, statMask); else status = EROFS; dec_vnode_ref_count(vnode, false); return status; } // #pragma mark - // General File System functions static int fs_mount(char *path, const char *device, const char *fs_name, void *args, bool kernel) { struct fs_mount *mount; int err = 0; struct vnode *covered_vnode = NULL; vnode_id root_id; FUNCTION(("vfs_mount: entry. path = '%s', fs_name = '%s'\n", path, fs_name)); mutex_lock(&vfs_mount_op_mutex); mount = (struct fs_mount *)kmalloc(sizeof(struct fs_mount)); if (mount == NULL) { err = ENOMEM; goto err; } mount->mount_point = kstrdup(path); if (mount->mount_point == NULL) { err = ENOMEM; goto err1; } mount->fs = find_fs(fs_name); if (mount->fs == NULL) { err = ERR_VFS_INVALID_FS; goto err2; } recursive_lock_create(&mount->rlock); mount->id = next_fsid++; mount->unmounting = false; if (!root_vnode) { // we haven't mounted anything yet if (strcmp(path, "/") != 0) { err = ERR_VFS_GENERAL; goto err3; } err = mount->fs->calls->fs_mount(mount->id, device, NULL, &mount->cookie, &root_id); if (err < 0) { err = ERR_VFS_GENERAL; goto err3; } mount->covers_vnode = NULL; // this is the root mount } else { err = path_to_vnode(path, true, &covered_vnode, kernel); if (err < 0) goto err2; if (!covered_vnode) { err = ERR_VFS_GENERAL; goto err2; } // XXX insert check to make sure covered_vnode is a DIR, or maybe it's okay for it not to be if ((covered_vnode != root_vnode) && (covered_vnode->mount->root_vnode == covered_vnode)){ err = ERR_VFS_ALREADY_MOUNTPOINT; goto err2; } mount->covers_vnode = covered_vnode; // mount it err = mount->fs->calls->fs_mount(mount->id, device, NULL, &mount->cookie, &root_id); if (err < 0) goto err4; } mutex_lock(&vfs_mount_mutex); // insert mount struct into list hash_insert(mounts_table, mount); mutex_unlock(&vfs_mount_mutex); err = get_vnode(mount->id, root_id, &mount->root_vnode, 0); if (err < 0) goto err5; // XXX may be a race here if (mount->covers_vnode) mount->covers_vnode->covered_by = mount->root_vnode; if (!root_vnode) root_vnode = mount->root_vnode; mutex_unlock(&vfs_mount_op_mutex); return 0; err5: mount->fs->calls->fs_unmount(mount->cookie); err4: if (mount->covers_vnode) dec_vnode_ref_count(mount->covers_vnode, false); err3: recursive_lock_destroy(&mount->rlock); err2: kfree(mount->mount_point); err1: kfree(mount); err: mutex_unlock(&vfs_mount_op_mutex); return err; } static int fs_unmount(char *path, bool kernel) { struct fs_mount *mount; struct vnode *vnode; int err; FUNCTION(("vfs_unmount: entry. path = '%s', kernel %d\n", path, kernel)); err = path_to_vnode(path, true, &vnode, kernel); if (err < 0) return ERR_VFS_PATH_NOT_FOUND; mutex_lock(&vfs_mount_op_mutex); mount = find_mount(vnode->fs_id); if (!mount) panic("vfs_unmount: fsid_to_mount failed on root vnode @%p of mount\n", vnode); if (mount->root_vnode != vnode) { // not mountpoint dec_vnode_ref_count(vnode, false); err = ERR_VFS_NOT_MOUNTPOINT; goto err; } /* grab the vnode master mutex to keep someone from creating a vnode while we're figuring out if we can continue */ mutex_lock(&vfs_vnode_mutex); /* simulate the root vnode having it's refcount decremented */ mount->root_vnode->ref_count -= 2; // cycle through the list of vnodes associated with this mount and // make sure all of them are not busy or have refs on them for (vnode = mount->vnodes_head; vnode != NULL; vnode = vnode->mount_next) { if (vnode->busy || vnode->ref_count != 0) { mount->root_vnode->ref_count += 2; mutex_unlock(&vfs_vnode_mutex); dec_vnode_ref_count(mount->root_vnode, false); err = EBUSY; goto err; } } /* we can safely continue, mark all of the vnodes busy and this mount structure in unmounting state */ for (vnode = mount->vnodes_head; vnode; vnode = vnode->mount_next) if (vnode != mount->root_vnode) vnode->busy = true; mount->unmounting = true; mutex_unlock(&vfs_vnode_mutex); mount->covers_vnode->covered_by = NULL; dec_vnode_ref_count(mount->covers_vnode, false); /* release the ref on the root vnode twice */ dec_vnode_ref_count(mount->root_vnode, false); dec_vnode_ref_count(mount->root_vnode, false); // XXX when full vnode cache in place, will need to force // a putvnode/removevnode here /* remove the mount structure from the hash table */ mutex_lock(&vfs_mount_mutex); hash_remove(mounts_table, mount); mutex_unlock(&vfs_mount_mutex); mutex_unlock(&vfs_mount_op_mutex); mount->fs->calls->fs_unmount(mount->cookie); kfree(mount->mount_point); kfree(mount); return 0; err: mutex_unlock(&vfs_mount_op_mutex); return err; } static int fs_sync(void) { struct hash_iterator iter; struct fs_mount *mount; FUNCTION(("vfs_sync: entry.\n")); /* cycle through and call sync on each mounted fs */ mutex_lock(&vfs_mount_op_mutex); mutex_lock(&vfs_mount_mutex); hash_open(mounts_table, &iter); while ((mount = hash_next(mounts_table, &iter))) { mount->fs->calls->fs_sync(mount->cookie); } hash_close(mounts_table, &iter, false); mutex_unlock(&vfs_mount_mutex); mutex_unlock(&vfs_mount_op_mutex); return 0; } static int fs_read_info(dev_t device, struct fs_info *info) { struct fs_mount *mount; int status; mutex_lock(&vfs_mount_mutex); mount = find_mount(device); if (mount == NULL) { status = EINVAL; goto error; } if (mount->fs->calls->fs_read_fs_info) status = mount->fs->calls->fs_read_fs_info(mount->cookie, info); else status = EOPNOTSUPP; // fill in other info the file system doesn't know about info->dev = mount->id; info->root = mount->root_vnode->id; error: mutex_unlock(&vfs_mount_mutex); return status; } static int fs_write_info(dev_t device, const struct fs_info *info, int mask) { struct fs_mount *mount; int status; mutex_lock(&vfs_mount_mutex); mount = find_mount(device); if (mount == NULL) { status = EINVAL; goto error; } if (mount->fs->calls->fs_write_fs_info) status = mount->fs->calls->fs_write_fs_info(mount->cookie, info, mask); else status = EROFS; error: mutex_unlock(&vfs_mount_mutex); return status; } static int get_cwd(char *buffer, size_t size, bool kernel) { // Get current working directory from io context struct io_context *context = get_current_io_context(kernel); int status; FUNCTION(("vfs_get_cwd: buf %p, size %ld\n", buffer, size)); mutex_lock(&context->io_mutex); if (context->cwd) status = dir_vnode_to_path(context->cwd, buffer, size); else status = B_ERROR; mutex_unlock(&context->io_mutex); return status; } static int set_cwd(char *path, bool kernel) { struct io_context *context; struct vnode *vnode = NULL; struct vnode *oldDirectory; struct stat stat; int rc; FUNCTION(("set_cwd: path = \'%s\'\n", path)); // Get vnode for passed path, and bail if it failed rc = path_to_vnode(path, true, &vnode, kernel); if (rc < 0) return rc; rc = FS_CALL(vnode,fs_read_stat)(vnode->mount->cookie, vnode->private_node, &stat); if (rc < 0) goto err; if (!S_ISDIR(stat.st_mode)) { // nope, can't cwd to here rc = ERR_VFS_WRONG_STREAM_TYPE; goto err; } // Get current io context and lock context = get_current_io_context(kernel); mutex_lock(&context->io_mutex); // save the old current working directory first oldDirectory = context->cwd; context->cwd = vnode; mutex_unlock(&context->io_mutex); if (oldDirectory) put_vnode(oldDirectory); return B_NO_ERROR; err: put_vnode(vnode); return rc; } // #pragma mark - // Calls from within the kernel int sys_mount(const char *path, const char *device, const char *fs_name, void *args) { char buf[SYS_MAX_PATH_LEN + 1]; strncpy(buf, path, SYS_MAX_PATH_LEN); buf[SYS_MAX_PATH_LEN] = 0; return fs_mount(buf, device, fs_name, args, true); } int sys_unmount(const char *path) { char buf[SYS_MAX_PATH_LEN + 1]; strncpy(buf, path, SYS_MAX_PATH_LEN); buf[SYS_MAX_PATH_LEN] = 0; return fs_unmount(buf, true); } int sys_sync(void) { return fs_sync(); } int sys_open_entry_ref(dev_t device, ino_t inode, const char *name, int omode) { char nameCopy[B_FILE_NAME_LENGTH]; strncpy(nameCopy, name, sizeof(nameCopy) - 1); nameCopy[sizeof(nameCopy) - 1] = '\0'; return file_open_entry_ref(device, inode, nameCopy, omode, true); } int sys_open(const char *path, int omode) { char pathCopy[SYS_MAX_PATH_LEN + 1]; strncpy(pathCopy, path, SYS_MAX_PATH_LEN); pathCopy[SYS_MAX_PATH_LEN] = 0; return file_open(pathCopy, omode, true); } int sys_open_dir_node_ref(dev_t device, ino_t inode) { return dir_open_node_ref(device, inode, true); } int sys_open_dir_entry_ref(dev_t device, ino_t inode, const char *name) { char nameCopy[B_FILE_NAME_LENGTH]; strncpy(nameCopy, name, sizeof(nameCopy) - 1); nameCopy[sizeof(nameCopy) - 1] = '\0'; return dir_open_entry_ref(device, inode, nameCopy, true); } int sys_open_dir(const char *path) { char buffer[SYS_MAX_PATH_LEN + 1]; strncpy(buffer, path, SYS_MAX_PATH_LEN); buffer[SYS_MAX_PATH_LEN] = 0; return dir_open(buffer, true); } int sys_fsync(int fd) { return common_sync(fd, true); } int sys_create_entry_ref(dev_t device, ino_t inode, const char *name, int omode, int perms) { char nameCopy[B_FILE_NAME_LENGTH]; int status; strncpy(nameCopy, name, sizeof(nameCopy) - 1); nameCopy[sizeof(nameCopy) - 1] = '\0'; return file_create_entry_ref(device, inode, nameCopy, omode, perms, true); } int sys_create(const char *path, int omode, int perms) { char buffer[SYS_MAX_PATH_LEN + 1]; strncpy(buffer, path, SYS_MAX_PATH_LEN); buffer[SYS_MAX_PATH_LEN] = '\0'; return file_create(buffer, omode, perms, true); } int sys_create_dir_entry_ref(dev_t device, ino_t inode, const char *name, int perms) { char nameCopy[B_FILE_NAME_LENGTH]; strncpy(nameCopy, name, sizeof(nameCopy) - 1); nameCopy[sizeof(nameCopy) - 1] = '\0'; return dir_create_entry_ref(device, inode, nameCopy, perms, true); } int sys_create_dir(const char *path, int perms) { char buffer[SYS_MAX_PATH_LEN + 1]; strncpy(buffer, path, SYS_MAX_PATH_LEN); buffer[SYS_MAX_PATH_LEN] = 0; return dir_create(buffer, perms, true); } int sys_read_link(const char *path, char *buffer, size_t bufferSize) { char pathCopy[SYS_MAX_PATH_LEN + 1]; int status; strncpy(pathCopy, path, SYS_MAX_PATH_LEN); pathCopy[SYS_MAX_PATH_LEN] = '\0'; return common_read_link(pathCopy, buffer, bufferSize, true); } int sys_create_symlink(const char *userPath, const char *userToPath) { char path[SYS_MAX_PATH_LEN + 1]; char toPath[SYS_MAX_PATH_LEN + 1]; int status; strncpy(path, userPath, SYS_MAX_PATH_LEN); path[SYS_MAX_PATH_LEN] = '\0'; strncpy(toPath, userToPath, SYS_MAX_PATH_LEN); toPath[SYS_MAX_PATH_LEN] = '\0'; status = check_path(toPath); if (status < B_OK) return status; return common_symlink(path, toPath, true); } int sys_unlink(const char *path) { char buf[SYS_MAX_PATH_LEN + 1]; strncpy(buf, path, SYS_MAX_PATH_LEN); buf[SYS_MAX_PATH_LEN] = 0; return common_unlink(buf, true); } int sys_rename(const char *oldpath, const char *newpath) { char buf1[SYS_MAX_PATH_LEN + 1]; char buf2[SYS_MAX_PATH_LEN + 1]; strncpy(buf1, oldpath, SYS_MAX_PATH_LEN); buf1[SYS_MAX_PATH_LEN] = 0; strncpy(buf2, newpath, SYS_MAX_PATH_LEN); buf2[SYS_MAX_PATH_LEN] = 0; return common_rename(buf1, buf2, true); } int sys_read_stat(const char *path, bool traverseLeafLink, struct stat *stat) { char buffer[SYS_MAX_PATH_LEN + 1]; struct vnode *vnode; int status; strncpy(buffer, path, SYS_MAX_PATH_LEN); buffer[SYS_MAX_PATH_LEN] = 0; FUNCTION(("sys_read_stat: path '%s', stat %p,\n", path, stat)); status = path_to_vnode(buffer, traverseLeafLink, &vnode, true); if (status < 0) return status; status = FS_CALL(vnode,fs_read_stat)(vnode->mount->cookie, vnode->private_node, stat); put_vnode(vnode); return status; } int sys_write_stat(const char *path, bool traverseLeafLink, struct stat *stat, int statMask) { char buffer[SYS_MAX_PATH_LEN + 1]; strncpy(buffer, path, SYS_MAX_PATH_LEN); buffer[SYS_MAX_PATH_LEN] = 0; return common_write_stat(buffer, traverseLeafLink, stat, statMask, true); } char * sys_getcwd(char *buf, size_t size) { char path[SYS_MAX_PATH_LEN]; int rc; PRINT(("sys_getcwd: buf %p, %ld\n", buf, size)); // Call vfs to get current working directory rc = get_cwd(path,SYS_MAX_PATH_LEN-1,true); path[SYS_MAX_PATH_LEN-1] = 0; // Copy back the result strncpy(buf,path,size); // Return either NULL or the buffer address to indicate failure or success return (rc < 0) ? NULL : buf; } int sys_setcwd(const char *_path) { char path[SYS_MAX_PATH_LEN]; PRINT(("sys_setcwd: path = %s\n", _path)); // Copy new path to kernel space strncpy(path, _path, SYS_MAX_PATH_LEN-1); path[SYS_MAX_PATH_LEN-1] = 0; // Call vfs to set new working directory return set_cwd(path,true); } // #pragma mark - // Calls from userland (with extra address checks) int user_mount(const char *upath, const char *udevice, const char *ufs_name, void *args) { char path[SYS_MAX_PATH_LEN + 1]; char fs_name[SYS_MAX_OS_NAME_LEN + 1]; char device[SYS_MAX_PATH_LEN + 1]; int rc; if (!CHECK_USER_ADDRESS(upath) || !CHECK_USER_ADDRESS(ufs_name) || !CHECK_USER_ADDRESS(udevice)) return B_BAD_ADDRESS; rc = user_strncpy(path, upath, SYS_MAX_PATH_LEN); if (rc < 0) return rc; path[SYS_MAX_PATH_LEN] = 0; rc = user_strncpy(fs_name, ufs_name, SYS_MAX_OS_NAME_LEN); if (rc < 0) return rc; fs_name[SYS_MAX_OS_NAME_LEN] = 0; if (udevice) { rc = user_strncpy(device, udevice, SYS_MAX_PATH_LEN); if (rc < 0) return rc; device[SYS_MAX_PATH_LEN] = 0; } else device[0] = 0; return fs_mount(path, device, fs_name, args, false); } int user_unmount(const char *upath) { char path[SYS_MAX_PATH_LEN + 1]; int rc; rc = user_strncpy(path, upath, SYS_MAX_PATH_LEN); if (rc < 0) return rc; path[SYS_MAX_PATH_LEN] = 0; return fs_unmount(path, false); } int user_sync(void) { return fs_sync(); } int user_open_entry_ref(dev_t device, ino_t inode, const char *uname, int omode) { char name[B_FILE_NAME_LENGTH]; int status; if (!CHECK_USER_ADDRESS(uname)) return ERR_VM_BAD_USER_MEMORY; status = user_strncpy(name, uname, sizeof(name) - 1); if (status < B_OK) return status; name[sizeof(name) - 1] = '\0'; return file_open_entry_ref(device, inode, name, omode, false); } int user_open(const char *upath, int omode) { char path[SYS_MAX_PATH_LEN + 1]; int rc; if (!CHECK_USER_ADDRESS(upath)) return ERR_VM_BAD_USER_MEMORY; rc = user_strncpy(path, upath, sizeof(path)); if (rc < 0) return rc; path[sizeof(path)] = 0; return file_open(path, omode, false); } int user_open_dir_node_ref(dev_t device, ino_t inode) { return dir_open_node_ref(device, inode, false); } int user_open_dir_entry_ref(dev_t device, ino_t inode, const char *uname) { char name[B_FILE_NAME_LENGTH]; int status; if (!CHECK_USER_ADDRESS(uname)) return ERR_VM_BAD_USER_MEMORY; status = user_strncpy(name, uname, sizeof(name) - 1); if (status < B_OK) return status; name[sizeof(name) - 1] = '\0'; return dir_open_entry_ref(device, inode, name, false); } int user_open_dir(const char *upath) { char path[SYS_MAX_PATH_LEN + 1]; int status; if (!CHECK_USER_ADDRESS(upath)) return ERR_VM_BAD_USER_MEMORY; status = user_strncpy(path, upath, sizeof(path)); if (status < 0) return status; path[sizeof(path)] = 0; return dir_open(path, false); } int user_fsync(int fd) { return common_sync(fd, false); } int user_create_entry_ref(dev_t device, ino_t inode, const char *uname, int omode, int perms) { char name[B_FILE_NAME_LENGTH]; int status; if (!CHECK_USER_ADDRESS(uname)) return ERR_VM_BAD_USER_MEMORY; status = user_strncpy(name, uname, sizeof(name) - 1); if (status < 0) return status; name[sizeof(name) - 1] = '\0'; return file_create_entry_ref(device, inode, name, omode, perms, false); } int user_create(const char *upath, int omode, int perms) { char path[SYS_MAX_PATH_LEN + 1]; int status; if ((addr)upath >= KERNEL_BASE && (addr)upath <= KERNEL_TOP) return ERR_VM_BAD_USER_MEMORY; status = user_strncpy(path, upath, SYS_MAX_PATH_LEN); if (status < 0) return status; path[SYS_MAX_PATH_LEN] = '\0'; return file_create(path, omode, perms, false); } int user_create_dir_entry_ref(dev_t device, ino_t inode, const char *uname, int perms) { char name[B_FILE_NAME_LENGTH]; int status; if (!CHECK_USER_ADDRESS(uname)) return ERR_VM_BAD_USER_MEMORY; status = user_strncpy(name, uname, sizeof(name) - 1); if (status < 0) return status; name[sizeof(name) - 1] = '\0'; return dir_create_entry_ref(device, inode, name, perms, false); } int user_create_dir(const char *userPath, int perms) { char path[SYS_MAX_PATH_LEN + 1]; int status; if (!CHECK_USER_ADDRESS(userPath)) return ERR_VM_BAD_USER_MEMORY; status = user_strncpy(path, userPath, SYS_MAX_PATH_LEN); if (status < 0) return status; path[SYS_MAX_PATH_LEN] = '\0'; return dir_create(path, perms, false); } int user_read_link(const char *userPath, char *userBuffer, size_t bufferSize) { char path[SYS_MAX_PATH_LEN + 1]; char buffer[SYS_MAX_PATH_LEN + 1]; int status; if (!CHECK_USER_ADDRESS(userPath) || !CHECK_USER_ADDRESS(userBuffer)) return B_BAD_ADDRESS; status = user_strncpy(path, userPath, SYS_MAX_PATH_LEN); if (status < 0) return status; path[SYS_MAX_PATH_LEN] = '\0'; status = common_read_link(path, buffer, bufferSize, false); if (status < B_OK) return status; return user_strncpy(userBuffer, buffer, SYS_MAX_PATH_LEN); } int user_create_symlink(const char *userPath, const char *userToPath) { char path[SYS_MAX_PATH_LEN + 1]; char toPath[SYS_MAX_PATH_LEN + 1]; int status; if (!CHECK_USER_ADDRESS(userPath) || !CHECK_USER_ADDRESS(userToPath)) return B_BAD_ADDRESS; status = user_strncpy(path, userPath, SYS_MAX_PATH_LEN); if (status < 0) return status; path[SYS_MAX_PATH_LEN] = '\0'; status = user_strncpy(toPath, userToPath, SYS_MAX_PATH_LEN); if (status < 0) return status; toPath[SYS_MAX_PATH_LEN] = '\0'; status = check_path(toPath); if (status < B_OK) return status; return common_symlink(path, toPath, false); } int user_unlink(const char *upath) { char path[SYS_MAX_PATH_LEN + 1]; int rc; if ((addr)upath >= KERNEL_BASE && (addr)upath <= KERNEL_TOP) return ERR_VM_BAD_USER_MEMORY; rc = user_strncpy(path, upath, SYS_MAX_PATH_LEN); if (rc < 0) return rc; path[SYS_MAX_PATH_LEN] = 0; return common_unlink(path, false); } int user_rename(const char *uoldpath, const char *unewpath) { char oldpath[SYS_MAX_PATH_LEN + 1]; char newpath[SYS_MAX_PATH_LEN + 1]; int rc; if ((addr)uoldpath >= KERNEL_BASE && (addr)uoldpath <= KERNEL_TOP) return ERR_VM_BAD_USER_MEMORY; if ((addr)unewpath >= KERNEL_BASE && (addr)unewpath <= KERNEL_TOP) return ERR_VM_BAD_USER_MEMORY; rc = user_strncpy(oldpath, uoldpath, SYS_MAX_PATH_LEN); if (rc < 0) return rc; oldpath[SYS_MAX_PATH_LEN] = 0; rc = user_strncpy(newpath, unewpath, SYS_MAX_PATH_LEN); if (rc < 0) return rc; newpath[SYS_MAX_PATH_LEN] = 0; return common_rename(oldpath, newpath, false); } int user_read_stat(const char *userPath, bool traverseLink, struct stat *userStat) { char path[SYS_MAX_PATH_LEN + 1]; struct vnode *vnode = NULL; struct stat stat; int rc; if (!CHECK_USER_ADDRESS(userPath) || !CHECK_USER_ADDRESS(userStat)) return B_BAD_ADDRESS; rc = user_strncpy(path, userPath, SYS_MAX_PATH_LEN); if (rc < 0) return rc; path[SYS_MAX_PATH_LEN] = 0; FUNCTION(("user_read_stat(path = %s, traverseLeafLink = %d)\n", path, traverseLink)); rc = path_to_vnode(path, traverseLink, &vnode, false); if (rc < 0) return rc; if (FS_CALL(vnode,fs_read_stat)) rc = FS_CALL(vnode,fs_read_stat)(vnode->mount->cookie, vnode->private_node, &stat); put_vnode(vnode); if (rc < 0) return rc; return user_memcpy(userStat, &stat, sizeof(struct stat)); } int user_write_stat(const char *userPath, bool traverseLeafLink, struct stat *userStat, int statMask) { char path[SYS_MAX_PATH_LEN+1]; struct stat stat; int rc; if (!CHECK_USER_ADDRESS(userPath) || !CHECK_USER_ADDRESS(userStat)) return B_BAD_ADDRESS; rc = user_strncpy(path, userPath, SYS_MAX_PATH_LEN); if (rc < 0) return rc; path[SYS_MAX_PATH_LEN] = 0; rc = user_memcpy(&stat, userStat, sizeof(struct stat)); if (rc < 0) return rc; return common_write_stat(path, traverseLeafLink, &stat, statMask, false); } int user_getcwd(char *buffer, size_t size) { char path[SYS_MAX_PATH_LEN]; int status; PRINT(("user_getcwd: buf %p, %ld\n", buffer, size)); // Check if userspace address is inside "shared" kernel space if ((addr)buffer >= KERNEL_BASE && (addr)buffer <= KERNEL_TOP) return ERR_VM_BAD_USER_MEMORY; // Call vfs to get current working directory status = get_cwd(path, sizeof(path), false); if (status < 0) return status; // Copy back the result if (user_strncpy(buffer, path, size) < 0) return ERR_VM_BAD_USER_MEMORY; return status; } int user_setcwd(const char *upath) { char path[SYS_MAX_PATH_LEN]; int rc; PRINT(("user_setcwd: path = %p\n", upath)); // Check if userspace address is inside "shared" kernel space if ((addr)upath >= KERNEL_BASE && (addr)upath <= KERNEL_TOP) return ERR_VM_BAD_USER_MEMORY; // Copy new path to kernel space rc = user_strncpy(path, upath, SYS_MAX_PATH_LEN-1); if (rc < 0) return rc; path[SYS_MAX_PATH_LEN-1] = 0; // Call vfs to set new working directory return set_cwd(path,false); }