/* Open Tracker License Terms and Conditions Copyright (c) 1991-2000, Be Incorporated. All rights reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice applies to all licensees and shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL BE INCORPORATED BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name of Be Incorporated shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from Be Incorporated. Tracker(TM), Be(R), BeOS(R), and BeIA(TM) are trademarks or registered trademarks of Be Incorporated in the United States and other countries. Other brand product names are registered trademarks or trademarks of their respective holders. All rights reserved. */ // bonefish: // * removed need for exceptions // * fixed warnings // * implemented rehashing // * added RemoveAll() // TODO: // * shrinking of element vectors // Hash table with open addresssing #ifndef __OPEN_HASH_TABLE__ #define __OPEN_HASH_TABLE__ #include #include // don't include #ifndef ASSERT # define ASSERT(E) (void)0 #endif #ifndef TRESPASS # define TRESPASS() (void)0 #endif namespace BPrivate { template class ElementVector { // element vector for OpenHashTable needs to implement this // interface public: Element &At(int32 index); Element *Add(); int32 IndexOf(const Element &) const; void Remove(int32 index); }; class OpenHashElement { public: uint32 Hash() const; bool operator==(const OpenHashElement &) const; void Adopt(OpenHashElement &); // low overhead copy, original element is in undefined state // after call (calls Adopt on BString members, etc.) int32 fNext; }; const uint32 kPrimes [] = { 509, 1021, 2039, 4093, 8191, 16381, 32749, 65521, 131071, 262139, 524287, 1048573, 2097143, 4194301, 8388593, 16777213, 33554393, 67108859, 134217689, 268435399, 536870909, 1073741789, 2147483647, 0 }; template > class OpenHashTable { public: OpenHashTable(int32 minSize, ElementVec *elementVector = 0, float maxLoadFactor = 0.8); // it is up to the subclass of OpenHashTable to supply // elementVector ~OpenHashTable(); bool InitCheck() const; void SetElementVector(ElementVec *elementVector); Element *FindFirst(uint32 elementHash) const; Element *Add(uint32 elementHash); void Remove(Element *element, bool dontRehash = false); void RemoveAll(); // when calling Add, any outstanding element pointer may become // invalid; to deal with this, get the element index and restore // it after the add int32 ElementIndex(const Element *) const; Element *ElementAt(int32 index) const; int32 ArraySize() const; int32 VectorSize() const; int32 CountElements() const; protected: static int32 OptimalSize(int32 minSize); private: bool _RehashIfNeeded(); bool _Rehash(); int32 fArraySize; int32 fInitialSize; int32 fElementCount; int32 *fHashArray; ElementVec *fElementVector; float fMaxLoadFactor; }; template class OpenHashElementArray : public ElementVector { // this is a straightforward implementation of an element vector // deleting is handled by linking deleted elements into a free list // the vector never shrinks public: OpenHashElementArray(int32 initialSize); ~OpenHashElementArray(); bool InitCheck() const; Element &At(int32 index); const Element &At(int32 index) const; Element *Add(const Element &); Element *Add(); void Remove(int32 index); int32 IndexOf(const Element &) const; int32 Size() const; private: Element *fData; int32 fSize; int32 fNextFree; int32 fNextDeleted; }; //----------------------------------- template OpenHashTable::OpenHashTable(int32 minSize, ElementVec *elementVector, float maxLoadFactor) : fArraySize(OptimalSize(minSize)), fInitialSize(fArraySize), fElementCount(0), fElementVector(elementVector), fMaxLoadFactor(maxLoadFactor) { // sanity check the maximal load factor if (fMaxLoadFactor < 0.5) fMaxLoadFactor = 0.5; // allocate and init the array fHashArray = (int32*)calloc(fArraySize, sizeof(int32)); if (fHashArray) { for (int32 index = 0; index < fArraySize; index++) fHashArray[index] = -1; } } template OpenHashTable::~OpenHashTable() { RemoveAll(); free(fHashArray); } template bool OpenHashTable::InitCheck() const { return (fHashArray && fElementVector); } template int32 OpenHashTable::OptimalSize(int32 minSize) { for (int32 index = 0; ; index++) if (!kPrimes[index] || kPrimes[index] >= (uint32)minSize) return (int32)kPrimes[index]; return 0; } template Element * OpenHashTable::FindFirst(uint32 hash) const { ASSERT(fElementVector); hash %= fArraySize; if (fHashArray[hash] < 0) return 0; return &fElementVector->At(fHashArray[hash]); } template int32 OpenHashTable::ElementIndex(const Element *element) const { return fElementVector->IndexOf(*element); } template Element * OpenHashTable::ElementAt(int32 index) const { return &fElementVector->At(index); } template int32 OpenHashTable::ArraySize() const { return fArraySize; } template int32 OpenHashTable::VectorSize() const { return fElementVector->Size(); } template int32 OpenHashTable::CountElements() const { return fElementCount; } template Element * OpenHashTable::Add(uint32 hash) { ASSERT(fElementVector); _RehashIfNeeded(); hash %= fArraySize; Element *result = fElementVector->Add(); if (result) { result->fNext = fHashArray[hash]; fHashArray[hash] = fElementVector->IndexOf(*result); fElementCount++; } return result; } template void OpenHashTable::Remove(Element *element, bool dontRehash) { if (!dontRehash) _RehashIfNeeded(); uint32 hash = element->Hash() % fArraySize; int32 next = fHashArray[hash]; ASSERT(next >= 0); if (&fElementVector->At(next) == element) { fHashArray[hash] = element->fNext; fElementVector->Remove(next); fElementCount--; return; } for (int32 index = next; index >= 0; ) { // look for an existing match in table next = fElementVector->At(index).fNext; if (next < 0) { TRESPASS(); return; } if (&fElementVector->At(next) == element) { fElementVector->At(index).fNext = element->fNext; fElementVector->Remove(next); fElementCount--; return; } index = next; } } template void OpenHashTable::RemoveAll() { for (int32 i = 0; fElementCount > 0 && i < fArraySize; i++) { int32 index = fHashArray[i]; while (index >= 0) { Element* element = &fElementVector->At(index); int32 next = element->fNext; fElementVector->Remove(index); fElementCount--; index = next; } fHashArray[i] = -1; } _RehashIfNeeded(); } template void OpenHashTable::SetElementVector(ElementVec *elementVector) { fElementVector = elementVector; } // _RehashIfNeeded template bool OpenHashTable::_RehashIfNeeded() { // The load factor range [fMaxLoadFactor / 3, fMaxLoadFactor] is fine, // I think. After rehashing the load factor will be about // fMaxLoadFactor * 2 / 3, respectively fMaxLoadFactor / 2. float loadFactor = (float)fElementCount / (float)fArraySize; if (loadFactor > fMaxLoadFactor || (fArraySize > fInitialSize && loadFactor < fMaxLoadFactor / 3)) { return _Rehash(); } return true; } // _Rehash template bool OpenHashTable::_Rehash() { bool result = true; int32 newSize = int32(fElementCount * 1.73 * fMaxLoadFactor); newSize = (fInitialSize > newSize ? fInitialSize : newSize); if (newSize != fArraySize) { // allocate a new array int32 *newHashArray = (int32*)calloc(newSize, sizeof(int32)); if (newHashArray) { // init the new hash array for (int32 index = 0; index < newSize; index++) newHashArray[index] = -1; // iterate through all elements and put them into the new // hash array for (int i = 0; i < fArraySize; i++) { int32 index = fHashArray[i]; while (index >= 0) { // insert the element in the new array Element &element = fElementVector->At(index); int32 next = element.fNext; uint32 hash = (element.Hash() % newSize); element.fNext = newHashArray[hash]; newHashArray[hash] = index; // next element in old list index = next; } } // delete the old array and set the new one free(fHashArray); fHashArray = newHashArray; fArraySize = newSize; } else result = false; } return result; } template OpenHashElementArray::OpenHashElementArray(int32 initialSize) : fSize(initialSize), fNextFree(0), fNextDeleted(-1) { fData = (Element*)calloc((size_t)initialSize, sizeof(Element)); } template OpenHashElementArray::~OpenHashElementArray() { free(fData); } template bool OpenHashElementArray::InitCheck() const { return fData; } template Element & OpenHashElementArray::At(int32 index) { ASSERT(index < fSize); return fData[index]; } template const Element & OpenHashElementArray::At(int32 index) const { ASSERT(index < fSize); return fData[index]; } template int32 OpenHashElementArray::IndexOf(const Element &element) const { int32 result = &element - fData; if (result < 0 || result > fSize) return -1; return result; } template int32 OpenHashElementArray::Size() const { return fSize; } template Element * OpenHashElementArray::Add(const Element &newElement) { Element *element = Add(); if (element) element.Adopt(newElement); return element; } #if DEBUG const int32 kGrowChunk = 10; #else const int32 kGrowChunk = 1024; #endif template Element * OpenHashElementArray::Add() { int32 index = fNextFree; if (fNextDeleted >= 0) { index = fNextDeleted; fNextDeleted = At(index).fNext; } else if (fNextFree >= fSize - 1) { int32 newSize = fSize + kGrowChunk; /* Element *newData = (Element *)calloc((size_t)newSize , sizeof(Element)); if (!newData) return NULL; memcpy(newData, fData, fSize * sizeof(Element)); free(fData); */ Element *newData = (Element*)realloc(fData, (size_t)newSize * sizeof(Element)); if (!newData) return NULL; fData = newData; fSize = newSize; index = fNextFree; fNextFree++; } else fNextFree++; new (&At(index)) Element; // call placement new to initialize the element properly ASSERT(At(index).fNext == -1); return &At(index); } template void OpenHashElementArray::Remove(int32 index) { // delete by chaining empty elements in a single linked // list, reusing the next field ASSERT(index < fSize); At(index).~Element(); // call the destructor explicitly to destroy the element // properly At(index).fNext = fNextDeleted; fNextDeleted = index; } } // namespace BPrivate using BPrivate::OpenHashTable; #endif // __OPEN_HASH_TABLE__