//---------------------------------------------------------------------------- // Anti-Grain Geometry - Version 2.2 // Copyright (C) 2002-2004 Maxim Shemanarev (http://www.antigrain.com) // // Permission to copy, use, modify, sell and distribute this software // is granted provided this copyright notice appears in all copies. // This software is provided "as is" without express or implied // warranty, and with no claim as to its suitability for any purpose. // //---------------------------------------------------------------------------- // Contact: mcseem@antigrain.com // mcseemagg@yahoo.com // http://www.antigrain.com //---------------------------------------------------------------------------- // // Affine transformation classes. // //---------------------------------------------------------------------------- #ifndef AGG_TRANS_AFFINE_INCLUDED #define AGG_TRANS_AFFINE_INCLUDED #include #include "agg_basics.h" namespace agg { const double affine_epsilon = 1e-14; // About of precision of doubles //============================================================trans_affine // // See Implementation agg_trans_affine.cpp // // Affine transformation are linear transformations in Cartesian coordinates // (strictly speaking not only in Cartesian, but for the beginning we will // think so). They are rotation, scaling, translation and skewing. // After any affine transformation a line segment remains a line segment // and it will never become a curve. // // There will be no math about matrix calculations, since it has been // described many times. Ask yourself a very simple question: // "why do we need to understand and use some matrix stuff instead of just // rotating, scaling and so on". The answers are: // // 1. Any combination of transformations can be done by only 4 multiplications // and 4 additions in floating point. // 2. One matrix transformation is equivalent to the number of consecutive // discrete transformations, i.e. the matrix "accumulates" all transformations // in the order of their settings. Suppose we have 4 transformations: // * rotate by 30 degrees, // * scale X to 2.0, // * scale Y to 1.5, // * move to (100, 100). // The result will depend on the order of these transformations, // and the advantage of matrix is that the sequence of discret calls: // rotate(30), scaleX(2.0), scaleY(1.5), move(100,100) // will have exactly the same result as the following matrix transformations: // // affine_matrix m; // m *= rotate_matrix(30); // m *= scaleX_matrix(2.0); // m *= scaleY_matrix(1.5); // m *= move_matrix(100,100); // // m.transform_my_point_at_last(x, y); // // What is the good of it? In real life we will set-up the matrix only once // and then transform many points, let alone the convenience to set any // combination of transformations. // // So, how to use it? Very easy - literally as it's shown above. Not quite, // let us write a correct example: // // agg::trans_affine m; // m *= agg::trans_affine_rotation(30.0 * 3.1415926 / 180.0); // m *= agg::trans_affine_scaling(2.0, 1.5); // m *= agg::trans_affine_translation(100.0, 100.0); // m.transform(&x, &y); // // The affine matrix is all you need to perform any linear transformation, // but all transformations have origin point (0,0). It means that we need to // use 2 translations if we want to rotate someting around (100,100): // // m *= agg::trans_affine_translation(-100.0, -100.0); // move to (0,0) // m *= agg::trans_affine_rotation(30.0 * 3.1415926 / 180.0); // rotate // m *= agg::trans_affine_translation(100.0, 100.0); // move back to (100,100) //---------------------------------------------------------------------- class trans_affine { public: //------------------------------------------ Construction // Construct an identity matrix - it does not transform anything trans_affine() : m0(1.0), m1(0.0), m2(0.0), m3(1.0), m4(0.0), m5(0.0) {} // Construct a custom matrix. Usually used in derived classes trans_affine(double v0, double v1, double v2, double v3, double v4, double v5) : m0(v0), m1(v1), m2(v2), m3(v3), m4(v4), m5(v5) {} // Construct a matrix to transform a parallelogram to another one. trans_affine(const double* rect, const double* parl) { parl_to_parl(rect, parl); } // Construct a matrix to transform a rectangle to a parallelogram. trans_affine(double x1, double y1, double x2, double y2, const double* parl) { rect_to_parl(x1, y1, x2, y2, parl); } // Construct a matrix to transform a parallelogram to a rectangle. trans_affine(const double* parl, double x1, double y1, double x2, double y2) { parl_to_rect(parl, x1, y1, x2, y2); } //---------------------------------- Parellelogram transformations // Calculate a matrix to transform a parallelogram to another one. // src and dst are pointers to arrays of three points // (double[6], x,y,...) that identify three corners of the // parallelograms assuming implicit fourth points. // There are also transformations rectangtle to parallelogram and // parellelogram to rectangle const trans_affine& parl_to_parl(const double* src, const double* dst); const trans_affine& rect_to_parl(double x1, double y1, double x2, double y2, const double* parl); const trans_affine& parl_to_rect(const double* parl, double x1, double y1, double x2, double y2); //------------------------------------------ Operations // Reset - actually load an identity matrix const trans_affine& reset(); // Multiply matrix to another one const trans_affine& multiply(const trans_affine& m); // Multiply "m" to "this" and assign the result to "this" const trans_affine& premultiply(const trans_affine& m); // Invert matrix. Do not try to invert degenerate matrices, // there's no check for validity. If you set scale to 0 and // then try to invert matrix, expect unpredictable result. const trans_affine& invert(); // Mirroring around X const trans_affine& flip_x(); // Mirroring around Y const trans_affine& flip_y(); //------------------------------------------- Load/Store // Store matrix to an array [6] of double void store_to(double* m) const { *m++ = m0; *m++ = m1; *m++ = m2; *m++ = m3; *m++ = m4; *m++ = m5; } // Load matrix from an array [6] of double const trans_affine& load_from(const double* m) { m0 = *m++; m1 = *m++; m2 = *m++; m3 = *m++; m4 = *m++; m5 = *m++; return *this; } //------------------------------------------- Operators // Multiply current matrix to another one const trans_affine& operator *= (const trans_affine& m) { return multiply(m); } // Multiply current matrix to another one and return // the result in a separete matrix. trans_affine operator * (const trans_affine& m) { return trans_affine(*this).multiply(m); } // Calculate and return the inverse matrix trans_affine operator ~ () const { trans_affine ret = *this; return ret.invert(); } // Equal operator with default epsilon bool operator == (const trans_affine& m) const { return is_equal(m, affine_epsilon); } // Not Equal operator with default epsilon bool operator != (const trans_affine& m) const { return !is_equal(m, affine_epsilon); } //-------------------------------------------- Transformations // Direct transformation x and y void transform(double* x, double* y) const; // Inverse transformation x and y. It works slower than the // direct transformation, so if the performance is critical // it's better to invert() the matrix and then use transform() void inverse_transform(double* x, double* y) const; //-------------------------------------------- Auxiliary // Calculate the determinant of matrix double determinant() const { return 1.0 / (m0 * m3 - m1 * m2); } // Get the average scale (by X and Y). // Basically used to calculate the approximation_scale when // decomposinting curves into line segments. double scale() const; // Check to see if it's an identity matrix bool is_identity(double epsilon = affine_epsilon) const; // Check to see if two matrices are equal bool is_equal(const trans_affine& m, double epsilon = affine_epsilon) const; // Determine the major parameters. Use carefully considering degenerate matrices double rotation() const; void translation(double* dx, double* dy) const; void scaling(double* sx, double* sy) const; private: double m0; double m1; double m2; double m3; double m4; double m5; }; //------------------------------------------------------------------------ inline void trans_affine::transform(double* x, double* y) const { register double tx = *x; *x = tx * m0 + *y * m2 + m4; *y = tx * m1 + *y * m3 + m5; } //------------------------------------------------------------------------ inline void trans_affine::inverse_transform(double* x, double* y) const { register double d = determinant(); register double a = (*x - m4) * d; register double b = (*y - m5) * d; *x = a * m3 - b * m2; *y = b * m0 - a * m1; } //------------------------------------------------------------------------ inline double trans_affine::scale() const { double x = 0.707106781 * m0 + 0.707106781 * m2; double y = 0.707106781 * m1 + 0.707106781 * m3; return sqrt(x*x + y*y); } //------------------------------------------------------------------------ inline const trans_affine& trans_affine::premultiply(const trans_affine& m) { trans_affine t = m; return *this = t.multiply(*this); } //====================================================trans_affine_rotation // Rotation matrix. sin() and cos() are calculated twice for the same angle. // There's no harm because the performance of sin()/cos() is very good on all // modern processors. Besides, this operation is not going to be invoked too // often. class trans_affine_rotation : public trans_affine { public: trans_affine_rotation(double a) : trans_affine(cos(a), sin(a), -sin(a), cos(a), 0.0, 0.0) {} }; //====================================================trans_affine_scaling // Scaling matrix. sx, sy - scale coefficients by X and Y respectively class trans_affine_scaling : public trans_affine { public: trans_affine_scaling(double sx, double sy) : trans_affine(sx, 0.0, 0.0, sy, 0.0, 0.0) {} trans_affine_scaling(double s) : trans_affine(s, 0.0, 0.0, s, 0.0, 0.0) {} }; //================================================trans_affine_translation // Translation matrix class trans_affine_translation : public trans_affine { public: trans_affine_translation(double tx, double ty) : trans_affine(1.0, 0.0, 0.0, 1.0, tx, ty) {} }; //====================================================trans_affine_skewing // Sckewing (shear) matrix class trans_affine_skewing : public trans_affine { public: trans_affine_skewing(double sx, double sy) : trans_affine(1.0, tan(sy), tan(sx), 1.0, 0.0, 0.0) {} }; } #endif