/* ports for IPC */ /* ** Copyright 2001, Mark-Jan Bastian. All rights reserved. ** Distributed under the terms of the NewOS License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include struct port_msg { int msg_code; cbuf *data_cbuf; size_t data_len; }; struct port_entry { port_id id; team_id owner; int32 capacity; spinlock lock; char *name; sem_id read_sem; sem_id write_sem; int head; int tail; int total_count; bool closed; struct port_msg* msg_queue; }; // internal API static int dump_port_list(int argc, char **argv); static int dump_port_info(int argc, char **argv); static void _dump_port_info(struct port_entry *port); // MAX_PORTS must be power of 2 #define MAX_PORTS 4096 #define MAX_QUEUE_LENGTH 4096 #define PORT_MAX_MESSAGE_SIZE 65536 static struct port_entry *ports = NULL; static region_id port_region = 0; static bool ports_active = false; static port_id next_port = 0; static spinlock port_spinlock = 0; #define GRAB_PORT_LIST_LOCK() acquire_spinlock(&port_spinlock) #define RELEASE_PORT_LIST_LOCK() release_spinlock(&port_spinlock) #define GRAB_PORT_LOCK(s) acquire_spinlock(&(s).lock) #define RELEASE_PORT_LOCK(s) release_spinlock(&(s).lock) status_t port_init(kernel_args *ka) { int i; int sz; sz = sizeof(struct port_entry) * MAX_PORTS; // create and initialize semaphore table port_region = vm_create_anonymous_region(vm_get_kernel_aspace_id(), "port_table", (void **)&ports, REGION_ADDR_ANY_ADDRESS, sz, REGION_WIRING_WIRED, LOCK_RW|LOCK_KERNEL); if (port_region < 0) { panic("unable to allocate kernel port table!\n"); } memset(ports, 0, sz); for (i = 0; i < MAX_PORTS; i++) ports[i].id = -1; // add debugger commands add_debugger_command("ports", &dump_port_list, "Dump a list of all active ports"); add_debugger_command("port", &dump_port_info, "Dump info about a particular port"); ports_active = true; return 0; } int dump_port_list(int argc, char **argv) { int i; for (i = 0; i < MAX_PORTS; i++) { if (ports[i].id >= 0) dprintf("%p\tid: 0x%lx\t\tname: '%s'\n", &ports[i], ports[i].id, ports[i].name); } return 0; } static void _dump_port_info(struct port_entry *port) { int32 cnt; dprintf("PORT: %p\n", port); dprintf("name: '%s'\n", port->name); dprintf("owner: 0x%lx\n", port->owner); dprintf("cap: %ld\n", port->capacity); dprintf("head: %d\n", port->head); dprintf("tail: %d\n", port->tail); get_sem_count(port->read_sem, &cnt); dprintf("read_sem: %ld\n", cnt); get_sem_count(port->read_sem, &cnt); dprintf("write_sem: %ld\n", cnt); } static int dump_port_info(int argc, char **argv) { int i; if (argc < 2) { dprintf("port: not enough arguments\n"); return 0; } // if the argument looks like a hex number, treat it as such if (strlen(argv[1]) > 2 && argv[1][0] == '0' && argv[1][1] == 'x') { unsigned long num = atoul(argv[1]); if (num > KERNEL_BASE && num <= (KERNEL_BASE + (KERNEL_SIZE - 1))) { // XXX semi-hack // one can use either address or a port_id, since KERNEL_BASE > MAX_PORTS assumed _dump_port_info((struct port_entry *)num); return 0; } else { unsigned slot = num % MAX_PORTS; if(ports[slot].id != (int)num) { dprintf("port 0x%lx doesn't exist!\n", num); return 0; } _dump_port_info(&ports[slot]); return 0; } } // walk through the ports list, trying to match name for (i = 0; i < MAX_PORTS; i++) { if (ports[i].name != NULL && strcmp(argv[1], ports[i].name) == 0) { _dump_port_info(&ports[i]); return 0; } } return 0; } port_id create_port(int32 queue_length, const char *name) { int i; int state; sem_id sem_r, sem_w; port_id retval; int name_len; char *temp_name; struct port_msg *q; team_id owner; if (ports_active == false) return B_BAD_PORT_ID; // check queue length if (queue_length < 1) return EINVAL; if (queue_length > MAX_QUEUE_LENGTH) return EINVAL; // check & dup name if (name == NULL) name = "unnamed port"; name_len = strlen(name) + 1; name_len = min(name_len, SYS_MAX_OS_NAME_LEN); temp_name = (char *)malloc(name_len); if (temp_name == NULL) return ENOMEM; strlcpy(temp_name, name, name_len); // alloc queue q = (struct port_msg *)malloc(queue_length * sizeof(struct port_msg)); if (q == NULL) { free(temp_name); // dealloc name, too return ENOMEM; } // init cbuf list of the queue for (i = 0; i < queue_length; i++) q[i].data_cbuf = 0; // create sem_r with owner set to -1 sem_r = create_sem_etc(0, temp_name, -1); if (sem_r < 0) { // cleanup free(temp_name); free(q); return sem_r; } // create sem_w sem_w = create_sem_etc(queue_length, temp_name, -1); if (sem_w < 0) { // cleanup delete_sem(sem_r); free(temp_name); free(q); return sem_w; } owner = team_get_current_team_id(); state = disable_interrupts(); GRAB_PORT_LIST_LOCK(); // find the first empty spot for (i = 0; i < MAX_PORTS; i++) { if(ports[i].id == -1) { // make the port_id be a multiple of the slot it's in if(i >= next_port % MAX_PORTS) { next_port += i - next_port % MAX_PORTS; } else { next_port += MAX_PORTS - (next_port % MAX_PORTS - i); } ports[i].id = next_port++; ports[i].lock = 0; GRAB_PORT_LOCK(ports[i]); RELEASE_PORT_LIST_LOCK(); ports[i].capacity = queue_length; ports[i].name = temp_name; // assign sem ports[i].read_sem = sem_r; ports[i].write_sem = sem_w; ports[i].msg_queue = q; ports[i].head = 0; ports[i].tail = 0; ports[i].total_count= 0; ports[i].owner = owner; retval = ports[i].id; RELEASE_PORT_LOCK(ports[i]); goto out; } } // not enough ports... RELEASE_PORT_LIST_LOCK(); retval = B_NO_MORE_PORTS; dprintf("create_port(): B_NO_MORE_PORTS\n"); // cleanup delete_sem(sem_w); delete_sem(sem_r); free(temp_name); free(q); out: restore_interrupts(state); return retval; } status_t close_port(port_id id) { int state; int slot; if (ports_active == false) return B_BAD_PORT_ID; if (id < 0) return B_BAD_PORT_ID; slot = id % MAX_PORTS; // walk through the sem list, trying to match name state = disable_interrupts(); GRAB_PORT_LOCK(ports[slot]); if (ports[slot].id != id) { RELEASE_PORT_LOCK(ports[slot]); restore_interrupts(state); dprintf("close_port: invalid port_id %ld\n", id); return B_BAD_PORT_ID; } // mark port to disable writing ports[slot].closed = true; RELEASE_PORT_LOCK(ports[slot]); restore_interrupts(state); return B_NO_ERROR; } status_t delete_port(port_id id) { int slot; int state; sem_id r_sem, w_sem; int capacity; int i; char *old_name; struct port_msg *q; if (ports_active == false) return B_BAD_PORT_ID; if (id < 0) return B_BAD_PORT_ID; slot = id % MAX_PORTS; state = disable_interrupts(); GRAB_PORT_LOCK(ports[slot]); if (ports[slot].id != id) { RELEASE_PORT_LOCK(ports[slot]); restore_interrupts(state); dprintf("delete_port: invalid port_id %ld\n", id); return B_BAD_PORT_ID; } /* mark port as invalid */ ports[slot].id = -1; old_name = ports[slot].name; q = ports[slot].msg_queue; r_sem = ports[slot].read_sem; w_sem = ports[slot].write_sem; capacity = ports[slot].capacity; ports[slot].name = NULL; RELEASE_PORT_LOCK(ports[slot]); restore_interrupts(state); // delete the cbuf's that are left in the queue (if any) for (i = 0; i < capacity; i++) { if (q[i].data_cbuf != NULL) cbuf_free_chain(q[i].data_cbuf); } free(q); free(old_name); // release the threads that were blocking on this port by deleting the sem // read_port() will see the B_BAD_SEM_ID acq_sem() return value, and act accordingly delete_sem(r_sem); delete_sem(w_sem); return B_NO_ERROR; } port_id find_port(const char *port_name) { int i; int state; int ret_val = B_BAD_PORT_ID; if (ports_active == false) return B_BAD_PORT_ID; if (port_name == NULL) return B_BAD_PORT_ID; // lock list of ports state = disable_interrupts(); GRAB_PORT_LIST_LOCK(); // loop over list for (i = 0; i < MAX_PORTS; i++) { // lock every individual port before comparing GRAB_PORT_LOCK(ports[i]); if(strcmp(port_name, ports[i].name) == 0) { ret_val = ports[i].id; RELEASE_PORT_LOCK(ports[i]); break; } RELEASE_PORT_LOCK(ports[i]); } RELEASE_PORT_LIST_LOCK(); restore_interrupts(state); return ret_val; } status_t _get_port_info(port_id id, port_info *info, size_t size) { int slot; int state; if (ports_active == false) return B_BAD_PORT_ID; if (info == NULL) return EINVAL; if (id < 0) return B_BAD_PORT_ID; slot = id % MAX_PORTS; state = disable_interrupts(); GRAB_PORT_LOCK(ports[slot]); if (ports[slot].id != id) { RELEASE_PORT_LOCK(ports[slot]); restore_interrupts(state); dprintf("get_port_info: invalid port_id %ld\n", id); return B_BAD_PORT_ID; } // fill a port_info struct with info info->port = ports[slot].id; // info->owner = ports[slot].owner; strncpy(info->name, ports[slot].name, min(strlen(ports[slot].name),SYS_MAX_OS_NAME_LEN-1)); info->capacity = ports[slot].capacity; get_sem_count(ports[slot].read_sem, &info->queue_count); info->total_count = ports[slot].total_count; RELEASE_PORT_LOCK(ports[slot]); restore_interrupts(state); // from our port_entry return B_NO_ERROR; } status_t _get_next_port_info(team_id team, int32 *cookie, struct port_info *info, size_t size) { int state; int slot; if (ports_active == false) return B_BAD_PORT_ID; if (cookie == NULL) return B_BAD_VALUE; if (*cookie == 0) { // return first found slot = 0; } else { // start at index cookie, but check cookie against MAX_PORTS slot = *cookie; if (slot >= MAX_PORTS) return B_BAD_PORT_ID; } // spinlock state = disable_interrupts(); GRAB_PORT_LIST_LOCK(); info->port = -1; // used as found flag while (slot < MAX_PORTS) { GRAB_PORT_LOCK(ports[slot]); if (ports[slot].id != -1) if (ports[slot].owner == team) { // found one! // copy the info info->port = ports[slot].id; // info->owner = ports[slot].owner; strncpy(info->name, ports[slot].name, min(strlen(ports[slot].name),SYS_MAX_OS_NAME_LEN-1)); info->capacity = ports[slot].capacity; get_sem_count(ports[slot].read_sem, &info->queue_count); info->total_count = ports[slot].total_count; RELEASE_PORT_LOCK(ports[slot]); slot++; break; } RELEASE_PORT_LOCK(ports[slot]); slot++; } RELEASE_PORT_LIST_LOCK(); restore_interrupts(state); if (info->port == -1) return B_BAD_PORT_ID; *cookie = slot; return B_NO_ERROR; } ssize_t port_buffer_size(port_id id) { return port_buffer_size_etc(id, 0, 0); } ssize_t port_buffer_size_etc(port_id id, uint32 flags, bigtime_t timeout) { int slot; int res; int t; int len; int state; if (ports_active == false) return B_BAD_PORT_ID; if (id < 0) return B_BAD_PORT_ID; slot = id % MAX_PORTS; state = disable_interrupts(); GRAB_PORT_LOCK(ports[slot]); if (ports[slot].id != id) { RELEASE_PORT_LOCK(ports[slot]); restore_interrupts(state); dprintf("get_port_info: invalid port_id %ld\n", id); return B_BAD_PORT_ID; } RELEASE_PORT_LOCK(ports[slot]); restore_interrupts(state); // block if no message, // if TIMEOUT flag set, block with timeout // XXX - is it a race condition to acquire a sem just after we // unlocked the port ? // XXX: call an acquire_sem which does the release lock, restore int & block the right way res = acquire_sem_etc(ports[slot].read_sem, 1, flags & (B_TIMEOUT | B_CAN_INTERRUPT), timeout); GRAB_PORT_LOCK(ports[slot]); if (res == B_BAD_SEM_ID) { // somebody deleted the port RELEASE_PORT_LOCK(ports[slot]); return B_BAD_PORT_ID; } if (res == B_TIMED_OUT) { RELEASE_PORT_LOCK(ports[slot]); return B_TIMED_OUT; } // once message arrived, read data's length // determine tail // read data's head length t = ports[slot].head; if (t < 0) panic("port %ld: tail < 0", ports[slot].id); if (t > ports[slot].capacity) panic("port %ld: tail > cap %ld", ports[slot].id, ports[slot].capacity); len = ports[slot].msg_queue[t].data_len; // restore readsem release_sem(ports[slot].read_sem); RELEASE_PORT_LOCK(ports[slot]); // return length of item at end of queue return len; } ssize_t port_count(port_id id) { int slot; int state; int32 count; if (ports_active == false) return B_BAD_PORT_ID; if (id < 0) return B_BAD_PORT_ID; slot = id % MAX_PORTS; state = disable_interrupts(); GRAB_PORT_LOCK(ports[slot]); if (ports[slot].id != id) { RELEASE_PORT_LOCK(ports[slot]); restore_interrupts(state); dprintf("port_count: invalid port_id %ld\n", id); return B_BAD_PORT_ID; } get_sem_count(ports[slot].read_sem, &count); // do not return negative numbers if (count < 0) count = 0; RELEASE_PORT_LOCK(ports[slot]); restore_interrupts(state); // return count of messages (sem_count) return count; } status_t read_port(port_id port, int32 *msgCode, void *msgBuffer, size_t bufferSize) { return read_port_etc(port, msgCode, msgBuffer, bufferSize, 0, 0); } status_t read_port_etc(port_id id, int32 *msgCode, void *msgBuffer, size_t bufferSize, uint32 flags, bigtime_t timeout) { int slot; int state; sem_id cached_semid; size_t size; status_t status; int t; cbuf *msgStore; int32 code; bool userCopy = (flags & PORT_FLAG_USE_USER_MEMCPY) > 0; if (ports_active == false || id < 0) return B_BAD_PORT_ID; if (msgCode == NULL || (msgBuffer == NULL && bufferSize > 0) || timeout < 0) return B_BAD_VALUE; flags = flags & (B_CAN_INTERRUPT | B_TIMEOUT); slot = id % MAX_PORTS; state = disable_interrupts(); GRAB_PORT_LOCK(ports[slot]); if (ports[slot].id != id) { RELEASE_PORT_LOCK(ports[slot]); restore_interrupts(state); dprintf("read_port_etc: invalid port_id %ld\n", id); return B_BAD_PORT_ID; } // store sem_id in local variable cached_semid = ports[slot].read_sem; // unlock port && enable ints/ RELEASE_PORT_LOCK(ports[slot]); restore_interrupts(state); // XXX -> possible race condition if port gets deleted (->sem deleted too), therefore // sem_id is cached in local variable up here status = acquire_sem_etc(cached_semid, 1, flags, timeout); // get 1 entry from the queue, block if needed // XXX: possible race condition if port read by two threads... // both threads will read in 2 different slots allocated above, simultaneously // slot is a thread-local variable if (status == B_BAD_SEM_ID || status == EINTR) { /* somebody deleted the port or the sem went away */ return B_BAD_PORT_ID; } if (status == B_TIMED_OUT) { // timed out, or, if timeout=0, 'would block' return B_BAD_PORT_ID; } if (status != B_NO_ERROR) { dprintf("write_port_etc: unknown error %ld\n", status); return status; } state = disable_interrupts(); GRAB_PORT_LOCK(ports[slot]); t = ports[slot].tail; if (t < 0) panic("port %ld: tail < 0", ports[slot].id); if (t > ports[slot].capacity) panic("port %ld: tail > cap %ld", ports[slot].id, ports[slot].capacity); ports[slot].tail = (ports[slot].tail + 1) % ports[slot].capacity; msgStore = ports[slot].msg_queue[t].data_cbuf; code = ports[slot].msg_queue[t].msg_code; // mark queue entry unused ports[slot].msg_queue[t].data_cbuf = NULL; // check output buffer size size = min(bufferSize, ports[slot].msg_queue[t].data_len); cached_semid = ports[slot].write_sem; RELEASE_PORT_LOCK(ports[slot]); restore_interrupts(state); // copy message *msgCode = code; if (size > 0) { if (userCopy) { if ((status = cbuf_user_memcpy_from_chain(msgBuffer, msgStore, 0, size) < B_OK)) { // leave the port intact, for other threads that might not crash cbuf_free_chain(msgStore); release_sem(cached_semid); return status; } } else cbuf_memcpy_from_chain(msgBuffer, msgStore, 0, size); } // free the cbuf cbuf_free_chain(msgStore); // make one spot in queue available again for write release_sem(cached_semid); return size; } status_t set_port_owner(port_id id, team_id team) { int slot; int state; if (ports_active == false || id < 0) return B_BAD_PORT_ID; slot = id % MAX_PORTS; state = disable_interrupts(); GRAB_PORT_LOCK(ports[slot]); if (ports[slot].id != id) { RELEASE_PORT_LOCK(ports[slot]); restore_interrupts(state); dprintf("set_port_owner: invalid port_id %ld\n", id); return B_BAD_PORT_ID; } // transfer ownership to other team ports[slot].owner = team; // unlock port RELEASE_PORT_LOCK(ports[slot]); restore_interrupts(state); return B_NO_ERROR; } status_t write_port(port_id id, int32 msgCode, const void *msgBuffer, size_t bufferSize) { return write_port_etc(id, msgCode, msgBuffer, bufferSize, 0, 0); } status_t write_port_etc(port_id id, int32 msgCode, const void *msgBuffer, size_t bufferSize, uint32 flags, bigtime_t timeout) { int slot; int state; status_t status; sem_id cached_semid; int h; cbuf *msgStore; int32 c1, c2; bool userCopy = (flags & PORT_FLAG_USE_USER_MEMCPY) > 0; if (ports_active == false || id < 0) return B_BAD_PORT_ID; // mask irrelevant flags (for acquire_sem() usage) flags = flags & (B_CAN_INTERRUPT | B_TIMEOUT); slot = id % MAX_PORTS; if (bufferSize > PORT_MAX_MESSAGE_SIZE) return EINVAL; state = disable_interrupts(); GRAB_PORT_LOCK(ports[slot]); if (ports[slot].id != id) { RELEASE_PORT_LOCK(ports[slot]); restore_interrupts(state); dprintf("write_port_etc: invalid port_id %ld\n", id); return B_BAD_PORT_ID; } if (ports[slot].closed) { RELEASE_PORT_LOCK(ports[slot]); restore_interrupts(state); dprintf("write_port_etc: port %ld closed\n", id); return B_BAD_PORT_ID; } // store sem_id in local variable cached_semid = ports[slot].write_sem; RELEASE_PORT_LOCK(ports[slot]); restore_interrupts(state); // XXX -> possible race condition if port gets deleted (->sem deleted too), // and queue is full therefore sem_id is cached in local variable up here status = acquire_sem_etc(cached_semid, 1, flags, timeout); // get 1 entry from the queue, block if needed // XXX: possible race condition if port written by two threads... // both threads will write in 2 different slots allocated above, simultaneously // slot is a thread-local variable if (status == B_BAD_PORT_ID || status == B_INTERRUPTED) { /* somebody deleted the port or the sem while we were waiting */ return B_BAD_PORT_ID; } if (status == B_TIMED_OUT) { // timed out, or, if timeout = 0, 'would block' return B_TIMED_OUT; } if (status != B_NO_ERROR) { dprintf("write_port_etc: unknown error %ld\n", status); return status; } if (bufferSize > 0) { msgStore = cbuf_get_chain(bufferSize); if (msgStore == NULL) return B_NO_MEMORY; if (userCopy) { // copy from user memory if ((status = cbuf_user_memcpy_to_chain(msgStore, 0, msgBuffer, bufferSize)) < B_OK) return status; } else { // copy from kernel memory if ((status = cbuf_memcpy_to_chain(msgStore, 0, msgBuffer, bufferSize)) < 0) return status; } } else msgStore = NULL; // attach copied message to queue state = disable_interrupts(); GRAB_PORT_LOCK(ports[slot]); h = ports[slot].head; if (h < 0) panic("port %ld: head < 0", ports[slot].id); if (h >= ports[slot].capacity) panic("port %ld: head > cap %ld", ports[slot].id, ports[slot].capacity); ports[slot].msg_queue[h].msg_code = msgCode; ports[slot].msg_queue[h].data_cbuf = msgStore; ports[slot].msg_queue[h].data_len = bufferSize; ports[slot].head = (ports[slot].head + 1) % ports[slot].capacity; ports[slot].total_count++; // store sem_id in local variable cached_semid = ports[slot].read_sem; RELEASE_PORT_LOCK(ports[slot]); restore_interrupts(state); // ToDo: what is this needed for? get_sem_count(ports[slot].read_sem, &c1); get_sem_count(ports[slot].write_sem, &c2); // release sem, allowing read (might reschedule) release_sem(cached_semid); return B_NO_ERROR; } /* this function cycles through the ports table, deleting all the ports that are owned by the passed team_id */ int delete_owned_ports(team_id owner) { int state; int i; int count = 0; if (ports_active == false) return B_BAD_PORT_ID; state = disable_interrupts(); GRAB_PORT_LIST_LOCK(); for (i = 0; i < MAX_PORTS; i++) { if(ports[i].id != -1 && ports[i].owner == owner) { port_id id = ports[i].id; RELEASE_PORT_LIST_LOCK(); restore_interrupts(state); delete_port(id); count++; state = disable_interrupts(); GRAB_PORT_LIST_LOCK(); } } RELEASE_PORT_LIST_LOCK(); restore_interrupts(state); return count; } #ifdef DEBUG /* * testcode */ static int32 port_test_thread_func(void *arg); port_id test_p1, test_p2, test_p3, test_p4; void port_test() { char testdata[5]; thread_id t; int res; int32 dummy; int32 dummy2; strcpy(testdata, "abcd"); dprintf("porttest: create_port()\n"); test_p1 = create_port(1, "test port #1"); test_p2 = create_port(10, "test port #2"); test_p3 = create_port(1024, "test port #3"); test_p4 = create_port(1024, "test port #4"); dprintf("porttest: find_port()\n"); dprintf("'test port #1' has id %ld (should be %ld)\n", find_port("test port #1"), test_p1); dprintf("porttest: write_port() on 1, 2 and 3\n"); write_port(test_p1, 1, &testdata, sizeof(testdata)); write_port(test_p2, 666, &testdata, sizeof(testdata)); write_port(test_p3, 999, &testdata, sizeof(testdata)); dprintf("porttest: port_count(test_p1) = %ld\n", port_count(test_p1)); dprintf("porttest: write_port() on 1 with timeout of 1 sec (blocks 1 sec)\n"); write_port_etc(test_p1, 1, &testdata, sizeof(testdata), B_TIMEOUT, 1000000); dprintf("porttest: write_port() on 2 with timeout of 1 sec (wont block)\n"); res = write_port_etc(test_p2, 777, &testdata, sizeof(testdata), B_TIMEOUT, 1000000); dprintf("porttest: res=%d, %s\n", res, res == 0 ? "ok" : "BAD"); dprintf("porttest: read_port() on empty port 4 with timeout of 1 sec (blocks 1 sec)\n"); res = read_port_etc(test_p4, &dummy, &dummy2, sizeof(dummy2), B_TIMEOUT, 1000000); dprintf("porttest: res=%d, %s\n", res, res == B_TIMED_OUT ? "ok" : "BAD"); dprintf("porttest: spawning thread for port 1\n"); t = spawn_kernel_thread(port_test_thread_func, "port_test", B_NORMAL_PRIORITY, NULL); resume_thread(t); dprintf("porttest: write\n"); write_port(test_p1, 1, &testdata, sizeof(testdata)); // now we can write more (no blocking) dprintf("porttest: write #2\n"); write_port(test_p1, 2, &testdata, sizeof(testdata)); dprintf("porttest: write #3\n"); write_port(test_p1, 3, &testdata, sizeof(testdata)); dprintf("porttest: waiting on spawned thread\n"); thread_wait_on_thread(t, NULL); dprintf("porttest: close p1\n"); close_port(test_p2); dprintf("porttest: attempt write p1 after close\n"); res = write_port(test_p2, 4, &testdata, sizeof(testdata)); dprintf("porttest: write_port ret %d\n", res); dprintf("porttest: testing delete p2\n"); delete_port(test_p2); dprintf("porttest: end test main thread\n"); } static int32 port_test_thread_func(void *arg) { int32 msg_code; int n; char buf[6]; buf[5] = '\0'; dprintf("porttest: port_test_thread_func()\n"); n = read_port(test_p1, &msg_code, &buf, 3); dprintf("read_port #1 code %ld len %d buf %s\n", msg_code, n, buf); n = read_port(test_p1, &msg_code, &buf, 4); dprintf("read_port #1 code %ld len %d buf %s\n", msg_code, n, buf); buf[4] = 'X'; n = read_port(test_p1, &msg_code, &buf, 5); dprintf("read_port #1 code %ld len %d buf %s\n", msg_code, n, buf); dprintf("porttest: testing delete p1 from other thread\n"); delete_port(test_p1); dprintf("porttest: end port_test_thread_func()\n"); return 0; } #endif /* DEBUG */ // #pragma mark - /* * user level ports */ port_id user_create_port(int32 queue_length, const char *uname) { if(uname != NULL) { char name[SYS_MAX_OS_NAME_LEN]; status_t rc; if((addr)uname >= KERNEL_BASE && (addr)uname <= KERNEL_TOP) return ERR_VM_BAD_USER_MEMORY; rc = user_strncpy(name, uname, SYS_MAX_OS_NAME_LEN-1); if(rc < 0) return rc; name[SYS_MAX_OS_NAME_LEN-1] = 0; return create_port(queue_length, name); } else { return create_port(queue_length, NULL); } } status_t user_close_port(port_id id) { return close_port(id); } status_t user_delete_port(port_id id) { return delete_port(id); } port_id user_find_port(const char *port_name) { if (port_name != NULL) { char name[SYS_MAX_OS_NAME_LEN]; status_t rc; if((addr)port_name >= KERNEL_BASE && (addr)port_name <= KERNEL_TOP) return ERR_VM_BAD_USER_MEMORY; rc = user_strncpy(name, port_name, SYS_MAX_OS_NAME_LEN-1); if(rc < 0) return rc; name[SYS_MAX_OS_NAME_LEN-1] = 0; return find_port(name); } else { return EINVAL; } } status_t user_get_port_info(port_id id, struct port_info *uinfo) { status_t res; struct port_info info; status_t rc; if (uinfo == NULL) return EINVAL; if ((addr)uinfo >= KERNEL_BASE && (addr)uinfo <= KERNEL_TOP) return ERR_VM_BAD_USER_MEMORY; res = get_port_info(id, &info); // copy to userspace rc = user_memcpy(uinfo, &info, sizeof(struct port_info)); if (rc < 0) return rc; return res; } status_t user_get_next_port_info(team_id uteam, int32 *ucookie, struct port_info *uinfo) { status_t res; struct port_info info; int32 cookie; status_t rc; if (ucookie == NULL) return EINVAL; if (uinfo == NULL) return EINVAL; if ((addr)ucookie >= KERNEL_BASE && (addr)ucookie <= KERNEL_TOP) return ERR_VM_BAD_USER_MEMORY; if ((addr)uinfo >= KERNEL_BASE && (addr)uinfo <= KERNEL_TOP) return ERR_VM_BAD_USER_MEMORY; // copy from userspace rc = user_memcpy(&cookie, ucookie, sizeof(int32)); if (rc < 0) return rc; res = get_next_port_info(uteam, &cookie, &info); // copy to userspace rc = user_memcpy(ucookie, &info, sizeof(int32)); if (rc < 0) return rc; rc = user_memcpy(uinfo, &info, sizeof(struct port_info)); if (rc < 0) return rc; return res; } ssize_t user_port_buffer_size_etc(port_id port, uint32 flags, bigtime_t timeout) { return port_buffer_size_etc(port, flags | B_CAN_INTERRUPT, timeout); } ssize_t user_port_count(port_id port) { return port_count(port); } status_t user_read_port_etc(port_id uport, int32 *umsg_code, void *umsg_buffer, size_t ubuffer_size, uint32 uflags, bigtime_t utimeout) { ssize_t res; int32 msg_code; status_t rc; if (umsg_code == NULL) return EINVAL; if (umsg_buffer == NULL) return EINVAL; if((addr)umsg_code >= KERNEL_BASE && (addr)umsg_code <= KERNEL_TOP) return ERR_VM_BAD_USER_MEMORY; if((addr)umsg_buffer >= KERNEL_BASE && (addr)umsg_buffer <= KERNEL_TOP) return ERR_VM_BAD_USER_MEMORY; res = read_port_etc(uport, &msg_code, umsg_buffer, ubuffer_size, uflags | PORT_FLAG_USE_USER_MEMCPY | B_CAN_INTERRUPT, utimeout); rc = user_memcpy(umsg_code, &msg_code, sizeof(int32)); if(rc < 0) return rc; return res; } status_t user_set_port_owner(port_id port, team_id team) { return set_port_owner(port, team); } status_t user_write_port_etc(port_id uport, int32 umsg_code, void *umsg_buffer, size_t ubuffer_size, uint32 uflags, bigtime_t utimeout) { if (umsg_buffer == NULL) return EINVAL; if((addr)umsg_buffer >= KERNEL_BASE && (addr)umsg_buffer <= KERNEL_TOP) return ERR_VM_BAD_USER_MEMORY; return write_port_etc(uport, umsg_code, umsg_buffer, ubuffer_size, uflags | PORT_FLAG_USE_USER_MEMCPY | B_CAN_INTERRUPT, utimeout); }