/*===---- smmintrin.h - SSE4 intrinsics ------------------------------------=== * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * *===-----------------------------------------------------------------------=== */ #ifndef _SMMINTRIN_H #define _SMMINTRIN_H #include /* Define the default attributes for the functions in this file. */ #define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("sse4.1"))) /* SSE4 Rounding macros. */ #define _MM_FROUND_TO_NEAREST_INT 0x00 #define _MM_FROUND_TO_NEG_INF 0x01 #define _MM_FROUND_TO_POS_INF 0x02 #define _MM_FROUND_TO_ZERO 0x03 #define _MM_FROUND_CUR_DIRECTION 0x04 #define _MM_FROUND_RAISE_EXC 0x00 #define _MM_FROUND_NO_EXC 0x08 #define _MM_FROUND_NINT (_MM_FROUND_RAISE_EXC | _MM_FROUND_TO_NEAREST_INT) #define _MM_FROUND_FLOOR (_MM_FROUND_RAISE_EXC | _MM_FROUND_TO_NEG_INF) #define _MM_FROUND_CEIL (_MM_FROUND_RAISE_EXC | _MM_FROUND_TO_POS_INF) #define _MM_FROUND_TRUNC (_MM_FROUND_RAISE_EXC | _MM_FROUND_TO_ZERO) #define _MM_FROUND_RINT (_MM_FROUND_RAISE_EXC | _MM_FROUND_CUR_DIRECTION) #define _MM_FROUND_NEARBYINT (_MM_FROUND_NO_EXC | _MM_FROUND_CUR_DIRECTION) #define _mm_ceil_ps(X) _mm_round_ps((X), _MM_FROUND_CEIL) #define _mm_ceil_pd(X) _mm_round_pd((X), _MM_FROUND_CEIL) #define _mm_ceil_ss(X, Y) _mm_round_ss((X), (Y), _MM_FROUND_CEIL) #define _mm_ceil_sd(X, Y) _mm_round_sd((X), (Y), _MM_FROUND_CEIL) #define _mm_floor_ps(X) _mm_round_ps((X), _MM_FROUND_FLOOR) #define _mm_floor_pd(X) _mm_round_pd((X), _MM_FROUND_FLOOR) #define _mm_floor_ss(X, Y) _mm_round_ss((X), (Y), _MM_FROUND_FLOOR) #define _mm_floor_sd(X, Y) _mm_round_sd((X), (Y), _MM_FROUND_FLOOR) #define _mm_round_ps(X, M) __extension__ ({ \ __m128 __X = (X); \ (__m128) __builtin_ia32_roundps((__v4sf)__X, (M)); }) #define _mm_round_ss(X, Y, M) __extension__ ({ \ __m128 __X = (X); \ __m128 __Y = (Y); \ (__m128) __builtin_ia32_roundss((__v4sf)__X, (__v4sf)__Y, (M)); }) #define _mm_round_pd(X, M) __extension__ ({ \ __m128d __X = (X); \ (__m128d) __builtin_ia32_roundpd((__v2df)__X, (M)); }) #define _mm_round_sd(X, Y, M) __extension__ ({ \ __m128d __X = (X); \ __m128d __Y = (Y); \ (__m128d) __builtin_ia32_roundsd((__v2df)__X, (__v2df)__Y, (M)); }) /* SSE4 Packed Blending Intrinsics. */ #define _mm_blend_pd(V1, V2, M) __extension__ ({ \ __m128d __V1 = (V1); \ __m128d __V2 = (V2); \ (__m128d)__builtin_shufflevector((__v2df)__V1, (__v2df)__V2, \ (((M) & 0x01) ? 2 : 0), \ (((M) & 0x02) ? 3 : 1)); }) #define _mm_blend_ps(V1, V2, M) __extension__ ({ \ __m128 __V1 = (V1); \ __m128 __V2 = (V2); \ (__m128)__builtin_shufflevector((__v4sf)__V1, (__v4sf)__V2, \ (((M) & 0x01) ? 4 : 0), \ (((M) & 0x02) ? 5 : 1), \ (((M) & 0x04) ? 6 : 2), \ (((M) & 0x08) ? 7 : 3)); }) static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_blendv_pd (__m128d __V1, __m128d __V2, __m128d __M) { return (__m128d) __builtin_ia32_blendvpd ((__v2df)__V1, (__v2df)__V2, (__v2df)__M); } static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_blendv_ps (__m128 __V1, __m128 __V2, __m128 __M) { return (__m128) __builtin_ia32_blendvps ((__v4sf)__V1, (__v4sf)__V2, (__v4sf)__M); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_blendv_epi8 (__m128i __V1, __m128i __V2, __m128i __M) { return (__m128i) __builtin_ia32_pblendvb128 ((__v16qi)__V1, (__v16qi)__V2, (__v16qi)__M); } #define _mm_blend_epi16(V1, V2, M) __extension__ ({ \ __m128i __V1 = (V1); \ __m128i __V2 = (V2); \ (__m128i)__builtin_shufflevector((__v8hi)__V1, (__v8hi)__V2, \ (((M) & 0x01) ? 8 : 0), \ (((M) & 0x02) ? 9 : 1), \ (((M) & 0x04) ? 10 : 2), \ (((M) & 0x08) ? 11 : 3), \ (((M) & 0x10) ? 12 : 4), \ (((M) & 0x20) ? 13 : 5), \ (((M) & 0x40) ? 14 : 6), \ (((M) & 0x80) ? 15 : 7)); }) /* SSE4 Dword Multiply Instructions. */ static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_mullo_epi32 (__m128i __V1, __m128i __V2) { return (__m128i) ((__v4si)__V1 * (__v4si)__V2); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_mul_epi32 (__m128i __V1, __m128i __V2) { return (__m128i) __builtin_ia32_pmuldq128 ((__v4si)__V1, (__v4si)__V2); } /* SSE4 Floating Point Dot Product Instructions. */ #define _mm_dp_ps(X, Y, M) __extension__ ({ \ __m128 __X = (X); \ __m128 __Y = (Y); \ (__m128) __builtin_ia32_dpps((__v4sf)__X, (__v4sf)__Y, (M)); }) #define _mm_dp_pd(X, Y, M) __extension__ ({\ __m128d __X = (X); \ __m128d __Y = (Y); \ (__m128d) __builtin_ia32_dppd((__v2df)__X, (__v2df)__Y, (M)); }) /* SSE4 Streaming Load Hint Instruction. */ static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_stream_load_si128 (__m128i const *__V) { return (__m128i) __builtin_ia32_movntdqa ((const __v2di *) __V); } /* SSE4 Packed Integer Min/Max Instructions. */ static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_min_epi8 (__m128i __V1, __m128i __V2) { return (__m128i) __builtin_ia32_pminsb128 ((__v16qi) __V1, (__v16qi) __V2); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_max_epi8 (__m128i __V1, __m128i __V2) { return (__m128i) __builtin_ia32_pmaxsb128 ((__v16qi) __V1, (__v16qi) __V2); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_min_epu16 (__m128i __V1, __m128i __V2) { return (__m128i) __builtin_ia32_pminuw128 ((__v8hi) __V1, (__v8hi) __V2); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_max_epu16 (__m128i __V1, __m128i __V2) { return (__m128i) __builtin_ia32_pmaxuw128 ((__v8hi) __V1, (__v8hi) __V2); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_min_epi32 (__m128i __V1, __m128i __V2) { return (__m128i) __builtin_ia32_pminsd128 ((__v4si) __V1, (__v4si) __V2); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_max_epi32 (__m128i __V1, __m128i __V2) { return (__m128i) __builtin_ia32_pmaxsd128 ((__v4si) __V1, (__v4si) __V2); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_min_epu32 (__m128i __V1, __m128i __V2) { return (__m128i) __builtin_ia32_pminud128((__v4si) __V1, (__v4si) __V2); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_max_epu32 (__m128i __V1, __m128i __V2) { return (__m128i) __builtin_ia32_pmaxud128((__v4si) __V1, (__v4si) __V2); } /* SSE4 Insertion and Extraction from XMM Register Instructions. */ #define _mm_insert_ps(X, Y, N) __builtin_ia32_insertps128((X), (Y), (N)) #define _mm_extract_ps(X, N) (__extension__ \ ({ union { int __i; float __f; } __t; \ __v4sf __a = (__v4sf)(X); \ __t.__f = __a[(N) & 3]; \ __t.__i;})) /* Miscellaneous insert and extract macros. */ /* Extract a single-precision float from X at index N into D. */ #define _MM_EXTRACT_FLOAT(D, X, N) (__extension__ ({ __v4sf __a = (__v4sf)(X); \ (D) = __a[N]; })) /* Or together 2 sets of indexes (X and Y) with the zeroing bits (Z) to create an index suitable for _mm_insert_ps. */ #define _MM_MK_INSERTPS_NDX(X, Y, Z) (((X) << 6) | ((Y) << 4) | (Z)) /* Extract a float from X at index N into the first index of the return. */ #define _MM_PICK_OUT_PS(X, N) _mm_insert_ps (_mm_setzero_ps(), (X), \ _MM_MK_INSERTPS_NDX((N), 0, 0x0e)) /* Insert int into packed integer array at index. */ #define _mm_insert_epi8(X, I, N) (__extension__ ({ __v16qi __a = (__v16qi)(X); \ __a[(N) & 15] = (I); \ __a;})) #define _mm_insert_epi32(X, I, N) (__extension__ ({ __v4si __a = (__v4si)(X); \ __a[(N) & 3] = (I); \ __a;})) #ifdef __x86_64__ #define _mm_insert_epi64(X, I, N) (__extension__ ({ __v2di __a = (__v2di)(X); \ __a[(N) & 1] = (I); \ __a;})) #endif /* __x86_64__ */ /* Extract int from packed integer array at index. This returns the element * as a zero extended value, so it is unsigned. */ #define _mm_extract_epi8(X, N) (__extension__ ({ __v16qi __a = (__v16qi)(X); \ (int)(unsigned char) \ __a[(N) & 15];})) #define _mm_extract_epi32(X, N) (__extension__ ({ __v4si __a = (__v4si)(X); \ __a[(N) & 3];})) #ifdef __x86_64__ #define _mm_extract_epi64(X, N) (__extension__ ({ __v2di __a = (__v2di)(X); \ __a[(N) & 1];})) #endif /* __x86_64 */ /* SSE4 128-bit Packed Integer Comparisons. */ static __inline__ int __DEFAULT_FN_ATTRS _mm_testz_si128(__m128i __M, __m128i __V) { return __builtin_ia32_ptestz128((__v2di)__M, (__v2di)__V); } static __inline__ int __DEFAULT_FN_ATTRS _mm_testc_si128(__m128i __M, __m128i __V) { return __builtin_ia32_ptestc128((__v2di)__M, (__v2di)__V); } static __inline__ int __DEFAULT_FN_ATTRS _mm_testnzc_si128(__m128i __M, __m128i __V) { return __builtin_ia32_ptestnzc128((__v2di)__M, (__v2di)__V); } #define _mm_test_all_ones(V) _mm_testc_si128((V), _mm_cmpeq_epi32((V), (V))) #define _mm_test_mix_ones_zeros(M, V) _mm_testnzc_si128((M), (V)) #define _mm_test_all_zeros(M, V) _mm_testz_si128 ((M), (V)) /* SSE4 64-bit Packed Integer Comparisons. */ static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cmpeq_epi64(__m128i __V1, __m128i __V2) { return (__m128i)((__v2di)__V1 == (__v2di)__V2); } /* SSE4 Packed Integer Sign-Extension. */ static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepi8_epi16(__m128i __V) { /* This function always performs a signed extension, but __v16qi is a char which may be signed or unsigned, so use __v16qs. */ return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v16qs)__V, (__v16qs)__V, 0, 1, 2, 3, 4, 5, 6, 7), __v8hi); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepi8_epi32(__m128i __V) { /* This function always performs a signed extension, but __v16qi is a char which may be signed or unsigned, so use __v16qs. */ return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v16qs)__V, (__v16qs)__V, 0, 1, 2, 3), __v4si); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepi8_epi64(__m128i __V) { /* This function always performs a signed extension, but __v16qi is a char which may be signed or unsigned, so use __v16qs. */ typedef signed char __v16qs __attribute__((__vector_size__(16))); return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v16qs)__V, (__v16qs)__V, 0, 1), __v2di); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepi16_epi32(__m128i __V) { return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v8hi)__V, (__v8hi)__V, 0, 1, 2, 3), __v4si); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepi16_epi64(__m128i __V) { return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v8hi)__V, (__v8hi)__V, 0, 1), __v2di); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepi32_epi64(__m128i __V) { return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v4si)__V, (__v4si)__V, 0, 1), __v2di); } /* SSE4 Packed Integer Zero-Extension. */ static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepu8_epi16(__m128i __V) { return (__m128i) __builtin_ia32_pmovzxbw128((__v16qi) __V); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepu8_epi32(__m128i __V) { return (__m128i) __builtin_ia32_pmovzxbd128((__v16qi)__V); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepu8_epi64(__m128i __V) { return (__m128i) __builtin_ia32_pmovzxbq128((__v16qi)__V); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepu16_epi32(__m128i __V) { return (__m128i) __builtin_ia32_pmovzxwd128((__v8hi)__V); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepu16_epi64(__m128i __V) { return (__m128i) __builtin_ia32_pmovzxwq128((__v8hi)__V); } static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepu32_epi64(__m128i __V) { return (__m128i) __builtin_ia32_pmovzxdq128((__v4si)__V); } /* SSE4 Pack with Unsigned Saturation. */ static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_packus_epi32(__m128i __V1, __m128i __V2) { return (__m128i) __builtin_ia32_packusdw128((__v4si)__V1, (__v4si)__V2); } /* SSE4 Multiple Packed Sums of Absolute Difference. */ #define _mm_mpsadbw_epu8(X, Y, M) __extension__ ({ \ __m128i __X = (X); \ __m128i __Y = (Y); \ (__m128i) __builtin_ia32_mpsadbw128((__v16qi)__X, (__v16qi)__Y, (M)); }) static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_minpos_epu16(__m128i __V) { return (__m128i) __builtin_ia32_phminposuw128((__v8hi)__V); } /* Handle the sse4.2 definitions here. */ /* These definitions are normally in nmmintrin.h, but gcc puts them in here so we'll do the same. */ #undef __DEFAULT_FN_ATTRS #define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("sse4.2"))) /* These specify the type of data that we're comparing. */ #define _SIDD_UBYTE_OPS 0x00 #define _SIDD_UWORD_OPS 0x01 #define _SIDD_SBYTE_OPS 0x02 #define _SIDD_SWORD_OPS 0x03 /* These specify the type of comparison operation. */ #define _SIDD_CMP_EQUAL_ANY 0x00 #define _SIDD_CMP_RANGES 0x04 #define _SIDD_CMP_EQUAL_EACH 0x08 #define _SIDD_CMP_EQUAL_ORDERED 0x0c /* These macros specify the polarity of the operation. */ #define _SIDD_POSITIVE_POLARITY 0x00 #define _SIDD_NEGATIVE_POLARITY 0x10 #define _SIDD_MASKED_POSITIVE_POLARITY 0x20 #define _SIDD_MASKED_NEGATIVE_POLARITY 0x30 /* These macros are used in _mm_cmpXstri() to specify the return. */ #define _SIDD_LEAST_SIGNIFICANT 0x00 #define _SIDD_MOST_SIGNIFICANT 0x40 /* These macros are used in _mm_cmpXstri() to specify the return. */ #define _SIDD_BIT_MASK 0x00 #define _SIDD_UNIT_MASK 0x40 /* SSE4.2 Packed Comparison Intrinsics. */ #define _mm_cmpistrm(A, B, M) __builtin_ia32_pcmpistrm128((A), (B), (M)) #define _mm_cmpistri(A, B, M) __builtin_ia32_pcmpistri128((A), (B), (M)) #define _mm_cmpestrm(A, LA, B, LB, M) \ __builtin_ia32_pcmpestrm128((A), (LA), (B), (LB), (M)) #define _mm_cmpestri(A, LA, B, LB, M) \ __builtin_ia32_pcmpestri128((A), (LA), (B), (LB), (M)) /* SSE4.2 Packed Comparison Intrinsics and EFlag Reading. */ #define _mm_cmpistra(A, B, M) \ __builtin_ia32_pcmpistria128((A), (B), (M)) #define _mm_cmpistrc(A, B, M) \ __builtin_ia32_pcmpistric128((A), (B), (M)) #define _mm_cmpistro(A, B, M) \ __builtin_ia32_pcmpistrio128((A), (B), (M)) #define _mm_cmpistrs(A, B, M) \ __builtin_ia32_pcmpistris128((A), (B), (M)) #define _mm_cmpistrz(A, B, M) \ __builtin_ia32_pcmpistriz128((A), (B), (M)) #define _mm_cmpestra(A, LA, B, LB, M) \ __builtin_ia32_pcmpestria128((A), (LA), (B), (LB), (M)) #define _mm_cmpestrc(A, LA, B, LB, M) \ __builtin_ia32_pcmpestric128((A), (LA), (B), (LB), (M)) #define _mm_cmpestro(A, LA, B, LB, M) \ __builtin_ia32_pcmpestrio128((A), (LA), (B), (LB), (M)) #define _mm_cmpestrs(A, LA, B, LB, M) \ __builtin_ia32_pcmpestris128((A), (LA), (B), (LB), (M)) #define _mm_cmpestrz(A, LA, B, LB, M) \ __builtin_ia32_pcmpestriz128((A), (LA), (B), (LB), (M)) /* SSE4.2 Compare Packed Data -- Greater Than. */ static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cmpgt_epi64(__m128i __V1, __m128i __V2) { return (__m128i)((__v2di)__V1 > (__v2di)__V2); } /* SSE4.2 Accumulate CRC32. */ static __inline__ unsigned int __DEFAULT_FN_ATTRS _mm_crc32_u8(unsigned int __C, unsigned char __D) { return __builtin_ia32_crc32qi(__C, __D); } static __inline__ unsigned int __DEFAULT_FN_ATTRS _mm_crc32_u16(unsigned int __C, unsigned short __D) { return __builtin_ia32_crc32hi(__C, __D); } static __inline__ unsigned int __DEFAULT_FN_ATTRS _mm_crc32_u32(unsigned int __C, unsigned int __D) { return __builtin_ia32_crc32si(__C, __D); } #ifdef __x86_64__ static __inline__ unsigned long long __DEFAULT_FN_ATTRS _mm_crc32_u64(unsigned long long __C, unsigned long long __D) { return __builtin_ia32_crc32di(__C, __D); } #endif /* __x86_64__ */ #undef __DEFAULT_FN_ATTRS #ifdef __POPCNT__ #include #endif #endif /* _SMMINTRIN_H */