//---------------------------------------------------------------------------- // Anti-Grain Geometry - Version 2.2 // Copyright (C) 2002-2004 Maxim Shemanarev (http://www.antigrain.com) // // Permission to copy, use, modify, sell and distribute this software // is granted provided this copyright notice appears in all copies. // This software is provided "as is" without express or implied // warranty, and with no claim as to its suitability for any purpose. // //---------------------------------------------------------------------------- // Contact: mcseem@antigrain.com // mcseemagg@yahoo.com // http://www.antigrain.com //---------------------------------------------------------------------------- // // Arc generator. Produces at most 4 consecutive cubic bezier curves, i.e., // 4, 7, 10, or 13 vertices. // //---------------------------------------------------------------------------- #ifndef AGG_BEZIER_ARC_INCLUDED #define AGG_BEZIER_ARC_INCLUDED #include "agg_conv_transform.h" namespace agg { //----------------------------------------------------------------------- void arc_to_bezier(double cx, double cy, double rx, double ry, double start_angle, double sweep_angle, double* curve); //==============================================================bezier_arc // // See implemantaion agg_bezier_arc.cpp // class bezier_arc { public: //-------------------------------------------------------------------- bezier_arc() : m_vertex(26) {} bezier_arc(double x, double y, double rx, double ry, double start_angle, double sweep_angle) { init(x, y, rx, ry, start_angle, sweep_angle); } //-------------------------------------------------------------------- void init(double x, double y, double rx, double ry, double start_angle, double sweep_angle); //-------------------------------------------------------------------- void rewind(unsigned) { m_vertex = 0; } //-------------------------------------------------------------------- unsigned vertex(double* x, double* y) { if(m_vertex >= m_num_vertices) return path_cmd_stop; *x = m_vertices[m_vertex]; *y = m_vertices[m_vertex + 1]; m_vertex += 2; return (m_vertex == 2) ? path_cmd_move_to : path_cmd_curve4; } // Supplemantary functions. num_vertices() actually returns doubled // number of vertices. That is, for 1 vertex it returns 2. //-------------------------------------------------------------------- unsigned num_vertices() const { return m_num_vertices; } const double* vertices() const { return m_vertices; } double* vertices() { return m_vertices; } private: unsigned m_vertex; unsigned m_num_vertices; double m_vertices[26]; }; //==========================================================bezier_arc_svg // Compute an SVG-style bezier arc. // // Computes an elliptical arc from (x1, y1) to (x2, y2). The size and // orientation of the ellipse are defined by two radii (rx, ry) // and an x-axis-rotation, which indicates how the ellipse as a whole // is rotated relative to the current coordinate system. The center // (cx, cy) of the ellipse is calculated automatically to satisfy the // constraints imposed by the other parameters. // large-arc-flag and sweep-flag contribute to the automatic calculations // and help determine how the arc is drawn. class bezier_arc_svg { public: //-------------------------------------------------------------------- bezier_arc_svg() : m_arc(), m_radii_ok(false) {} bezier_arc_svg(double x1, double y1, double rx, double ry, double angle, bool large_arc_flag, bool sweep_flag, double x2, double y2) : m_arc(), m_radii_ok(false) { init(x1, y1, rx, ry, angle, large_arc_flag, sweep_flag, x2, y2); } //-------------------------------------------------------------------- void init(double x1, double y1, double rx, double ry, double angle, bool large_arc_flag, bool sweep_flag, double x2, double y2); //-------------------------------------------------------------------- bool radii_ok() const { return m_radii_ok; } //-------------------------------------------------------------------- void rewind(unsigned) { m_arc.rewind(0); } //-------------------------------------------------------------------- unsigned vertex(double* x, double* y) { return m_arc.vertex(x, y); } // Supplemantary functions. num_vertices() actually returns doubled // number of vertices. That is, for 1 vertex it returns 2. //-------------------------------------------------------------------- unsigned num_vertices() const { return m_arc.num_vertices(); } const double* vertices() const { return m_arc.vertices(); } double* vertices() { return m_arc.vertices(); } private: bezier_arc m_arc; bool m_radii_ok; }; } #endif