/* * Copyright 2002-2005, Axel Dörfler, axeld@pinc-software.de. * Distributed under the terms of the MIT License. * * Copyright 2001, Mark-Jan Bastian. All rights reserved. * Distributed under the terms of the NewOS License. */ /* ports for IPC */ #include #include #include #include #include #include #include #include #include #include #include //#define TRACE_PORTS #ifdef TRACE_PORTS # define TRACE(x) dprintf x #else # define TRACE(x) #endif typedef struct port_msg { list_link link; int32 code; cbuf *buffer_chain; size_t size; } port_msg; struct port_entry { port_id id; team_id owner; int32 capacity; spinlock lock; const char *name; sem_id read_sem; sem_id write_sem; int32 total_count; // messages read from port since creation struct list msg_queue; }; // internal API static int dump_port_list(int argc, char **argv); static int dump_port_info(int argc, char **argv); static void _dump_port_info(struct port_entry *port); // sMaxPorts must be power of 2 static int32 sMaxPorts = 4096; static int32 sUsedPorts = 0; #define MAX_QUEUE_LENGTH 4096 #define PORT_MAX_MESSAGE_SIZE 65536 static struct port_entry *sPorts = NULL; static area_id sPortArea = 0; static bool sPortsActive = false; static port_id sNextPort = 1; static int32 sFirstFreeSlot = 1; static spinlock sPortSpinlock = 0; #define GRAB_PORT_LIST_LOCK() acquire_spinlock(&sPortSpinlock) #define RELEASE_PORT_LIST_LOCK() release_spinlock(&sPortSpinlock) #define GRAB_PORT_LOCK(s) acquire_spinlock(&(s).lock) #define RELEASE_PORT_LOCK(s) release_spinlock(&(s).lock) status_t port_init(kernel_args *ka) { int i; int size = sizeof(struct port_entry) * sMaxPorts; // create and initialize ports table sPortArea = create_area("port_table", (void **)&sPorts, B_ANY_KERNEL_ADDRESS, size, B_FULL_LOCK, B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA); if (sPortArea < 0) { panic("unable to allocate kernel port table!\n"); } // ToDo: investigate preallocating a list of port_msgs to // speed up actual message sending/receiving, a slab allocator // might do it as well, though :-) memset(sPorts, 0, size); for (i = 0; i < sMaxPorts; i++) sPorts[i].id = -1; // add debugger commands add_debugger_command("ports", &dump_port_list, "Dump a list of all active ports"); add_debugger_command("port", &dump_port_info, "Dump info about a particular port"); sPortsActive = true; return 0; } #ifdef DEBUG // ToDo: the test code does not belong here! // the same code is present in the test_app in kernel/apps // so I guess we can remove this /* * testcode */ static int32 port_test_thread_func(void *arg); port_id test_p1, test_p2, test_p3, test_p4; void port_test() { char testdata[5]; thread_id t; int res; int32 dummy; int32 dummy2; strcpy(testdata, "abcd"); dprintf("porttest: create_port()\n"); test_p1 = create_port(1, "test port #1"); test_p2 = create_port(10, "test port #2"); test_p3 = create_port(1024, "test port #3"); test_p4 = create_port(1024, "test port #4"); dprintf("porttest: find_port()\n"); dprintf("'test port #1' has id %ld (should be %ld)\n", find_port("test port #1"), test_p1); dprintf("porttest: write_port() on 1, 2 and 3\n"); write_port(test_p1, 1, &testdata, sizeof(testdata)); write_port(test_p2, 666, &testdata, sizeof(testdata)); write_port(test_p3, 999, &testdata, sizeof(testdata)); dprintf("porttest: port_count(test_p1) = %ld\n", port_count(test_p1)); dprintf("porttest: write_port() on 1 with timeout of 1 sec (blocks 1 sec)\n"); write_port_etc(test_p1, 1, &testdata, sizeof(testdata), B_TIMEOUT, 1000000); dprintf("porttest: write_port() on 2 with timeout of 1 sec (wont block)\n"); res = write_port_etc(test_p2, 777, &testdata, sizeof(testdata), B_TIMEOUT, 1000000); dprintf("porttest: res=%d, %s\n", res, res == 0 ? "ok" : "BAD"); dprintf("porttest: read_port() on empty port 4 with timeout of 1 sec (blocks 1 sec)\n"); res = read_port_etc(test_p4, &dummy, &dummy2, sizeof(dummy2), B_TIMEOUT, 1000000); dprintf("porttest: res=%d, %s\n", res, res == B_TIMED_OUT ? "ok" : "BAD"); dprintf("porttest: spawning thread for port 1\n"); t = spawn_kernel_thread(port_test_thread_func, "port_test", B_NORMAL_PRIORITY, NULL); resume_thread(t); dprintf("porttest: write\n"); write_port(test_p1, 1, &testdata, sizeof(testdata)); // now we can write more (no blocking) dprintf("porttest: write #2\n"); write_port(test_p1, 2, &testdata, sizeof(testdata)); dprintf("porttest: write #3\n"); write_port(test_p1, 3, &testdata, sizeof(testdata)); dprintf("porttest: waiting on spawned thread\n"); wait_for_thread(t, NULL); dprintf("porttest: close p1\n"); close_port(test_p2); dprintf("porttest: attempt write p1 after close\n"); res = write_port(test_p2, 4, &testdata, sizeof(testdata)); dprintf("porttest: write_port ret %d\n", res); dprintf("porttest: testing delete p2\n"); delete_port(test_p2); dprintf("porttest: end test main thread\n"); } static int32 port_test_thread_func(void *arg) { int32 msg_code; int n; char buf[6]; buf[5] = '\0'; dprintf("porttest: port_test_thread_func()\n"); n = read_port(test_p1, &msg_code, &buf, 3); dprintf("read_port #1 code %ld len %d buf %s\n", msg_code, n, buf); n = read_port(test_p1, &msg_code, &buf, 4); dprintf("read_port #1 code %ld len %d buf %s\n", msg_code, n, buf); buf[4] = 'X'; n = read_port(test_p1, &msg_code, &buf, 5); dprintf("read_port #1 code %ld len %d buf %s\n", msg_code, n, buf); dprintf("porttest: testing delete p1 from other thread\n"); delete_port(test_p1); dprintf("porttest: end port_test_thread_func()\n"); return 0; } #endif /* DEBUG */ int dump_port_list(int argc, char **argv) { int i; for (i = 0; i < sMaxPorts; i++) { if (sPorts[i].id >= 0) dprintf("%p\tid: 0x%lx\t\tname: '%s'\n", &sPorts[i], sPorts[i].id, sPorts[i].name); } return 0; } static void _dump_port_info(struct port_entry *port) { int32 count; dprintf("PORT: %p\n", port); dprintf(" name: \"%s\"\n", port->name); dprintf(" owner: %#lx\n", port->owner); dprintf(" capacity: %ld\n", port->capacity); get_sem_count(port->read_sem, &count); dprintf(" read sem count: %ld\n", count); get_sem_count(port->write_sem, &count); dprintf(" write sem count: %ld\n", count); dprintf(" total count: %ld\n", port->total_count); } static int dump_port_info(int argc, char **argv) { int i; if (argc < 2) { dprintf("usage: port [id|name|address]\n"); return 0; } // if the argument looks like a number, treat it as such if (isdigit(argv[1][0])) { uint32 num = strtoul(argv[1], NULL, 0); if (num > KERNEL_BASE && num <= (KERNEL_BASE + (KERNEL_SIZE - 1))) { // XXX semi-hack // one can use either address or a port_id, since KERNEL_BASE > sMaxPorts assumed _dump_port_info((struct port_entry *)num); return 0; } else { unsigned slot = num % sMaxPorts; if (sPorts[slot].id != (int)num) { dprintf("port 0x%lx doesn't exist!\n", num); return 0; } _dump_port_info(&sPorts[slot]); return 0; } } // walk through the ports list, trying to match name for (i = 0; i < sMaxPorts; i++) { if (sPorts[i].name != NULL && strcmp(argv[1], sPorts[i].name) == 0) { _dump_port_info(&sPorts[i]); return 0; } } return 0; } /** this function cycles through the ports table, deleting all * the ports that are owned by the passed team_id */ int delete_owned_ports(team_id owner) { // ToDo: investigate maintaining a list of ports in the team // to make this simpler and more efficient. cpu_status state; int i; int count = 0; TRACE(("delete_owned_ports(owner = %ld)\n", owner)); if (!sPortsActive) return B_BAD_PORT_ID; state = disable_interrupts(); GRAB_PORT_LIST_LOCK(); for (i = 0; i < sMaxPorts; i++) { if (sPorts[i].id != -1 && sPorts[i].owner == owner) { port_id id = sPorts[i].id; RELEASE_PORT_LIST_LOCK(); restore_interrupts(state); delete_port(id); count++; state = disable_interrupts(); GRAB_PORT_LIST_LOCK(); } } RELEASE_PORT_LIST_LOCK(); restore_interrupts(state); return count; } static void put_port_msg(port_msg *msg) { cbuf_free_chain(msg->buffer_chain); free(msg); } static port_msg * get_port_msg(int32 code, size_t bufferSize) { // ToDo: investigate preallocation of port_msgs (or use a slab allocator) cbuf *bufferChain = NULL; port_msg *msg = (port_msg *)malloc(sizeof(port_msg)); if (msg == NULL) return NULL; if (bufferSize > 0) { bufferChain = cbuf_get_chain(bufferSize); if (bufferChain == NULL) { free(msg); return NULL; } } msg->code = code; msg->buffer_chain = bufferChain; msg->size = bufferSize; return msg; } int32 port_max_ports(void) { return sMaxPorts; } int32 port_used_ports(void) { return sUsedPorts; } // #pragma mark - // public kernel API port_id create_port(int32 queueLength, const char *name) { cpu_status state; char nameBuffer[B_OS_NAME_LENGTH]; sem_id readSem, writeSem; status_t status; team_id owner; int32 slot; TRACE(("create_port(queueLength = %ld, name = \"%s\")\n", queueLength, name)); if (!sPortsActive) return B_BAD_PORT_ID; // check queue length if (queueLength < 1 || queueLength > MAX_QUEUE_LENGTH) return B_BAD_VALUE; // check early on if there are any free port slots to use if (atomic_add(&sUsedPorts, 1) >= sMaxPorts) { status = B_NO_MORE_PORTS; goto err1; } // check & dup name if (name == NULL) name = "unnamed port"; // ToDo: we could save the memory and use the semaphore name only instead strlcpy(nameBuffer, name, B_OS_NAME_LENGTH); name = strdup(nameBuffer); if (name == NULL) { status = B_NO_MEMORY; goto err1; } // create read sem with owner set to -1 // ToDo: should be B_SYSTEM_TEAM readSem = create_sem_etc(0, name, -1); if (readSem < B_OK) { status = readSem; goto err2; } // create write sem writeSem = create_sem_etc(queueLength, name, -1); if (writeSem < B_OK) { status = writeSem; goto err3; } owner = team_get_current_team_id(); state = disable_interrupts(); GRAB_PORT_LIST_LOCK(); // find the first empty spot for (slot = 0; slot < sMaxPorts; slot++) { int32 i = (slot + sFirstFreeSlot) % sMaxPorts; if (sPorts[i].id == -1) { port_id id; // make the port_id be a multiple of the slot it's in if (i >= sNextPort % sMaxPorts) sNextPort += i - sNextPort % sMaxPorts; else sNextPort += sMaxPorts - (sNextPort % sMaxPorts - i); sFirstFreeSlot = slot + 1; GRAB_PORT_LOCK(sPorts[i]); sPorts[i].id = sNextPort++; RELEASE_PORT_LIST_LOCK(); sPorts[i].capacity = queueLength; sPorts[i].owner = owner; sPorts[i].name = name; sPorts[i].read_sem = readSem; sPorts[i].write_sem = writeSem; list_init(&sPorts[i].msg_queue); sPorts[i].total_count = 0; id = sPorts[i].id; RELEASE_PORT_LOCK(sPorts[i]); restore_interrupts(state); return id; } } // not enough ports... // ToDo: due to sUsedPorts, this cannot happen anymore - as // long as sMaxPorts stays constant over the kernel run // time (which it should be). IOW we could simply panic() // here. RELEASE_PORT_LIST_LOCK(); restore_interrupts(state); status = B_NO_MORE_PORTS; delete_sem(writeSem); err3: delete_sem(readSem); err2: free((char *)name); err1: atomic_add(&sUsedPorts, -1); return status; } status_t close_port(port_id id) { cpu_status state; int slot; TRACE(("close_port(id = %ld)\n", id)); if (!sPortsActive || id < 0) return B_BAD_PORT_ID; slot = id % sMaxPorts; // walk through the sem list, trying to match name state = disable_interrupts(); GRAB_PORT_LOCK(sPorts[slot]); if (sPorts[slot].id != id) { RELEASE_PORT_LOCK(sPorts[slot]); restore_interrupts(state); dprintf("close_port: invalid port_id %ld\n", id); return B_BAD_PORT_ID; } // mark port to disable writing sPorts[slot].capacity = 0; RELEASE_PORT_LOCK(sPorts[slot]); restore_interrupts(state); return B_NO_ERROR; } status_t delete_port(port_id id) { cpu_status state; sem_id readSem, writeSem; const char *name; struct list list; port_msg *msg; int slot; TRACE(("delete_port(id = %ld)\n", id)); if (!sPortsActive || id < 0) return B_BAD_PORT_ID; slot = id % sMaxPorts; state = disable_interrupts(); GRAB_PORT_LOCK(sPorts[slot]); if (sPorts[slot].id != id) { RELEASE_PORT_LOCK(sPorts[slot]); restore_interrupts(state); TRACE(("delete_port: invalid port_id %ld\n", id)); return B_BAD_PORT_ID; } /* mark port as invalid */ sPorts[slot].id = -1; name = sPorts[slot].name; readSem = sPorts[slot].read_sem; writeSem = sPorts[slot].write_sem; sPorts[slot].name = NULL; list_move_to_list(&sPorts[slot].msg_queue, &list); RELEASE_PORT_LOCK(sPorts[slot]); // update the first free slot hint in the array GRAB_PORT_LIST_LOCK(); if (slot < sFirstFreeSlot) sFirstFreeSlot = slot; RELEASE_PORT_LIST_LOCK(); restore_interrupts(state); atomic_add(&sUsedPorts, -1); // free the queue while ((msg = (port_msg *)list_remove_head_item(&list)) != NULL) { put_port_msg(msg); } free((char *)name); // release the threads that were blocking on this port by deleting the sem // read_port() will see the B_BAD_SEM_ID acq_sem() return value, and act accordingly delete_sem(readSem); delete_sem(writeSem); return B_OK; } port_id find_port(const char *name) { port_id portFound = B_NAME_NOT_FOUND; cpu_status state; int i; TRACE(("find_port(name = \"%s\")\n", name)); if (!sPortsActive) return B_NAME_NOT_FOUND; if (name == NULL) return B_BAD_VALUE; // Since we have to check every single port, and we don't // care if it goes away at any point, we're only grabbing // the port lock in question, not the port list lock // loop over list for (i = 0; i < sMaxPorts && portFound < B_OK; i++) { // lock every individual port before comparing state = disable_interrupts(); GRAB_PORT_LOCK(sPorts[i]); if (sPorts[i].id >= 0 && !strcmp(name, sPorts[i].name)) portFound = sPorts[i].id; RELEASE_PORT_LOCK(sPorts[i]); restore_interrupts(state); } return portFound; } /** Fills the port_info structure with information from the specified * port. * The port lock must be held when called. */ static void fill_port_info(struct port_entry *port, port_info *info, size_t size) { int32 count; info->port = port->id; info->team = port->owner; info->capacity = port->capacity; get_sem_count(port->read_sem, &count); if (count < 0) count = 0; info->queue_count = count; info->total_count = port->total_count; strlcpy(info->name, port->name, B_OS_NAME_LENGTH); } status_t _get_port_info(port_id id, port_info *info, size_t size) { cpu_status state; int slot; TRACE(("get_port_info(id = %ld)\n", id)); if (info == NULL || size != sizeof(port_info)) return B_BAD_VALUE; if (!sPortsActive || id < 0) return B_BAD_PORT_ID; slot = id % sMaxPorts; state = disable_interrupts(); GRAB_PORT_LOCK(sPorts[slot]); if (sPorts[slot].id != id || sPorts[slot].capacity == 0) { RELEASE_PORT_LOCK(sPorts[slot]); restore_interrupts(state); TRACE(("get_port_info: invalid port_id %ld\n", id)); return B_BAD_PORT_ID; } // fill a port_info struct with info fill_port_info(&sPorts[slot], info, size); RELEASE_PORT_LOCK(sPorts[slot]); restore_interrupts(state); return B_OK; } status_t _get_next_port_info(team_id team, int32 *_cookie, struct port_info *info, size_t size) { cpu_status state; int slot; TRACE(("get_next_port_info(team = %ld)\n", team)); if (info == NULL || size != sizeof(port_info) || _cookie == NULL || team < B_OK) return B_BAD_VALUE; if (!sPortsActive) return B_BAD_PORT_ID; slot = *_cookie; if (slot >= sMaxPorts) return B_BAD_PORT_ID; if (team == B_CURRENT_TEAM) team = team_get_current_team_id(); info->port = -1; // used as found flag // spinlock state = disable_interrupts(); GRAB_PORT_LIST_LOCK(); while (slot < sMaxPorts) { GRAB_PORT_LOCK(sPorts[slot]); if (sPorts[slot].id != -1 && sPorts[slot].capacity != 0 && sPorts[slot].owner == team) { // found one! fill_port_info(&sPorts[slot], info, size); RELEASE_PORT_LOCK(sPorts[slot]); slot++; break; } RELEASE_PORT_LOCK(sPorts[slot]); slot++; } RELEASE_PORT_LIST_LOCK(); restore_interrupts(state); if (info->port == -1) return B_BAD_PORT_ID; *_cookie = slot; return B_NO_ERROR; } ssize_t port_buffer_size(port_id id) { return port_buffer_size_etc(id, 0, 0); } ssize_t port_buffer_size_etc(port_id id, uint32 flags, bigtime_t timeout) { cpu_status state; sem_id cachedSem; status_t status; port_msg *msg; ssize_t size; int slot; if (!sPortsActive || id < 0) return B_BAD_PORT_ID; slot = id % sMaxPorts; state = disable_interrupts(); GRAB_PORT_LOCK(sPorts[slot]); if (sPorts[slot].id != id) { RELEASE_PORT_LOCK(sPorts[slot]); restore_interrupts(state); TRACE(("get_buffer_size_etc: invalid port_id %ld\n", id)); return B_BAD_PORT_ID; } cachedSem = sPorts[slot].read_sem; RELEASE_PORT_LOCK(sPorts[slot]); restore_interrupts(state); // block if no message, or, if B_TIMEOUT flag set, block with timeout status = acquire_sem_etc(cachedSem, 1, flags, timeout); if (status == B_BAD_SEM_ID) { // somebody deleted the port return B_BAD_PORT_ID; } if (status != B_OK) return status; state = disable_interrupts(); GRAB_PORT_LOCK(sPorts[slot]); if (sPorts[slot].id != id) { // the port is no longer there RELEASE_PORT_LOCK(sPorts[slot]); restore_interrupts(state); return B_BAD_PORT_ID; } // determine tail & get the length of the message msg = list_get_first_item(&sPorts[slot].msg_queue); if (msg == NULL) panic("port %ld: no messages found\n", sPorts[slot].id); size = msg->size; RELEASE_PORT_LOCK(sPorts[slot]); restore_interrupts(state); // restore read_sem, as we haven't read from the port release_sem(cachedSem); // return length of item at end of queue return size; } ssize_t port_count(port_id id) { cpu_status state; int32 count; int slot; if (!sPortsActive || id < 0) return B_BAD_PORT_ID; slot = id % sMaxPorts; state = disable_interrupts(); GRAB_PORT_LOCK(sPorts[slot]); if (sPorts[slot].id != id) { RELEASE_PORT_LOCK(sPorts[slot]); restore_interrupts(state); TRACE(("port_count: invalid port_id %ld\n", id)); return B_BAD_PORT_ID; } get_sem_count(sPorts[slot].read_sem, &count); // do not return negative numbers if (count < 0) count = 0; RELEASE_PORT_LOCK(sPorts[slot]); restore_interrupts(state); // return count of messages (sem_count) return count; } ssize_t read_port(port_id port, int32 *msgCode, void *msgBuffer, size_t bufferSize) { return read_port_etc(port, msgCode, msgBuffer, bufferSize, 0, 0); } ssize_t read_port_etc(port_id id, int32 *_msgCode, void *msgBuffer, size_t bufferSize, uint32 flags, bigtime_t timeout) { cpu_status state; sem_id cachedSem; status_t status; bool userCopy = (flags & PORT_FLAG_USE_USER_MEMCPY) > 0; port_msg *msg; size_t size; int slot; if (!sPortsActive || id < 0) return B_BAD_PORT_ID; if (_msgCode == NULL || (msgBuffer == NULL && bufferSize > 0) || timeout < 0) return B_BAD_VALUE; flags = flags & (B_CAN_INTERRUPT | B_KILL_CAN_INTERRUPT | B_TIMEOUT); // ToDo: We don't support absolute timeouts here? slot = id % sMaxPorts; state = disable_interrupts(); GRAB_PORT_LOCK(sPorts[slot]); if (sPorts[slot].id != id) { RELEASE_PORT_LOCK(sPorts[slot]); restore_interrupts(state); dprintf("read_port_etc: invalid port_id %ld\n", id); return B_BAD_PORT_ID; } // store sem_id in local variable cachedSem = sPorts[slot].read_sem; // unlock port && enable ints/ RELEASE_PORT_LOCK(sPorts[slot]); restore_interrupts(state); status = acquire_sem_etc(cachedSem, 1, flags, timeout); // get 1 entry from the queue, block if needed if (status == B_BAD_SEM_ID) { // somebody deleted the port return B_BAD_PORT_ID; } if (status != B_OK) return status; state = disable_interrupts(); GRAB_PORT_LOCK(sPorts[slot]); // first, let's check if the port is still alive if (sPorts[slot].id == -1) { // the port has been deleted in the meantime RELEASE_PORT_LOCK(sPorts[slot]); restore_interrupts(state); return B_BAD_PORT_ID; } msg = list_get_first_item(&sPorts[slot].msg_queue); if (msg == NULL) panic("port %ld: no messages found", sPorts[slot].id); list_remove_link(msg); sPorts[slot].total_count++; cachedSem = sPorts[slot].write_sem; RELEASE_PORT_LOCK(sPorts[slot]); restore_interrupts(state); // check output buffer size size = min(bufferSize, msg->size); // copy message *_msgCode = msg->code; if (size > 0) { if (userCopy) { if ((status = cbuf_user_memcpy_from_chain(msgBuffer, msg->buffer_chain, 0, size) < B_OK)) { // leave the port intact, for other threads that might not crash put_port_msg(msg); release_sem(cachedSem); return status; } } else cbuf_memcpy_from_chain(msgBuffer, msg->buffer_chain, 0, size); } put_port_msg(msg); // make one spot in queue available again for write release_sem(cachedSem); // ToDo: we might think about setting B_NO_RESCHEDULE here // from time to time (always?) return size; } status_t write_port(port_id id, int32 msgCode, const void *msgBuffer, size_t bufferSize) { return write_port_etc(id, msgCode, msgBuffer, bufferSize, 0, 0); } status_t write_port_etc(port_id id, int32 msgCode, const void *msgBuffer, size_t bufferSize, uint32 flags, bigtime_t timeout) { cpu_status state; sem_id cachedSem; status_t status; port_msg *msg; bool userCopy = (flags & PORT_FLAG_USE_USER_MEMCPY) > 0; int slot; if (!sPortsActive || id < 0) return B_BAD_PORT_ID; // mask irrelevant flags (for acquire_sem() usage) flags = flags & (B_CAN_INTERRUPT | B_KILL_CAN_INTERRUPT | B_TIMEOUT); slot = id % sMaxPorts; if (bufferSize > PORT_MAX_MESSAGE_SIZE) return EINVAL; state = disable_interrupts(); GRAB_PORT_LOCK(sPorts[slot]); if (sPorts[slot].id != id) { RELEASE_PORT_LOCK(sPorts[slot]); restore_interrupts(state); TRACE(("write_port_etc: invalid port_id %ld\n", id)); return B_BAD_PORT_ID; } if (sPorts[slot].capacity == 0) { RELEASE_PORT_LOCK(sPorts[slot]); restore_interrupts(state); TRACE(("write_port_etc: port %ld closed\n", id)); return B_BAD_PORT_ID; } // store sem_id in local variable cachedSem = sPorts[slot].write_sem; RELEASE_PORT_LOCK(sPorts[slot]); restore_interrupts(state); status = acquire_sem_etc(cachedSem, 1, flags, timeout); // get 1 entry from the queue, block if needed if (status == B_BAD_SEM_ID) { // somebody deleted the port return B_BAD_PORT_ID; } if (status != B_OK) return status; msg = get_port_msg(msgCode, bufferSize); if (msg == NULL) return B_NO_MEMORY; if (bufferSize > 0) { if (userCopy) { // copy from user memory if ((status = cbuf_user_memcpy_to_chain(msg->buffer_chain, 0, msgBuffer, bufferSize)) < B_OK) return status; } else { // copy from kernel memory if ((status = cbuf_memcpy_to_chain(msg->buffer_chain, 0, msgBuffer, bufferSize)) < 0) return status; } } // attach message to queue state = disable_interrupts(); GRAB_PORT_LOCK(sPorts[slot]); // first, let's check if the port is still alive if (sPorts[slot].id == -1) { // the port has been deleted in the meantime RELEASE_PORT_LOCK(sPorts[slot]); restore_interrupts(state); put_port_msg(msg); return B_BAD_PORT_ID; } list_add_item(&sPorts[slot].msg_queue, msg); // store sem_id in local variable cachedSem = sPorts[slot].read_sem; RELEASE_PORT_LOCK(sPorts[slot]); restore_interrupts(state); // release sem, allowing read (might reschedule) release_sem(cachedSem); return B_NO_ERROR; } status_t set_port_owner(port_id id, team_id team) { cpu_status state; int slot; TRACE(("set_port_owner(id = %ld, team = %ld)\n", id, team)); if (!sPortsActive || id < 0) return B_BAD_PORT_ID; slot = id % sMaxPorts; state = disable_interrupts(); GRAB_PORT_LOCK(sPorts[slot]); if (sPorts[slot].id != id) { RELEASE_PORT_LOCK(sPorts[slot]); restore_interrupts(state); TRACE(("set_port_owner: invalid port_id %ld\n", id)); return B_BAD_PORT_ID; } // transfer ownership to other team sPorts[slot].owner = team; // unlock port RELEASE_PORT_LOCK(sPorts[slot]); restore_interrupts(state); return B_NO_ERROR; } // #pragma mark - /* * user level ports */ port_id _user_create_port(int32 queueLength, const char *userName) { char name[B_OS_NAME_LENGTH]; if (userName == NULL) return create_port(queueLength, NULL); if (!IS_USER_ADDRESS(userName) || user_strlcpy(name, userName, B_OS_NAME_LENGTH) < B_OK) return B_BAD_ADDRESS; return create_port(queueLength, name); } status_t _user_close_port(port_id id) { return close_port(id); } status_t _user_delete_port(port_id id) { return delete_port(id); } port_id _user_find_port(const char *userName) { char name[B_OS_NAME_LENGTH]; if (userName == NULL) return B_BAD_VALUE; if (!IS_USER_ADDRESS(userName) || user_strlcpy(name, userName, B_OS_NAME_LENGTH) < B_OK) return B_BAD_ADDRESS; return find_port(name); } status_t _user_get_port_info(port_id id, struct port_info *userInfo) { struct port_info info; status_t status; if (userInfo == NULL) return B_BAD_VALUE; if (!IS_USER_ADDRESS(userInfo)) return B_BAD_ADDRESS; status = get_port_info(id, &info); // copy back to user space if (status == B_OK && user_memcpy(userInfo, &info, sizeof(struct port_info)) < B_OK) return B_BAD_ADDRESS; return status; } status_t _user_get_next_port_info(team_id team, int32 *userCookie, struct port_info *userInfo) { struct port_info info; status_t status; int32 cookie; if (userCookie == NULL || userInfo == NULL) return B_BAD_VALUE; if (!IS_USER_ADDRESS(userCookie) || !IS_USER_ADDRESS(userInfo) || user_memcpy(&cookie, userCookie, sizeof(int32)) < B_OK) return B_BAD_ADDRESS; status = get_next_port_info(team, &cookie, &info); // copy back to user space if (user_memcpy(userCookie, &cookie, sizeof(int32)) < B_OK || (status == B_OK && user_memcpy(userInfo, &info, sizeof(struct port_info)) < B_OK)) return B_BAD_ADDRESS; return status; } ssize_t _user_port_buffer_size_etc(port_id port, uint32 flags, bigtime_t timeout) { return port_buffer_size_etc(port, flags | B_CAN_INTERRUPT, timeout); } ssize_t _user_port_count(port_id port) { return port_count(port); } status_t _user_set_port_owner(port_id port, team_id team) { return set_port_owner(port, team); } ssize_t _user_read_port_etc(port_id port, int32 *userCode, void *userBuffer, size_t bufferSize, uint32 flags, bigtime_t timeout) { int32 messageCode; ssize_t status; if (userCode == NULL || (userBuffer == NULL && bufferSize != 0)) return B_BAD_VALUE; if (!IS_USER_ADDRESS(userCode) || (userBuffer != NULL && !IS_USER_ADDRESS(userBuffer))) return B_BAD_ADDRESS; status = read_port_etc(port, &messageCode, userBuffer, bufferSize, flags | PORT_FLAG_USE_USER_MEMCPY | B_CAN_INTERRUPT, timeout); if (status >= 0 && user_memcpy(userCode, &messageCode, sizeof(int32)) < B_OK) return B_BAD_ADDRESS; return status; } status_t _user_write_port_etc(port_id port, int32 messageCode, const void *userBuffer, size_t bufferSize, uint32 flags, bigtime_t timeout) { if (userBuffer == NULL && bufferSize != 0) return B_BAD_VALUE; if (userBuffer != NULL && !IS_USER_ADDRESS(userBuffer)) return B_BAD_ADDRESS; return write_port_etc(port, messageCode, userBuffer, bufferSize, flags | PORT_FLAG_USE_USER_MEMCPY | B_CAN_INTERRUPT, timeout); }