/* * Copyright 2002-2007, Axel Dörfler, axeld@pinc-software.de. All rights reserved. * Distributed under the terms of the MIT License. * * Copyright 2001-2002, Travis Geiselbrecht. All rights reserved. * Distributed under the terms of the NewOS License. */ /*! This is main - initializes processors and starts init */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define TRACE_BOOT #ifdef TRACE_BOOT # define TRACE(x...) dprintf("INIT: " x) #else # define TRACE(x...) ; #endif bool kernel_startup = true; static kernel_args sKernelArgs; static uint32 sCpuRendezvous; static uint32 sCpuRendezvous2; static int32 main2(void *); int _start(kernel_args *bootKernelArgs, int cpu); /* keep compiler happy */ int _start(kernel_args *bootKernelArgs, int currentCPU) { if (bootKernelArgs->kernel_args_size != sizeof(kernel_args) || bootKernelArgs->version != CURRENT_KERNEL_ARGS_VERSION) { // This is something we cannot handle right now - release kernels // should always be able to handle the kernel_args of earlier // released kernels. debug_early_boot_message("Version mismatch between boot loader and kernel!\n"); return -1; } smp_set_num_cpus(bootKernelArgs->num_cpus); // wait for all the cpus to get here smp_cpu_rendezvous(&sCpuRendezvous, currentCPU); // the passed in kernel args are in a non-allocated range of memory if (currentCPU == 0) memcpy(&sKernelArgs, bootKernelArgs, sizeof(kernel_args)); smp_cpu_rendezvous(&sCpuRendezvous2, currentCPU); // do any pre-booting cpu config cpu_preboot_init_percpu(&sKernelArgs, currentCPU); thread_preboot_init_percpu(&sKernelArgs, currentCPU); // if we're not a boot cpu, spin here until someone wakes us up if (smp_trap_non_boot_cpus(currentCPU)) { thread_id thread; // init platform arch_platform_init(&sKernelArgs); // setup debug output debug_init(&sKernelArgs); set_dprintf_enabled(true); dprintf("Welcome to kernel debugger output!\n"); dprintf("Haiku revision: %lu\n", get_haiku_revision()); // init modules TRACE("init CPU\n"); cpu_init(&sKernelArgs); cpu_init_percpu(&sKernelArgs, currentCPU); TRACE("init interrupts\n"); int_init(&sKernelArgs); TRACE("init VM\n"); vm_init(&sKernelArgs); // Before vm_init_post_sem() is called, we have to make sure that // the boot loader allocated region is not used anymore // now we can use the heap and create areas arch_platform_init_post_vm(&sKernelArgs); TRACE("init driver_settings\n"); boot_item_init(); driver_settings_init(&sKernelArgs); debug_init_post_vm(&sKernelArgs); int_init_post_vm(&sKernelArgs); cpu_init_post_vm(&sKernelArgs); commpage_init(); TRACE("init system info\n"); system_info_init(&sKernelArgs); TRACE("init SMP\n"); smp_init(&sKernelArgs); TRACE("init timer\n"); timer_init(&sKernelArgs); TRACE("init real time clock\n"); rtc_init(&sKernelArgs); TRACE("init semaphores\n"); sem_init(&sKernelArgs); condition_variable_init(); // now we can create and use semaphores TRACE("init VM semaphores\n"); vm_init_post_sem(&sKernelArgs); TRACE("init driver_settings\n"); driver_settings_init_post_sem(&sKernelArgs); TRACE("init generic syscall\n"); generic_syscall_init(); TRACE("init cbuf\n"); cbuf_init(); TRACE("init teams\n"); team_init(&sKernelArgs); TRACE("init threads\n"); thread_init(&sKernelArgs); TRACE("init ports\n"); port_init(&sKernelArgs); TRACE("init kernel daemons\n"); kernel_daemon_init(); arch_platform_init_post_thread(&sKernelArgs); TRACE("init VM threads\n"); vm_init_post_thread(&sKernelArgs); TRACE("init ELF loader\n"); elf_init(&sKernelArgs); TRACE("init scheduler\n"); scheduler_init(); TRACE("init notification services\n"); notifications_init(); TRACE("init VFS\n"); vfs_init(&sKernelArgs); // bring up the AP cpus in a lock step fashion TRACE("waking up AP cpus\n"); sCpuRendezvous = sCpuRendezvous2 = 0; smp_wake_up_non_boot_cpus(); smp_cpu_rendezvous(&sCpuRendezvous, 0); // wait until they're booted // exit the kernel startup phase (mutexes, etc work from now on out) TRACE("exiting kernel startup\n"); kernel_startup = false; smp_cpu_rendezvous(&sCpuRendezvous2, 0); // release the AP cpus to go enter the scheduler TRACE("enabling interrupts and starting scheduler on cpu 0\n"); enable_interrupts(); scheduler_start(); // start a thread to finish initializing the rest of the system TRACE("starting main2 thread\n"); thread = spawn_kernel_thread(&main2, "main2", B_NORMAL_PRIORITY, NULL); TRACE("resuming main2 thread...\n"); resume_thread(thread); } else { // lets make sure we're in sync with the main cpu // the boot processor has probably been sending us // tlb sync messages all along the way, but we've // been ignoring them arch_cpu_global_TLB_invalidate(); // this is run for each non boot processor after they've been set loose cpu_init_percpu(&sKernelArgs, currentCPU); smp_per_cpu_init(&sKernelArgs, currentCPU); // wait for all other AP cpus to get to this point smp_cpu_rendezvous(&sCpuRendezvous, currentCPU); smp_cpu_rendezvous(&sCpuRendezvous2, currentCPU); // welcome to the machine enable_interrupts(); scheduler_start(); } TRACE("main: done... begin idle loop on cpu %d\n", currentCPU); for (;;) arch_cpu_idle(); return 0; } static int32 main2(void *unused) { (void)(unused); TRACE("start of main2: initializing devices\n"); TRACE("Init modules\n"); module_init(&sKernelArgs); // ToDo: the preloaded image debug data is placed in the kernel args, and // thus, if they are enabled, the kernel args shouldn't be freed, so // that we don't have to copy them. // What is yet missing is a mechanism that controls this (via driver settings). if (0) { // module_init() is supposed to be the last user of the kernel args // Note: don't confuse the kernel_args structure (which is never freed) // with the kernel args ranges it contains (and which are freed here). vm_free_kernel_args(&sKernelArgs); } // init userland debugging TRACE("Init Userland debugging\n"); init_user_debug(); // init the messaging service TRACE("Init Messaging Service\n"); init_messaging_service(); /* bootstrap all the filesystems */ TRACE("Bootstrap file systems\n"); vfs_bootstrap_file_systems(); TRACE("Init Device Manager\n"); device_manager_init(&sKernelArgs); TRACE("Add preloaded old-style drivers\n"); devfs_add_preloaded_drivers(&sKernelArgs); // ToDo: device manager starts here, bus_init()/dev_init() won't be necessary anymore, // but instead, the hardware and drivers are rescanned then. int_init_post_device_manager(&sKernelArgs); TRACE("Mount boot file system\n"); vfs_mount_boot_file_system(&sKernelArgs); // CPU specific modules may now be available cpu_init_post_modules(&sKernelArgs); vm_init_post_modules(&sKernelArgs); debug_init_post_modules(&sKernelArgs); device_manager_init_post_modules(&sKernelArgs); // start the init process { const char *shellArgs[] = {"/bin/sh", "/boot/beos/system/boot/Bootscript", NULL}; const char *initArgs[] = {"/bin/init", NULL}; const char **args; int32 argc; thread_id thread; struct stat st; if (stat(shellArgs[1], &st) == 0) { // start Bootscript args = shellArgs; argc = 2; } else { // ToDo: this is only necessary as long as we have the bootdir mechanism // start init args = initArgs; argc = 1; } thread = load_image(argc, args, NULL); if (thread >= B_OK) { resume_thread(thread); TRACE("Bootscript started\n"); } else dprintf("error starting \"%s\" error = %ld \n", args[0], thread); } return 0; }