//---------------------------------------------------------------------------- // Anti-Grain Geometry - Version 2.2 // Copyright (C) 2002-2004 Maxim Shemanarev (http://www.antigrain.com) // // Permission to copy, use, modify, sell and distribute this software // is granted provided this copyright notice appears in all copies. // This software is provided "as is" without express or implied // warranty, and with no claim as to its suitability for any purpose. // //---------------------------------------------------------------------------- // Contact: mcseem@antigrain.com // mcseemagg@yahoo.com // http://www.antigrain.com //---------------------------------------------------------------------------- // // Stroke math // //---------------------------------------------------------------------------- #ifndef AGG_STROKE_MATH_INCLUDED #define AGG_STROKE_MATH_INCLUDED #include "agg_math.h" #include "agg_vertex_sequence.h" namespace agg { //-------------------------------------------------------------line_cap_e enum line_cap_e { butt_cap, square_cap, round_cap }; //------------------------------------------------------------line_join_e enum line_join_e { miter_join, miter_join_revert, round_join, bevel_join }; // Minimal angle to calculate round joins, less than 0.1 degree. const double stroke_theta = 0.001; //----stroke_theta //--------------------------------------------------------stroke_calc_arc template void stroke_calc_arc(VertexConsumer& out_vertices, double x, double y, double dx1, double dy1, double dx2, double dy2, double width, double approximation_scale) { typedef typename VertexConsumer::value_type coord_type; // Check if we actually need the arc //----------------- double dd = calc_distance(dx1, dy1, dx2, dy2); if(dd < approximation_scale) { out_vertices.add(coord_type(x + dx1, y + dy1)); if(dd > approximation_scale * 0.25) { out_vertices.add(coord_type(x + dx2, y + dy2)); } return; } double a1 = atan2(dy1, dx1); double a2 = atan2(dy2, dx2); double da = a1 - a2; //if(fabs(da) < stroke_theta) //{ // out_vertices.add(coord_type(x + dx1, y + dy1)); // //out_vertices.add(coord_type(x + dx2, y + dy2)); // return; //} bool ccw = da > 0.0 && da < pi; if(width < 0) width = -width; da = fabs(1.0 / (width * approximation_scale)); if(!ccw) { if(a1 > a2) a2 += 2 * pi; while(a1 < a2) { out_vertices.add(coord_type(x + cos(a1) * width, y + sin(a1) * width)); a1 += da; } } else { if(a1 < a2) a2 -= 2 * pi; while(a1 > a2) { out_vertices.add(coord_type(x + cos(a1) * width, y + sin(a1) * width)); a1 -= da; } } out_vertices.add(coord_type(x + dx2, y + dy2)); } //-------------------------------------------------------stroke_calc_miter template void stroke_calc_miter(VertexConsumer& out_vertices, const vertex_dist& v0, const vertex_dist& v1, const vertex_dist& v2, double dx1, double dy1, double dx2, double dy2, double width, bool revert_flag, double miter_limit) { typedef typename VertexConsumer::value_type coord_type; double xi = v1.x; double yi = v1.y; if(!calc_intersection(v0.x + dx1, v0.y - dy1, v1.x + dx1, v1.y - dy1, v1.x + dx2, v1.y - dy2, v2.x + dx2, v2.y - dy2, &xi, &yi)) { // The calculation didn't succeed, most probaly // the three points lie one straight line //---------------- if(calc_distance(dx1, -dy1, dx2, -dy2) < width * 0.025) { // This case means that the next segment continues // the previous one (straight line) //----------------- out_vertices.add(coord_type(v1.x + dx1, v1.y - dy1)); } else { // This case means that the next segment goes back //----------------- if(revert_flag) { out_vertices.add(coord_type(v1.x + dx1, v1.y - dy1)); out_vertices.add(coord_type(v1.x + dx2, v1.y - dy2)); } else { // If no miter-revert, calcuate new dx1, dy1, dx2, dy2 out_vertices.add(coord_type(v1.x + dx1 + dy1 * miter_limit, v1.y - dy1 + dx1 * miter_limit)); out_vertices.add(coord_type(v1.x + dx2 - dy2 * miter_limit, v1.y - dy2 - dx2 * miter_limit)); } } } else { double d1 = calc_distance(v1.x, v1.y, xi, yi); double lim = width * miter_limit; if(d1 > lim) { // Miter limit exceeded //------------------------ if(revert_flag) { // For the compatibility with SVG, PDF, etc, // we use a simple bevel join instead of // "smart" bevel //------------------- out_vertices.add(coord_type(v1.x + dx1, v1.y - dy1)); out_vertices.add(coord_type(v1.x + dx2, v1.y - dy2)); } else { // Smart bevel that cuts the miter at the limit point //------------------- d1 = lim / d1; double x1 = v1.x + dx1; double y1 = v1.y - dy1; double x2 = v1.x + dx2; double y2 = v1.y - dy2; x1 += (xi - x1) * d1; y1 += (yi - y1) * d1; x2 += (xi - x2) * d1; y2 += (yi - y2) * d1; out_vertices.add(coord_type(x1, y1)); out_vertices.add(coord_type(x2, y2)); } } else { // Inside the miter limit //--------------------- out_vertices.add(coord_type(xi, yi)); } } } //--------------------------------------------------------stroke_calc_cap template void stroke_calc_cap(VertexConsumer& out_vertices, const vertex_dist& v0, const vertex_dist& v1, double len, line_cap_e line_cap, double width, double approximation_scale) { typedef typename VertexConsumer::value_type coord_type; out_vertices.remove_all(); double dx1 = width * (v1.y - v0.y) / len; double dy1 = width * (v1.x - v0.x) / len; double dx2 = 0; double dy2 = 0; if(line_cap == square_cap) { dx2 = dy1; dy2 = dx1; } if(line_cap == round_cap) { double a1 = atan2(dy1, -dx1); double a2 = a1 + pi; double da = fabs(1.0 / (width * approximation_scale)); while(a1 < a2) { out_vertices.add(coord_type(v0.x + cos(a1) * width, v0.y + sin(a1) * width)); a1 += da; } out_vertices.add(coord_type(v0.x + dx1, v0.y - dy1)); } else { out_vertices.add(coord_type(v0.x - dx1 - dx2, v0.y + dy1 - dy2)); out_vertices.add(coord_type(v0.x + dx1 - dx2, v0.y - dy1 - dy2)); } } //-------------------------------------------------------stroke_calc_join template void stroke_calc_join(VertexConsumer& out_vertices, const vertex_dist& v0, const vertex_dist& v1, const vertex_dist& v2, double len1, double len2, double width, line_join_e line_join, line_join_e inner_line_join, double miter_limit, double inner_miter_limit, double approximation_scale) { typedef typename VertexConsumer::value_type coord_type; double dx1, dy1, dx2, dy2; dx1 = width * (v1.y - v0.y) / len1; dy1 = width * (v1.x - v0.x) / len1; dx2 = width * (v2.y - v1.y) / len2; dy2 = width * (v2.x - v1.x) / len2; out_vertices.remove_all(); if(calc_point_location(v0.x, v0.y, v1.x, v1.y, v2.x, v2.y) > 0.0) { // Inner join //--------------- stroke_calc_miter(out_vertices, v0, v1, v2, dx1, dy1, dx2, dy2, width, inner_line_join == miter_join_revert, inner_miter_limit); } else { // Outer join //--------------- switch(line_join) { case miter_join: stroke_calc_miter(out_vertices, v0, v1, v2, dx1, dy1, dx2, dy2, width, false, miter_limit); break; case miter_join_revert: stroke_calc_miter(out_vertices, v0, v1, v2, dx1, dy1, dx2, dy2, width, true, miter_limit); break; case round_join: stroke_calc_arc(out_vertices, v1.x, v1.y, dx1, -dy1, dx2, -dy2, width, approximation_scale); break; default: // Bevel join out_vertices.add(coord_type(v1.x + dx1, v1.y - dy1)); if(calc_distance(dx1, dy1, dx2, dy2) > approximation_scale * 0.25) { out_vertices.add(coord_type(v1.x + dx2, v1.y - dy2)); } break; } } } } #endif