/* * Copyright 2002-2007, Axel Dörfler, axeld@pinc-software.de. * Distributed under the terms of the MIT License. * * Copyright 2001-2002, Travis Geiselbrecht. All rights reserved. * Distributed under the terms of the NewOS License. */ /* Functionality for symetrical multi-processors */ #include #include #include #include #include #include #include #include #include #include #define DEBUG_SPINLOCKS 1 //#define TRACE_SMP #ifdef TRACE_SMP # define TRACE(x) dprintf x #else # define TRACE(x) ; #endif #if __INTEL__ # define PAUSE() asm volatile ("pause;") #else # define PAUSE() #endif #define MSG_POOL_SIZE (SMP_MAX_CPUS * 4) struct smp_msg { struct smp_msg *next; int32 message; uint32 data; uint32 data2; uint32 data3; void *data_ptr; uint32 flags; int32 ref_count; volatile bool done; uint32 proc_bitmap; }; #define MAILBOX_LOCAL 1 #define MAILBOX_BCAST 2 static spinlock boot_cpu_spin[SMP_MAX_CPUS] = { 0, }; static struct smp_msg *free_msgs = NULL; static volatile int free_msg_count = 0; static spinlock free_msg_spinlock = 0; static struct smp_msg *smp_msgs[SMP_MAX_CPUS] = { NULL, }; static spinlock cpu_msg_spinlock[SMP_MAX_CPUS] = { 0, }; static struct smp_msg *smp_broadcast_msgs = NULL; static spinlock broadcast_msg_spinlock = 0; static bool sICIEnabled = false; static int32 sNumCPUs = 1; static int32 process_pending_ici(int32 currentCPU); #if DEBUG_SPINLOCKS #define NUM_LAST_CALLERS 32 static struct { void *caller; spinlock *lock; } sLastCaller[NUM_LAST_CALLERS]; static int32 sLastIndex = 0; static void push_lock_caller(void *caller, spinlock *lock) { sLastCaller[sLastIndex].caller = caller; sLastCaller[sLastIndex].lock = lock; if (++sLastIndex >= NUM_LAST_CALLERS) sLastIndex = 0; } static void * find_lock_caller(spinlock *lock) { int32 i; for (i = 0; i < NUM_LAST_CALLERS; i++) { int32 index = (NUM_LAST_CALLERS + sLastIndex - 1 - i) % NUM_LAST_CALLERS; if (sLastCaller[index].lock == lock) return sLastCaller[index].caller; } return NULL; } #endif // DEBUG_SPINLOCKS void acquire_spinlock(spinlock *lock) { if (sNumCPUs > 1) { int currentCPU = smp_get_current_cpu(); if (are_interrupts_enabled()) panic("acquire_spinlock: attempt to acquire lock %p with interrupts enabled\n", lock); while (1) { while (*lock != 0) { process_pending_ici(currentCPU); PAUSE(); } if (atomic_set((int32 *)lock, 1) == 0) break; } } else { #if DEBUG_SPINLOCKS int32 oldValue; if (are_interrupts_enabled()) panic("acquire_spinlock: attempt to acquire lock %p with interrupts enabled\n", lock); oldValue = atomic_set((int32 *)lock, 1); if (oldValue != 0) { panic("acquire_spinlock: attempt to acquire lock %p twice on non-SMP system (last caller: %p, value %ld)\n", lock, find_lock_caller(lock), oldValue); } push_lock_caller(arch_debug_get_caller(), lock); #endif } } static void acquire_spinlock_nocheck(spinlock *lock) { if (sNumCPUs > 1) { #if DEBUG_SPINLOCKS if (are_interrupts_enabled()) panic("acquire_spinlock_nocheck: attempt to acquire lock %p with interrupts enabled\n", lock); #endif while (1) { while(*lock != 0) PAUSE(); if (atomic_set((int32 *)lock, 1) == 0) break; } } else { #if DEBUG_SPINLOCKS if (are_interrupts_enabled()) panic("acquire_spinlock_nocheck: attempt to acquire lock %p with interrupts enabled\n", lock); if (atomic_set((int32 *)lock, 1) != 0) panic("acquire_spinlock_nocheck: attempt to acquire lock %p twice on non-SMP system\n", lock); #endif } } void release_spinlock(spinlock *lock) { if (sNumCPUs > 1) { if (are_interrupts_enabled()) panic("release_spinlock: attempt to release lock %p with interrupts enabled\n", lock); if (atomic_set((int32 *)lock, 0) != 1) panic("release_spinlock: lock %p was already released\n", lock); } else { #if DEBUG_SPINLOCKS if (are_interrupts_enabled()) panic("release_spinlock: attempt to release lock %p with interrupts enabled\n", lock); if (atomic_set((int32 *)lock, 0) != 1) panic("release_spinlock: lock %p was already released\n", lock); #endif } } /** Finds a free message and gets it. * NOTE: has side effect of disabling interrupts * return value is the former interrupt state */ static cpu_status find_free_message(struct smp_msg **msg) { cpu_status state; TRACE(("find_free_message: entry\n")); retry: while (free_msg_count <= 0) PAUSE(); state = disable_interrupts(); acquire_spinlock(&free_msg_spinlock); if (free_msg_count <= 0) { // someone grabbed one while we were getting the lock, // go back to waiting for it release_spinlock(&free_msg_spinlock); restore_interrupts(state); goto retry; } *msg = free_msgs; free_msgs = (*msg)->next; free_msg_count--; release_spinlock(&free_msg_spinlock); TRACE(("find_free_message: returning msg %p\n", *msg)); return state; } static void return_free_message(struct smp_msg *msg) { TRACE(("return_free_message: returning msg %p\n", msg)); acquire_spinlock_nocheck(&free_msg_spinlock); msg->next = free_msgs; free_msgs = msg; free_msg_count++; release_spinlock(&free_msg_spinlock); } static struct smp_msg * check_for_message(int currentCPU, int *source_mailbox) { struct smp_msg *msg; if (!sICIEnabled) return NULL; acquire_spinlock_nocheck(&cpu_msg_spinlock[currentCPU]); msg = smp_msgs[currentCPU]; if (msg != NULL) { smp_msgs[currentCPU] = msg->next; release_spinlock(&cpu_msg_spinlock[currentCPU]); TRACE((" cpu %d: found msg %p in cpu mailbox\n", currentCPU, msg)); *source_mailbox = MAILBOX_LOCAL; } else { // try getting one from the broadcast mailbox release_spinlock(&cpu_msg_spinlock[currentCPU]); acquire_spinlock_nocheck(&broadcast_msg_spinlock); msg = smp_broadcast_msgs; while (msg != NULL) { if (CHECK_BIT(msg->proc_bitmap, currentCPU) != 0) { // we have handled this one already msg = msg->next; continue; } // mark it so we wont try to process this one again msg->proc_bitmap = SET_BIT(msg->proc_bitmap, currentCPU); *source_mailbox = MAILBOX_BCAST; break; } release_spinlock(&broadcast_msg_spinlock); TRACE((" cpu %d: found msg %p in broadcast mailbox\n", currentCPU, msg)); } return msg; } static void finish_message_processing(int currentCPU, struct smp_msg *msg, int source_mailbox) { int old_refcount; old_refcount = atomic_add(&msg->ref_count, -1); if (old_refcount == 1) { // we were the last one to decrement the ref_count // it's our job to remove it from the list & possibly clean it up struct smp_msg **mbox = NULL; spinlock *spinlock = NULL; // clean up the message from one of the mailboxes switch (source_mailbox) { case MAILBOX_BCAST: mbox = &smp_broadcast_msgs; spinlock = &broadcast_msg_spinlock; break; case MAILBOX_LOCAL: mbox = &smp_msgs[currentCPU]; spinlock = &cpu_msg_spinlock[currentCPU]; break; } acquire_spinlock_nocheck(spinlock); TRACE(("cleaning up message %p\n", msg)); if (msg == *mbox) { (*mbox) = msg->next; } else { // we need to walk to find the message in the list. // we can't use any data found when previously walking through // the list, since the list may have changed. But, we are guaranteed // to at least have msg in it. struct smp_msg *last = NULL; struct smp_msg *msg1; msg1 = *mbox; while (msg1 != NULL && msg1 != msg) { last = msg1; msg1 = msg1->next; } // by definition, last must be something if (msg1 == msg && last != NULL) last->next = msg->next; else dprintf("last == NULL or msg != msg1!!!\n"); } release_spinlock(spinlock); if ((msg->flags & SMP_MSG_FLAG_FREE_ARG) != 0 && msg->data_ptr != NULL) free(msg->data_ptr); if (msg->flags & SMP_MSG_FLAG_SYNC) { msg->done = true; // the caller cpu should now free the message } else { // in the !SYNC case, we get to free the message return_free_message(msg); } } } static int32 process_pending_ici(int32 currentCPU) { struct smp_msg *msg; vint32 *haltValue = NULL; int sourceMailbox = 0; int retval = B_HANDLED_INTERRUPT; msg = check_for_message(currentCPU, &sourceMailbox); if (msg == NULL) return retval; TRACE((" cpu %ld message = %ld\n", currentCPU, msg->message)); switch (msg->message) { case SMP_MSG_INVALIDATE_PAGE_RANGE: arch_cpu_invalidate_TLB_range((addr_t)msg->data, (addr_t)msg->data2); break; case SMP_MSG_INVALIDATE_PAGE_LIST: arch_cpu_invalidate_TLB_list((addr_t *)msg->data, (int)msg->data2); break; case SMP_MSG_USER_INVALIDATE_PAGES: arch_cpu_user_TLB_invalidate(); break; case SMP_MSG_GLOBAL_INVALIDATE_PAGES: arch_cpu_global_TLB_invalidate(); break; case SMP_MSG_RESCHEDULE: retval = B_INVOKE_SCHEDULER; break; case SMP_MSG_CPU_HALT: haltValue = (vint32 *)msg->data_ptr; dprintf("CPU %ld halted!\n", currentCPU); break; case SMP_MSG_CALL_FUNCTION: { smp_call_func func = (smp_call_func)msg->data_ptr; func(msg->data, currentCPU, msg->data2, msg->data3); break; } default: dprintf("smp_intercpu_int_handler: got unknown message %ld\n", msg->message); } // finish dealing with this message, possibly removing it from the list finish_message_processing(currentCPU, msg, sourceMailbox); // special case for the halt message if (haltValue) { cpu_status state = disable_interrupts(); while (*haltValue != 0) PAUSE(); restore_interrupts(state); } return retval; } // #pragma mark - int smp_intercpu_int_handler(void) { int retval; int currentCPU = smp_get_current_cpu(); TRACE(("smp_intercpu_int_handler: entry on cpu %d\n", currentCPU)); retval = process_pending_ici(currentCPU); TRACE(("smp_intercpu_int_handler: done\n")); return retval; } void smp_send_ici(int32 targetCPU, int32 message, uint32 data, uint32 data2, uint32 data3, void *data_ptr, uint32 flags) { struct smp_msg *msg; TRACE(("smp_send_ici: target 0x%lx, mess 0x%lx, data 0x%lx, data2 0x%lx, data3 0x%lx, ptr %p, flags 0x%lx\n", targetCPU, message, data, data2, data3, data_ptr, flags)); if (sICIEnabled) { int state; int currentCPU; // find_free_message leaves interrupts disabled state = find_free_message(&msg); currentCPU = smp_get_current_cpu(); if (targetCPU == currentCPU) { return_free_message(msg); restore_interrupts(state); return; // nope, cant do that } // set up the message msg->message = message; msg->data = data; msg->data2 = data2; msg->data3 = data3; msg->data_ptr = data_ptr; msg->ref_count = 1; msg->flags = flags; msg->done = false; // stick it in the appropriate cpu's mailbox acquire_spinlock_nocheck(&cpu_msg_spinlock[targetCPU]); msg->next = smp_msgs[targetCPU]; smp_msgs[targetCPU] = msg; release_spinlock(&cpu_msg_spinlock[targetCPU]); arch_smp_send_ici(targetCPU); if (flags & SMP_MSG_FLAG_SYNC) { // wait for the other cpu to finish processing it // the interrupt handler will ref count it to <0 // if the message is sync after it has removed it from the mailbox while (msg->done == false) { process_pending_ici(currentCPU); PAUSE(); } // for SYNC messages, it's our responsibility to put it // back into the free list return_free_message(msg); } restore_interrupts(state); } } void smp_send_broadcast_ici(int32 message, uint32 data, uint32 data2, uint32 data3, void *data_ptr, uint32 flags) { struct smp_msg *msg; TRACE(("smp_send_broadcast_ici: cpu %ld mess 0x%lx, data 0x%lx, data2 0x%lx, data3 0x%lx, ptr %p, flags 0x%lx\n", smp_get_current_cpu(), message, data, data2, data3, data_ptr, flags)); if (sICIEnabled) { int state; int currentCPU; // find_free_message leaves interrupts disabled state = find_free_message(&msg); currentCPU = smp_get_current_cpu(); msg->message = message; msg->data = data; msg->data2 = data2; msg->data3 = data3; msg->data_ptr = data_ptr; msg->ref_count = sNumCPUs - 1; msg->flags = flags; msg->proc_bitmap = SET_BIT(0, currentCPU); msg->done = false; TRACE(("smp_send_broadcast_ici%d: inserting msg %p into broadcast mbox\n", currentCPU, msg)); // stick it in the appropriate cpu's mailbox acquire_spinlock_nocheck(&broadcast_msg_spinlock); msg->next = smp_broadcast_msgs; smp_broadcast_msgs = msg; release_spinlock(&broadcast_msg_spinlock); arch_smp_send_broadcast_ici(); TRACE(("smp_send_broadcast_ici: sent interrupt\n")); if (flags & SMP_MSG_FLAG_SYNC) { // wait for the other cpus to finish processing it // the interrupt handler will ref count it to <0 // if the message is sync after it has removed it from the mailbox TRACE(("smp_send_broadcast_ici: waiting for ack\n")); while (msg->done == false) { process_pending_ici(currentCPU); PAUSE(); } TRACE(("smp_send_broadcast_ici: returning message to free list\n")); // for SYNC messages, it's our responsibility to put it // back into the free list return_free_message(msg); } restore_interrupts(state); } TRACE(("smp_send_broadcast_ici: done\n")); } bool smp_trap_non_boot_cpus(int32 cpu) { if (cpu > 0) { boot_cpu_spin[cpu] = 1; acquire_spinlock_nocheck(&boot_cpu_spin[cpu]); return false; } return true; } void smp_wake_up_non_boot_cpus() { int i; // ICIs were previously being ignored if (sNumCPUs > 1) sICIEnabled = true; // resume non boot CPUs for (i = 1; i < sNumCPUs; i++) { release_spinlock(&boot_cpu_spin[i]); } } /* have all cpus spin until all have run */ void smp_cpu_rendezvous(volatile uint32 *var, int current_cpu) { atomic_or(var, 1 << current_cpu); while (*var != ((1 << sNumCPUs) - 1)) PAUSE(); } status_t smp_init(kernel_args *args) { struct smp_msg *msg; int i; TRACE(("smp_init: entry\n")); if (args->num_cpus > 1) { free_msgs = NULL; free_msg_count = 0; for (i = 0; i < MSG_POOL_SIZE; i++) { msg = (struct smp_msg *)malloc(sizeof(struct smp_msg)); if (msg == NULL) { panic("error creating smp mailboxes\n"); return B_ERROR; } memset(msg, 0, sizeof(struct smp_msg)); msg->next = free_msgs; free_msgs = msg; free_msg_count++; } sNumCPUs = args->num_cpus; } TRACE(("smp_init: calling arch_smp_init\n")); return arch_smp_init(args); } status_t smp_per_cpu_init(kernel_args *args, int32 cpu) { return arch_smp_per_cpu_init(args, cpu); } void smp_set_num_cpus(int32 numCPUs) { sNumCPUs = numCPUs; } int32 smp_get_num_cpus() { return sNumCPUs; } int32 smp_get_current_cpu(void) { return thread_get_current_thread()->cpu->cpu_num; } // #pragma mark - // public exported functions void call_all_cpus(void (*func)(void *, int), void *cookie) { cpu_status state = disable_interrupts(); if (smp_get_num_cpus() > 1) { smp_send_broadcast_ici(SMP_MSG_CALL_FUNCTION, (uint32)cookie, 0, 0, (void *)func, SMP_MSG_FLAG_ASYNC); } // we need to call this function ourselves as well func(cookie, smp_get_current_cpu()); restore_interrupts(state); } void call_all_cpus_sync(void (*func)(void *, int), void *cookie) { cpu_status state = disable_interrupts(); if (smp_get_num_cpus() > 1) { smp_send_broadcast_ici(SMP_MSG_CALL_FUNCTION, (uint32)cookie, 0, 0, (void *)func, SMP_MSG_FLAG_SYNC); } // we need to call this function ourselves as well func(cookie, smp_get_current_cpu()); restore_interrupts(state); } void memory_read_barrier(void) { arch_cpu_memory_read_barrier(); } void memory_write_barrier(void) { arch_cpu_memory_write_barrier(); }